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1. Introduction

Let S be a two dimensional smooth manifold with a symmetric metric tensor h = (hij), i, j = 1, 2. In 
this paper, we study the following elliptic system on S:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δhũ = 1
ε̃2 (eũ − τ2) + 4π

b∑
j=1

njδpj
,

2Kh = −a
[ 1
ε̃2 (eũ − τ2) − 1

τ2 Δhe
ũ
]
.

(1.1)

Here, Kh is the Gaussian curvature for (S, h) and Δh is the Laplace–Beltrami operator induced from the 
metric h. The set P = {p1, p2, · · · , pb} consists of distinct points in S called string points, and δpj

denotes 
the Dirac measure concentrated at the point pj. The coefficient nj ∈ N is the multiplicity of pj and the 
total string number is defined by

N = n1 + · · · + nb. (1.2)
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The unknowns are not only ũ : S\P → R but also the metric h. There are three constants ε̃ > 0, τ > 0 and 
a ≥ 0.

The system (1.1) originates from the self-dual Einstein–Maxwell–Higgs model describing an interaction 
of an Abelian gauge field and a scalar field on a (3 +1) dimensional spacetime manifold M. This model is an 
extension of the classical Ginzburg–Landau model for superconductivity in the frame of general relativity. 
The metric of M is unknown and should obey the Einstein equations. If we assume M = R

1,1 ×S and that 
the gauge fields and the scalar field have two dimensional nature, then we are led to (1.1) as a special type 
of the static Euler–Lagrange equations. In this situation, the Einstein equations are reduced to the second 
equation of (1.1) and the metric h on S appears as the unknown metric component of M. We call (1.1)
the self-dual Einstein–Maxwell–Higgs equation. The constant ε̃ represents the strength the electromagnetic 
interaction, τ is the symmetry breaking parameter, and a is the scaled gravitational constant. If a = 0, 
there is no gravitational effect on the model. Solutions of (1.1), called string solutions, are related to an 
explanation of some issues in cosmology such as galaxy formation. See [6,9,17,19] for the physical background 
and the derivation of (1.1).

We have four unknowns ũ, h11, h12, h22 for (1.1) and it is not easy to solve in its form. So, we assume 
that the metric is conformal to a given metric h0 and set h = eηh0 for some smooth function η. Then, (1.1)
is rewritten as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Δh0 ũ = 1

ε̃2 e
η(eũ − τ2) + 4π

b∑
j=1

njδpj
,

Δh0(−η − a

τ2 e
ũ) = −2Kh0 −

a

ε̃2 e
η(eũ − τ2).

(1.3)

Now, we have two unknown functions ũ and η. The purpose of this paper is to construct solutions for small ε̃
which have bubbles at string points. To solve (1.3), we split the situation into two cases: S is either compact 
or noncompact. In the following, we reduce the system into a single elliptic equation for u in each case and 
state the main results.

First, let us assume that S is noncompact. In particular, we suppose that S = R
2 and h0 is the standard 

Euclidean metric. Then Kh0 = 0 and by adding the first and the second equations of (1.3), we deduce that

−η − a

τ2 e
ũ + aũ−

b∑
j=1

2anj ln |x− pj |

is a harmonic function. By setting this function to be zero, we can represent η in terms of ũ:

η = − a

τ2 e
ũ + aũ−

b∑
j=1

2anj ln |x− pj |.

By substituting η in the first equation of (1.3) by this representation and setting ũ − ln τ2 = u and 
ε̃τ−1−a = ε, we obtain the final reduction

Δu = 1
ε2

( b∏
j=1

|x− pj |2nj

)−a

ea(u−eu)(eu − 1) + 4π
b∑

j=1
njδpj

. (1.4)

Due to the physical motivation, there are three kinds of boundary conditions for (1.4): as |x| → ∞,

topological conditions : u(x) → σ ∈ R,

nontopological conditions of type I : u(x) → −∞,
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nontopological conditions of type II : u(x) → ∞.

Solutions for each boundary condition are called topological solutions, type I nontopological solutions and 
type II nontopological solutions, respectively. In the rest of this paper, we simply call a type I (resp. type 
II) nontopological solution as a type I (resp. type II) solution.

If a = 0, then (1.4) becomes

Δu = 1
ε2 (eu − 1) + 4π

b∑
j=1

njδpj
. (1.5)

In the physical literature, this case implies that there is no gravitational effect on the Maxwell–Higgs model. 
The equation (1.5) possesses a unique topological solution with σ = 0 ([15]). Moreover, there exists one 
parameter family of type I solutions uα of (1.5) satisfying

1
2π

∫
R2

euαdx = α > 0.

See [1,16].
If a > 0, the situation is quite sophisticated. The existence and properties of solutions are heavily 

dependent on the values of a and N . As mentioned in [9], there is a big difference between the case 
0 < aN < 1 and other cases. In various places of computation, one may encounter terms which behave like 
|x|2−2aN near zero or at infinity. Then, the integrability issues occur and one may face severe obstructions 
for the case aN ≥ 1. If we add some additional conditions on (1.4), then such difficulty may overcome. 
For instance, one may consider the simplest case that p1 = · · · = pb = 0. Under this hypothesis, (1.4) is 
transformed into

Δu = 1
ε2 |x|

−2aNea(u−eu)(eu − 1) + 4πNδ0. (1.6)

If we further assume that u(x) = u(r) with r = |x|, then we obtain the radial version:

⎧⎨
⎩

u′′ + 1
r
u′ + 1

ε2 r
−2aλea(u−eu)(1 − eu) = 0, r > 0,

u(r) = 2λ ln r + O(1) near r = 0.
(1.7)

Here, we replace N in (1.6) by λ in (1.7) to emphasize that one may consider (1.7) for any positive real 
number λ. The first result for (1.7) was given in [6,14], which say that if 0 < aλ < 1, there exist a unique 
topological solution and one parameter family of type I solutions. This result was improved by [9] in the sense 
that solutions for (1.7) are classified for all possible ranges of aλ. When either 0 < aλ < 1 or 1 < aλ < 2, 
(1.7) possesses a unique topological solution and one parameter families of type I and II solutions. For 
topological solutions, σ = 0 for 0 < aλ < 1 and σ < 0 for 1 < aλ < 2. If aλ = 1 or aλ ≥ 2, then there are 
only type II solutions. For later use, we state the result for the type I solutions.

Theorem A ([9]).

(i) Suppose that 0 ≤ aλ < 1. Then for each β > 4/a, there exists a unique type I nontopological solution 
Uλ,β,ε of (1.7) which satisfies
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ε2

∞∫
0

r1−2aλea(Uλ,β,ε−eUλ,β,ε )(1 − eUλ,β,ε)dr = β,

Uλ,β,ε(r) = (2λ− β) ln r + κλ,β,ε + O(r2−aβ) as r → ∞.

(1.8)

Here, κλ,β,ε is a constant which depends on λ, β and ε.
(ii) Suppose that 1 < aλ < 2. Then for each 2λ < β < 4/a, there exists a unique type I nontopological 

solution Uλ,β,ε of (1.7) satisfying (1.8).
(iii) If aλ = 1 or aλ ≥ 2, then (1.7) does not possess any type I nontopological solutions.

In this article, we focus on the multistring case of (1.4), i.e., b > 1. In this case, there have been results 
only for 0 < aN < 1 due to the technical difficulty mentioned as above. Topological multistring solutions 
were constructed in [8,18] by the super- and sub-solution method. In [4], the author obtained type I solutions 
which are perturbed from the solutions of the Liouville type equations on the plane. In this paper, we will 
show the existence of nontopological solutions known as bubbling solutions like [5,7,11–13]. Using the method 
of [5,7], we construct nontopological solutions by patching radially symmetric solutions of (1.7) at small 
neighborhoods of some pj ∈ P1 = {p1, · · · , pb1} ⊂ P. Such solutions are different from the perturbation of 
the solutions of the Liouville type equations.

There are some differences between our solutions and the bubbling solutions of [5,7,11]. We pick radial 
profiles Unj ,βj ,εj at each blowup point pj and try to find a solution uε such that

uε(x) = Unj ,βj ,εj

( |x− pj |
εαj

)
+ O(1) near x = pj as ε → 0.

Generically, it is reasonable to have different scale index αj = (1 − anj)−1 at each pj ∈ P1, while we have 
a uniform scale index αj = 1 for bubbling solutions in [5,7,11]. In this paper, we will take nj = 1 at each 
bubble by the technical restriction of our method (see Theorem 2.1 and Proposition 4.1 (iii)) and so we get 
the uniform scale εα with α = (1 − a)−1. Furthermore, when we choose radial profiles of (1.7) associated 
with a bubble pj , we have to take different ε, say εj, at each bubble. This is due to the weight function g(x)
and does not happen for bubbling solutions of [5,7,11]. Such a property is necessary for the analysis of the 
linearized operators at the approximate solutions.

To state the first main result of this paper, we set up necessary hypothesis in the following. We want to 
find bubbling solutions uε of (1.4) satisfying the following: as ε → 0,

• uε(x) = Unj ,βj ,εj

( |x− pj |
εαj

)
+ O(1) near x = pj , (1.9)

• uε(x) = (2N − β) ln |x| + O(1) as |x| → ∞, (1.10)

• 1
2πε2 g(x)f(uε) →

b1∑
j=1

βjδpj
in the sense of measures, (1.11)

•
b1∑
j=1

βj = β = 1
2πε2

∫
R2

g(x)f(uε)dx. (1.12)

Here, N is the total string number defined by (1.2) and a is chosen such that 0 < anj < 1 for 1 ≤ j ≤ b1. 
We also denote

f(u) = ea(u−eu)(1 − eu),

g(x) =
b∏

|x− pj |−2anj , gj(x) =
b∏

|x− pk|−2ank ,

j=1 k �=j
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ωj =
√
gj(pj) for 1 ≤ j ≤ b1.

Generally, at each bubble point pj ∈ P1, we use a different scaling parameter

αj = (1 − anj)−1 for 1 ≤ j ≤ b1. (1.13)

However, due to technical reasons (see the proof of Theorem 2.1), we assume that

n1 = · · · = nb1 = 1. (1.14)

In this case,

αj = α = (1 − a)−1 for all 1 ≤ j ≤ b1.

We also need to specify βj and εj . First, thanks to a compatibility condition near blow-up points in P1, we 
deduce from (1.9) that for 1 ≤ j, k ≤ b1,

(2 − βj)α = (2 − βk)α = −β0 = constant. (1.15)

Thus, all βj ’s are equal and (1.12) implies that

βj = β

b1
for 1 ≤ j ≤ b1 and β0 = β − 2b1

b1(1 − a) . (1.16)

Since βj > 4/a by Theorem A, we get a necessary condition

β >
4b1
a

. (1.17)

Furthermore, it is natural to take

εj = ω−1
j =

b∏
k �=j

|pj − pk|a, 1 ≤ j ≤ b1,

which will be clarified later. We denote Uj(r) = U1 , β
b1

, ω−1
j

(r) and κj = κ1, β
b1

, ω−1
j

for 1 ≤ j ≤ b1. Then, by 

Theorem A, as r → ∞,

Uj(r) =
(
2 − β

b1

)
ln r + κj + O

(
r2− aβ

b1
)

= −β0

α
ln r + κj + O

(
r2− aβ

b1
)
. (1.18)

By Green’s representation formula, (1.11), and (1.15), we see that

uε(x) − Cε =
b∑

j=1
2nj ln |x− pj | −

1
2πε2

∫
R2

g(y)f
(
uε(y)

)
ln |x− y| dy

= H(x) + o(1)

on any K � R
2\P as ε → 0, where each Cε is a constant and

H(x) = −
b1∑ β0

α
ln |x− pj | +

b∑
2nj ln |x− pj |.
j=1 j=b1+1
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Comparing this expression with (1.9), we obtain

Cε = −Kj(pj) + β0 ln ε + κj ,

where for 1 ≤ j ≤ b1

Kj(x) = H(x) + β0

α
ln |x− pj |.

Hence, we obtain a constraint on the location of the elements of P1:

Kj(pj) − κj = Kk(pk) − κk =: D = constant for 1 ≤ j �= k ≤ b1. (1.19)

Now, we are in a position to state the first main result of this paper.

Theorem 1.1. Let b1 ∈ {1, 2, · · · , b} be fixed and α = (1 − a)−1. Assume (1.14), (1.19), and

0 < a <
1
4 . (1.20)

Then, for any

β > max
{

2N,
4b1
a

}
, (1.21)

there exists ε0 > 0 such that for all ε ∈ (0, ε0), (1.4) possesses a solution uε such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε(x) = Uj

(
|x− pj |

εα

)
+ O(1) near x = pj for 1 ≤ j ≤ b1,

1
2πε2

∫
R2

g(x)f(uε)dx = β,

1
2πε2 g(x)f(uε) −→ β

b1

b1∑
j=1

δpj
in the sense of measures.

Moreover, uε → −∞ in Cloc(R2\P) as ε → 0.

Now, let us consider the problem to find bubbling solutions when S is compact. If we integrate the first 
and the second equation of (1.3) and add them, we are led to

∫
S

Kh0 dVh0 = 2πaN. (1.22)

Thus, we infer from the Gauss–Bonnet Theorem that χ(S) = 2 − 2n = aN where χ(S) is the Euler 
characteristic of S and n is the genus of S. So, we have two cases: either n = 1 and a = 0 or n = 0 and 
a > 0. In the first case, S becomes a flat torus such that Kh0 = 0 and η = constant. By letting this constant 
zero, we obtain (1.5) on a flat torus with ε = ε̃τ−1. By integrating this equation on S, we have

0 <
1
ε2

∫
eu = |S|

ε2 − 4πN,
S
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where |S| is the volume of S. So, a necessary condition for the existence is ε2 < |S|(4πN)−1. It was proved 
in [16] that this condition is also sufficient.

Next, if n = 0 and a > 0, then S is diffeomorphic to a sphere and we get from (1.22) a constraint

aN = 2. (1.23)

We want to make (1.3) into a single elliptic equation as for the noncompact case. Given a point p ∈ S, let 
G(x, p) be the Green function satisfying that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− Δh0G(x, p) = − 1
|S|h0

+ δp,∫
S

G(x, p) dVh0(x) = 0.
(1.24)

See [2] for the detail. If we set

u0 = −4π
b∑

j=1
njG(x, pj) (1.25)

and ṽ = ũ− u0, then ṽ satisfies that

⎧⎪⎪⎨
⎪⎪⎩

Δh0 ṽ = 1
ε̃2 e

η(eu0+ṽ − τ2) + 4πN
|S|h0

,

Δh0(−η − a

τ2 e
u0+ṽ + aṽ) = −2Kh0 + 4πaN

|S|h0

.

(1.26)

By the condition (1.22), the equation

−Δh0v0 = −2Kh0 + 4πaN
|S|h0

and
∫
S

v0 = 0

has a unique solution. So, by the second equation of (1.26),

−η − a

τ2 e
u0+ṽ + aṽ + v0

is a constant. By letting this constant be zero, we have

η = aṽ − a

τ2 e
u0+ṽ + v0,

and insert this in the first equation of (1.26). Then, by setting v = ṽ− ln τ2 and ε̃τ−1−a = ε, we obtain the 
final form on a compact surface S:

Δh0v = 1
ε2 e

v0ea(v−eu0+v)(eu0+v − 1) + 4πN
|S|h0

. (1.27)

It is not difficult to see that if v is a solution of (1.27), then by the maximum principle

eu0+v < 1 on S.

By integrating (1.27), we see that any solution v of (1.27) satisfies
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4πN = 1
ε2

∫
S

ev0ea(v−eu0+v)(1 − eu0+v). (1.28)

So, as ε → 0, every solution v satisfies one of the following:
{

topological solution: eu0+v → 1,

nontopological solution: ev → 0.
(1.29)

Then, the main research topic regarding (1.27) is to find solutions satisfying each of the asymptotics (1.29).
The first result on (1.27) was known in [18] where the existence of solution was proved for 0 < ε 	 1. 

The authors in [10] improved this result by showing that there exists εc > 0 such that for all ε ∈ (0, εc), 
(1.27) possesses at least two solutions v1

ε and v2
ε . Moreover, v1

ε is a topological solution, that is, eu0+v1
ε → 1

as ε → 0. One interesting question is whether there exist solutions of (1.27) which bubbles at some string 
points and have profiles of radially symmetric solutions in Theorem A near blowup points. In other words, 
can we find bubbling solutions as in Theorem 1.1 when S is a compact surface? Such solutions on compact 
surfaces can be found in other self-dual equations, for instance, the self-dual Chern–Simons–Higgs equation 
[11]. However, the answer is negative for (1.27) due to the obstruction (1.23). We show in this paper that it 
is not possible to find such bubbling solutions for (1.27). In the following theorem, we prove this by taking 
p1 as a bubble point for simplicity. The second main result of this paper is the following.

Theorem 1.2. Assume (1.23). Given a solution Uλ,β,ε of (1.7), let Vλ,β,ε(r) = Uλ,β,ε− 2λ ln r. Then, for any 
pair (λ, β, ξ) ∈ R

3
+, (1.27) has no bubbling solutions vε satisfying that

(a) vε(x) = Vλ,β,ξ

(
|x− p1|

εα

)
+ O(1) as x → p1 for any small ε > 0,

(b) 1
ε2 e

v0 ea(vε−eu0+vε )(1 − eu0+vε) → 4πNδp1 in the sense of measures as ε → 0.

This paper is organized as follows. In section 2, we prove Theorem 1.1 by applying the Contraction 
Mapping Theorem. In Section 3, we prove Theorem 1.2. In Section 4, we prove Theorem 2.1 which deals 
with the invertibility of the linearized operator and plays a key role in the proof of Theorem 1.1.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We fix b1 ∈ N such that 1 ≤ b1 ≤ b and set P1 = {p1, · · · , pb1}. 
Without loss of generality, we may assume that |pj − pk| ≥ 4 for 1 ≤ j �= k ≤ b. We set

α∗ = 2a
1 − a

and α∗ = 1 − 2a
1 − a

.

By the condition (1.20), it holds that α∗ < α∗. Based on the heuristic argument in the previous section, we 
define the approximate solution u0,ε by

u0,ε(x) =
b1∑
j=1

σ(x− pj) ·
(
Vj,ε(x) + ηj,ε(x)

)

+
[
1 −

b1∑
j=1

σ(x− pj)
]
·
(
H(x) + β0 ln ε−D).

Here,
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α = 1
1 − a

, Vj,ε(x) = Uj

( |x− pj |
εα

)
, ηj,ε(x) = Kj(x) −Kj(pj),

and σ(x) = σ(|x|) ∈ C∞
0 (R2) is a smooth radially symmetric function such that

0 ≤ σ(x) ≤ 1, σ(x) = 0 for |x| ≥ 2 and σ(x) = 1 for |x| ≤ 1. (2.1)

One may check that

u0,ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

Vj,ε(x) + ηj,ε(x), x ∈ B1(pj) with pj ∈ P1,

β0 ln ε + H(x) −D + o(1),x ∈ B2(pj)\B1(pj),

H(x) + β0 ln ε−D, x ∈ B2(pj)c.

(2.2)

Set

uε(x) = u0,ε(x) + vε(x).

Then, (1.4) can be rewritten as

Δvε + Fε(x)vε + Gε(x, vε) = 0 in R
2, (2.3)

where Fε is given by

Fε(x) =

⎧⎪⎨
⎪⎩

ω2
j

ε2 |x− pj |−2af ′(Vj,ε(x)) on B1(pj) with pj ∈ P1,

0 on B1(P1)c,
(2.4)

and Gε is defined by, for t ∈ R,

ε2Gε

(
x, t

)

=

⎧⎪⎪⎨
⎪⎪⎩

ε2G1,ε
(
x, t

)
+ ε2G2,ε

(
x, t

)
on B1(pj),

g(x)f(u0,ε(x) + t) + ε2Δu0,ε(x)on B2(pj)\B1(pj),

g(x)f(u0,ε(x) + t) on B2(P1)c,

(2.5)

where

ε2G1,ε
(
x, t

)
= ω2

j |x− pj |−2a ·
[
f(u0,ε(x) + t) − f

(
Vj,ε(x)

)
− f ′(Vj,ε(x)

)
t
]
,

ε2G2,ε
(
x, t

)
=

(
g(x) − ω2

j |x− pj |−2a)f(u0,ε(x) + t).

We will prove Theorem 1.1 by the contraction mapping principle. Define the following two weighted 
functions ρ and ρ̂ in R2 by

ρ(x) = (1 + |x|)1+γ and ρ̂(x) = 1
(1 + |x|) ·

[
ln(2 + |x|)

]1+γ ,

where γ ∈ (0, 1/2) is a fixed number. Let us consider the following function spaces:

Yγ,ε =
{
v ∈ L2

loc(R2) : ‖v‖Yγ,ε
< ∞

}
,
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Xγ,ε =
{
v ∈ W 2,2

loc (R2) : ‖v‖Xγ,ε
< ∞

}
.

The norms of Yγ,ε and Xγ,ε are defined by

‖v‖2
Yγ,ε

=
b1∑
j=1

∥∥ε2ρ(x)v(pj + εαx)
∥∥2
L2(Bε−α ) + ‖ρv‖2

L2(B1(P1)c)

and

‖v‖2
Xγ,ε

=
b1∑
j=1

∥∥ρ̂(x)v(pj + εαx)
∥∥2
L2(Bε−α ) + ‖ρ̂v‖2

L2(B1(P1)c) + ‖Δv‖2
Yγ,ε

.

Here, we put Bε−α = Bε−α(0). We define a linear operator Lε = Δ + Fε(x) and rewrite (2.3) as

Lεvε = −Gε(x, vε). (2.6)

The following theorem is crucial to prove Theorem 1.1 and will be proved in Section 4.

Theorem 2.1. There exists ε∗ ∈ (0, 1) such that Lε : Xγ,ε → Yγ,ε is an isomorphism for 0 < ε < ε∗. 
Furthermore, for each v ∈ Xγ,ε and 0 < ε < ε∗,

‖v‖Xγ,ε
+ ‖v‖L∞(R2) ≤ C∗

(
ln 1

ε

)
‖Lεv‖Yγ,ε

, (2.7)

where C∗ is independent of v and ε.

By virtue of Theorem 2.1, we can define an operator Tε = −L−1
ε Gε(x, ·) and write (2.6) as

vε = Tεvε.

In the following, we will prove that if ε is small enough, then Tε is a contraction map on suitable subset Aε

of Xγ,ε. We define

Aε =
{
v ∈ Xγ,ε : ‖v‖Xγ,ε

+ ‖v‖L∞(R2) ≤ εθ
}

for 0 < ε < ε∗.

Here, θ is a constant such that

α∗ < θ < min
{1

2 , aβ0 − γ − 2, α∗
}
.

We first show that Tε is well-defined.

Lemma 2.2. There exists ε1 ∈ (0, ε∗) such that Tε : Aε → Aε is well-defined for all ε ∈ (0, ε1).

Proof. If w = Tεv for v ∈ Aε, then by Theorem 2.1

‖w‖Xγ,ε
+ ‖w‖L∞(R2) ≤ C∗

(
ln 1

ε

)
‖Gε(x, v)‖Yγ,ε

.

We note that
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f ′(u) = ea(u−eu){a(1 − eu)2 − eu},
f ′′(u) = ea(u−eu){a2(1 − eu)3 − 3a(1 − eu)eu − eu},

and hence |f(u)| + |f ′(u)| + |f ′′(u)| ≤ ceau for all u ∈ R and some constant c. We divide the proof into two 
parts.

Part 1. x ∈ B1(pj) for some pj ∈ P1.
By the Mean Value Theorem, there exist s = s(ε, x), t = t(ε, x) ∈ R with 0 ≤ s, t ≤ 1 such that

ε2G1,ε(x, v) = ω2
j |x− pj |−2a ·

[
f ′(Vj,ε + s(ηj,ε + v)

)
ηj,ε

+ f ′′(Vj,ε + ts(ηj,ε + v)
)
· sv(ηj,ε + v)

]
.

Hence,

∣∣ε2G1,ε(x, v)
∣∣ ≤ C|x− pj |−2aea(Vj,ε+|ηj,ε|)(v2 + |ηj,ε|

)
.

Also, we can see that for x ∈ Bε−α ,∣∣∣ηj,ε(pj + εαx
)∣∣∣

=

∣∣∣∣∣∣
b1∑

k=1,k �=j

(
2 − β

b1

)
ln |pj + εαx− pk|

|pj − pk|
+

b∑
k=b1+1

2nk ln |pj + εαx− pk|
|pj − pk|

∣∣∣∣∣∣
≤ Cεα|x|.

Thus we have for each j ∈ {1, · · · , b1},
∥∥ε2ρ(x) ·G1,ε

(
pj + εαx, v(pj + εαx)

)∥∥2
L2(Bε−α )

≤ C

∫
Bε−α

ρ2(x)e2aUj(|x|)−4a ln |εαx| · (ε4θ + ε2α|x|2)dx

≤ C
( ∫
|x|<R

+
∫

|x|≥R

)
= I1 + I2,

where R is chosen from (1.18) such that

Uj(|x|) =
(
2 − β

b1

)
ln |x| + O(1)

for each 1 ≤ j ≤ b1 and for all |x| ≥ R. Here, O(1) denotes a bounded quantity which is independent of |x|. 
So,

I2 ≤ C

∫
|x|≥R

(1 + |x|)2+2γ− 2aβ
b1 ε−4aα(ε4θ + ε2α|x|2) dx

≤ Cε2θ(ε2θ−4aα + ε2α(1−2a)−2θ)
∫

|x|≥R

(1 + |x|)−2−2μ dx ≤ 1
4ε

2θ+μ,

where the last inequality comes from the choice of θ. Here, μ is chosen such that
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0 < μ < μ1 = min
{1

2 , θ − α∗, α∗ − θ,
aβ

b1
− 3 − γ

}
.

By (1.21) and the choice of θ, μ1 is well-defined. Then,

I1 ≤ C

∫
|x|<R

(1 + |x|)2+2γε−4aα(ε4θ + ε2α|x|2)dx

≤ CR4+2γε2θ(ε2θ−4aα + ε2α(1−2a)−2θ) ≤ 1
4ε

2θ+μ,

where the last inequality holds for all small ε > 0. As a consequence,

∥∥ε2ρ(x) ·G1,ε
(
pj + εαx, v(pj + εαx)

)∥∥2
L2(Bε−α ) ≤

1
2ε

2θ+μ.

On the other hand,

∥∥ε2ρ(x) ·G2,ε
(
pj + εαx, v(pj + εαx)

)∥∥2
L2(Bε−α )

≤ C

∫
Bε−α

ρ2(x)
∣∣gj(pj + εαx) − gj(pj)

∣∣2e2aUj(|x|)−4a ln |εαx| dx

≤ C

∫
Bε−α

ρ2(x)
∣∣∇gj(pj + sεαx)

∣∣2 · |εαx|2e2aUj(|x|)−4a ln |εαx| dx

≤ Cε2α−4aα
∫

Bε−α

(1 + |x|)4+2γe2a(Uj(|x|)−2 ln |x|) dx

≤ Cε2α∗
( ∫
|x|<R

+
∫

|x|≥R

)
≤ 1

2ε
2θ+μ,

where s = s(ε, x) ∈ [0, 1] and the last inequality follows from a similar argument as above. In the sequel,

∥∥ε2ρ(x) ·Gε

(
pj + εαx, v(pj + εαx)

)∥∥2
L2(Bε−α ) ≤ ε2θ+μ. (2.8)

Part 2. x ∈ B1(P1)c.
We see from (2.2) that u0,ε(x) = β0 ln ε + O(1) if x ∈ B2(pj)\B1(pj) for some j = 1, · · · , b1. Hence, it 

follows from (2.5) that

|Gε(x, v)| ≤ Cεaβ0−2 for x ∈ B2(pj)\B1(pj).

On the other hand, if x ∈ B2(P1)c, then by (2.2)

u0,ε(x) = (2N − β) ln |x| + β0 ln ε−D + O(1),

which implies by (2.5) that

|Gε(x, v)| = 1
ε2

∣∣g(x) · f(u0,ε + v)
∣∣ ≤ Cεaβ0−2(1 + |x|)−aβ .

By (1.16) and (1.21),
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aβ0 = aβ − 2b1a
b1(1 − a) >

4 − 2a
1 − a

> 4.

Thus, it holds that

∥∥ρ(x) ·Gε(x, v(x))
∥∥2
L2(B1(P1)c)

≤ Cε2aβ0−4
∫

B1(P1)c

(1 + |x|)2+2γ−2aβdx ≤ ε2θ+μ.
(2.9)

Now, it follows from (2.8) and (2.9) that for v ∈ Aε and ε 	 1,

C∗
(

ln 1
ε

)
‖Gε(x, v)‖Yγ,ε

≤ C∗
(

ln 1
ε

)
· Cεθ+

μ
2 < εθ.

Therefore, Tε maps Aε into Aε. �
Proof of Theorem 1.1. We prove that (2.3) has a solution. By Lemma 2.2, it suffices to show that Tε : Aε →
Aε is a contraction map for any sufficiently small ε. Let w1 = Tεv1 and w2 = Tεv2. By Theorem 2.1, we 
obtain that

‖w1 − w2‖Xγ,ε
+ ‖w1 − w2‖L∞(R2) ≤ C∗

(
ln 1

ε

)
‖Gε(x, v1) −Gε(x, v2)‖Yγ,ε

.

As in Lemma 2.2, we divide R2 into two parts.
First, suppose that x ∈ B1(pj) for some pj ∈ P1. By the Mean Value Theorem,

ε2[G1,ε(x, v1) −G1,ε(x, v2)
]

= ω2
j |x− pj |−2a ·

[
f ′′(Vj,ε + t(ηj,ε + sv1 + (1 − s)v2)

)
×

(
ηj,ε + sv1 + (1 − s)v2

)]
(v1 − v2)

for some s = s(ε, x) and t = t(ε, x) with 0 ≤ s, t ≤ 1. Thus, we can derive that

∥∥∥ε2ρ(x)
[
G1,ε

(
pj + εαx, v1(pj + εαx)

)
−G1,ε

(
pj + εαx, v2(pj + εαx)

)]∥∥∥2

L2(Bε−α )

≤ C

∫
Bε−α

ρ2(x)e2aUj(|x|)−4a ln |εαx| · ε2θ(1 + ε2α−2θ|x|2)·

∣∣v1(pj + εαx) − v2(pj + εαx)
∣∣2dx

≤ Cε2θ−4aα
∫

Bε−α

(1 + |x|)4+2γ− 2aβ
b1

∣∣v1(pj + εαx) − v2(pj + εαx)
∣∣2dx

≤ Cε2(θ−α∗)
∫

Bε−α

ρ̂2(x)
∣∣v1(pj + εαx) − v2(pj + εαx)

∣∣2dx
≤ Cε2μ‖v1 − v2‖2

Xγ,ε
.

Meanwhile,
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ε2[G2,ε(x, v1) −G2,ε(x, v2)
]

= |x− pj |−2a[gj(x) − gj(pj)]f ′(Vj,ε + ηj,ε + sv1 + (1 − s)v2
)
(v1 − v2)

for some s = s(ε, x) ∈ [0, 1]. So,

∥∥∥ε2ρ(x)
[
G2,ε

(
pj + εαx, v1(pj + εαx)

)
−G2,ε

(
pj + εαx, v2(pj + εαx)

)]∥∥∥2

L2(Bε−α )

≤ C

∫
Bε−α

ρ2(x)e2aUj(|x|)−4a ln |εαx| ·
∣∣gj(pj + εαx) − gj(pj)

∣∣2·
∣∣v1(pj + εαx) − v2(pj + εαx)

∣∣2dx
≤ Cε2α−4aα

∫
Bε−α

(1 + |x|)4+2γ− 2aβ
b1

∣∣v1(pj + εαx) − v2(pj + εαx)
∣∣2dx

≤ Cε2(θ−α∗)
∫

Bε−α

ρ̂2(x)
∣∣v1(pj + εαx) − v2(pj + εαx)

∣∣2dx
≤ Cε2μ‖v1 − v2‖2

Xγ,ε
.

Next, we consider the case that x ∈ B1(P1)c. If x ∈ B2(pj)\B1(pj) for some j = 1, · · · , b1, it follows that

∣∣Gε(x, v1) −Gε(x, v2)
∣∣ = 1

ε2

∣∣g(x) · f ′(u0,ε + sv1 + (1 − s)v2)(v1 − v2)
∣∣

≤ Cεaβ0−2|v1 − v2|.

On the other hand, for x ∈ B2(P1)c, we obtain

|Gε(x, v1) −Gε(x, v2)| ≤ Cεaβ0−2(1 + |x|)−aβ |v1 − v2|.

Thus,

∥∥ρ(x) ·
[
Gε(x, v1(x)) −Gε(x, v2(x))

]∥∥2
L2(B1(P1)c)

=
∫

B1(P1)c

ρ2(x) ·
∣∣Gε(x, v1(x)) −Gε(x, v2(x))

∣∣2dx

≤ Cε2aβ0−4
∫

B1(P1)c

(1 + |x|)2+2γ−2aβ · |v1 − v2|2dx

≤ Cε2μ
∫

B1(P1)c

ρ̂2(x) · |v1 − v2|2dx.

Now, we deduce that if ε is small enough, then

‖Tεv1 − Tεv2‖Xγ,ε
≤ C∗

(
ln 1

ε

)
‖Gε(x, v1) −Gε(x, v2)‖Yγ,ε

≤ C∗ε
μ
(

ln 1
ε

)
‖v1 − v2‖Xγ,ε

<
1
2‖v1 − v2‖Xγ,ε

. �
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3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. We explain how (1.23) gets into problems about the 
construction of bubbling solutions of (1.27) on a compact surface. Without loss of generality, we consider 
the case where solutions vε blow up at one point, say p1. Let W be an isothermal coordinate of p1. Without 
loss of generality, we may assume that pj /∈ W for j = 2, · · · , b and B2(p1) ⊂ W. On W, we may write the 
Green function G(x, p1) in (1.24) as

G(x, p1) = γ(x, p1) −
1
2π ln |x− p1|,

where γ(x, p1) is a smooth function defined on W. We also note that Δγ(x, p1) = 1/|S|h0 , where Δ is the 
usual Laplacian on the Euclidean space.

Given a solution Uλ,β,ε of (1.7), let Vλ,β,ε(r) = Uλ,β,ε(r) − 2λ ln r. Then, V = Vλ,β,ε satisfies that

⎧⎨
⎩

V ′′ + 1
r
V ′ + 1

ε2 e
a(V−r2λeV )(1 − r2λeV ) = 0, r > 0,

V (r) = −β ln r + κλ,β,ε + O(r2−aβ) as r → ∞.

We expect that the local profile of vε near p1 looks like

Vε(x) := Vn1,β,ξ

(
|x− p1|

εα

)

up to a bounded function for some β > 0, ξ > 0 and α > 0. Namely, we want to find a solution vε of (1.27)
satisfying that

vε(x) = Vε(x) + o(1) as x → p1, (3.1)

and

1
ε2 e

v0ea(vε−eu0+vε )(1 − eu0+vε) → 4πNδp1 (3.2)

in the sense of measures as ε → 0.
By (3.1), it is reasonable to set

vε(x) = Vε(x) + Eε(x) near p1. (3.3)

Then,

Δvε = 1
ε2αξ2 e

−aEεea(vε−evε+2n1 ln |x−p1|
εα

−Eε )(evε+2n1 ln |x−p1|
εα −Eε − 1

)
+ ΔEε.

So, we put Eε(x) = 4πNγ(x, p1) + Aε for some constant Aε such that

ΔEε = 4πN
|S|h0

.

We note that
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vε + 2n1 ln |x− p1|
εα

− Eε

= u0 + vε + 4π(n1 −N)γ(x, p1) + 4π
b∑

j=2
njG(x, pj) − 2n1α ln ε−Aε.

By letting x → p1, we obtain

Aε = 4π(n1 −N)γ(p1, p1) + 4π
b∑

j=2
njG(p1, pj) − 2n1α ln ε.

With this value Aε, we obtain

1
ε2αξ2 e

−aEε

= 1
ε2α(1−n1a) · 1

ξ2 · e−a
(
4πN [γ(x,p1)−γ(p1,p1)]+4πn1γ(p1,p1)+4π

∑b
j=2 njG(p1,pj)

)
.

By letting x → p1 and recalling the equation (1.27), we obtain
⎧⎨
⎩

α = (1 − n1a)−1,

ξ2 = e−a[4πn1γ(p1,p1)+4π
∑b

j=2 njG(p1,pj)] · e−v0(p1).
(3.4)

For x apart from p1, since Δvε → 4πN/|S|h0 by (3.3) as ε → 0, we expect that

vε(x) = 4πNG(x, p1) + Bε (3.5)

for some constant Bε which will be given later. In view of (3.3) and (3.5), we define an approximate solution 
v0,ε of (1.27) by

v0,ε(x) = σ(x− p1)
{
Vε(x) + Eε(x)

}
+

(
1 − σ(x− p1)

)
·
(
4πNG(x, p1) + Bε

)
= σ(x− p1)

{
Vε(x) + 2N ln |x− p1| + Aε −Bε

}
+ 4πNG(x, p1) + Bε.

Here, σ is a function defined by (2.1). For this function, we want to check that

Δv0,ε −
4πN
|S|h0

=: Zε → 0 on B2(p1)\B1(p1) as ε → 0.

Indeed, we deduce that for B2(p1)\B1(p1),

Zε(x) = Δσ(x− p1)
{

(2N − β) ln |x− p1| + αβ ln ε + κn1,β,ξ

+ O
(
εα(aβ−2)) + Aε −Bε

}

+ 2σ′(|x− p1|)
{ 1
εα

V ′
n1,β,ξ

( |x− p1|
εα

)
+ 2N

|x− p1|
}

+ σ(x− p1)ΔVε(x)

= (i) + (ii) + (iii).

It is necessary to put
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β = 2N, Bε = 2Nα ln ε + κn1,β,ξ + Aε. (3.6)

Then, since aN = 2 by (1.23), we deduce that |(i)| = O(εα(2aN−2)) = O(ε2α). We also note from (3.6) that

(ii) = 2σ′(|x− p1|) ·
(

2N − β

|x− p1|
+ o(1)

)
= o(1).

Moreover, we observe that

|(iii)| ≤ C

ε2α e
aVε = O(ε2aNα−2α) = O(ε2α).

Consequently, |Zε(x)| = o(1) as ε → 0 and we have the final form of an approximate solution v0,ε as follows:

v0,ε(x) = σ(x− p1)
{
Vε(x) + 2N ln |x− p1|

εα
− κn1,2N,ξ

}

+ 4πNG(x, p1) + κn1,2N,ξ + 4π
b∑

j=2
njG(p1, pj)

+ 2(n1 −N) ln 1
εα

+ 4π(n1 −N)γ(p1, p1).

(3.7)

We recall the constants α, β and ξ are determined by (3.4) and (3.6). There is another constraint on the 
range of β according to Theorem A. In fact, by Theorem A, only when 0 < an1 < 1 or 1 < an1 < 2, we can 
consider the radial profile Vn1,β,ξ as a nontopological type I solution. If 0 < an1 < 1, then Theorem A (i) 
implies that

2N = β >
4
a
, i.e., aN > 2.

This contradicts to the condition (1.23). On the other hand, if 1 < an1 < 2, then

2n1 < β = 2N < 4/a, i.e., aN < 2,

which is also absurd. As a consequence, we cannot take any radial solutions Vn1,β,ξ as a local profile of 
bubbling solutions. This completes the proof of Theorem 1.2. �
4. Proof of Theorem 2.1

In this section, we prove Theorem 2.1. The proof is similar to that of Theorem 2.1 of [7] or Theorem B.1 
of [11]. We modify arguments in [7,11] to show the invertibility of Lε and the estimate (2.7). We provide an 
outline of the proof and the detailed proof is given only when our situation is different from [7,11].

We start with the study of the linearization of the radial equation (1.7). Suppose that a > 0 and λ > 0
such that 0 < aλ < 1. By Theorem A, there exists a type I solution Uλ,β,ε of (1.7) satisfying (1.8) such that

Uλ,β,ε(r) =
{

2λ ln r + O(1) as r → 0,

(2λ− β) ln r + O(1) as r → ∞.

For k ∈ N ∪ {0}, consider the following ODE:

ϕ′′ + 1
ϕ′ − k2

ϕ + 1
r−2aλf ′(Uλ,β,ε(r)

)
ϕ = 0. (4.1)
r r2 ε2
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Since f ′(u) = ea(u−eu){a(1 − eu)2 − eu}, we deduce that as r → 0,

r−2aλf ′(Uλ,β,ε(r)
)

= r−2aλeaUλ,β,ε(r)
[
a + o(1)

]
= a + o(1).

Thus, r = 0 is a regular singular point of (4.1) for k ≥ 1 such that as r → 0, either ϕ(r) = rk
[
A + o(1)

]
or ϕ(r) = r−k

[
A + o(1)

]
for some A �= 0. One may refer to Theorem 5.7 of [3]. If ψ(r) = ϕ(r−1), then ψ

satisfies

ψ′′ + 1
r
ψ′ − k2

r2 ψ + 1
ε2 r

2aλ−4f ′(Uλ,β,ε(r−1)
)
ψ = 0. (4.2)

Since aβ > 4 by Theorem A, it holds that as r → 0,

r2aλ−4f ′(Uλ,β,ε(r−1)
)

= r2aλ−4eaUλ,β,ε(r−1)[a + o(1)
]

= raβ−4[a + o(1)
]

= o(1).

Hence, r = 0 is a regular singular point of (4.2) for k ≥ 1 such that either ψ(r) = rk
[
B + o(1)

]
or 

ψ(r) = r−k
[
B + o(1)

]
for some B �= 0. In the sequel, if ϕ is a solution of (4.1) for k ≥ 1, then either 

ϕ(r) = rk
[
B + o(1)

]
or ϕ(r) = r−k

[
B + o(1)

]
for some B �= 0 as r → ∞.

Now let ϕk = ϕλ,β,ε,k(r) with r = |x| be the unique solution of the linearized equation at Uλ,β,ε:
⎧⎪⎨
⎪⎩

ϕ′′
k + 1

r
ϕ′
k − k2

r2 ϕk + 1
ε2 r

−2aλf ′(Uλ,β,ε(r)
)
ϕk = 0,

ϕk(r) = rk
[
1 + o(1)

]
near r = 0.

If k ≥ 1, then the above argument shows that ϕk(r) = O(rk) or ϕk(r) = O(r−k) as r → ∞. We also set 
wλ,β,ε(r) = U ′

λ,β,ε(r). Then w = wλ,β,ε satisfies that

⎧⎪⎪⎨
⎪⎪⎩

w′′ + 1
r
w′ − 1

r2w + 1
ε2 r

−2aλf ′(Uλ,β,ε(r)
)
w = 2aλ

ε2 r−2aλ−1f
(
Uλ,β,ε(r)

)
,

w(r) = 2λ
r

+ o(1) near r = 0.
(4.3)

We note that

w(r) = (2λ− β)/r + O(1) and w′(r) = O(r−2) as r → ∞. (4.4)

It is known (see Lemma 2.2 of [9]) that Uλ,β,ε has a unique maximum point z0 = z0(λ, β, ε). Thus, w(z0) = 0, 
w > 0 for 0 < r < z0, and w < 0 for r > z0.

Proposition 4.1. Suppose that 0 < aλ < 1. Let Uλ,β,ε(r) be a type I nontopological solution of (1.7) satisfying 
(1.8).

(i) ϕ0 has exactly one zero in (0, ∞) and limr→∞ ϕ0(r) = −∞. Moreover,

ϕ0(r) = −c0 ln r + d0 + o(1) as r → ∞,

where c0 = c0(λ, β, ε) > 0 and d0 = d0(λ, β, ε) ∈ R are constants.
(ii) Either ϕ1 has only one zero and ϕ1(r) = −

[
c1 + o(1)

]
r as r → ∞, or ϕ1 > 0 on (0, ∞) and ϕ1(r) =[

c̃1 + o(1)
]
r as r → ∞. Here, c1 and c̃1 are positive constants.
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(iii) If 0 < a < 1 and 0 < λ ≤ 1, then ϕk > 0 on (0, ∞) for k ≥ 2. In addition, ϕk(r) =
[
ck + o(1)

]
rk for 

some ck = ck(λ, β, ε) > 0 as r → ∞.

Proof. Let us fix λ, β, ε and set U = Uλ,β,ε and w = wλ,β,ε for brevity.
(i) See Lemma 2.10 of [9].
(ii) Let r0 be the unique zero of ϕ0. If ϕ1 has the first zero at r1, then r0 < r1. Otherwise, we obtain a 

contradiction:

0 <

r1∫
0

1
r
ϕ1(r)ϕ0(r)dr =

r1∫
0

[
(rϕ′

1)′ϕ0 − (rϕ′
0)′ϕ1

]
dr

= r1ϕ
′
1(r1)ϕ0(r1) < 0.

If ϕ1 has the second zero at r2, then we also have a contradiction:

0 <

r2∫
r1

1
r
ϕ1(r)ϕ0(r)dr = r2ϕ

′
1(r2)ϕ0(r2) − r1ϕ

′
1(r1)ϕ0(r1) < 0.

This means that either ϕ1 has only one zero or ϕ1 has no zeros. In each case, we will show that ϕ1(r) = O(r)
at infinity.

First, assume that ϕ1 has a unique zero at r1 such that ϕ1(r) < 0 on (r1, ∞). We recall that r0 < r1
where r0 is the unique zero of ϕ0. On the other hand, it follows (see Lemma 2.5 of [9]) that z0 < r0. So, 
z0 < r1 such that w(r1) < 0. If ϕ1 is bounded such that ϕ1(r) = O(r−1) as r → ∞, then by (4.4)

0 >
2aλ
ε2

∞∫
r1

r−2aλf(U(r))ϕ1(r)dr = r1ϕ
′
1(r1)w(r1) > 0,

a contradiction. Hence, ϕ1 is unbounded and ϕ1(r) = −
[
c1 + o(1)

]
r for some c1 > 0 as r → ∞.

Next, we consider the case that ϕ1(r) > 0 on (0, ∞). Since

(rϕ′
1)′ =

(1
r
− 1

ε2 r
1−2aλf ′(U)

)
ϕ1 > 0 as r → ∞,

ϕ1 does not oscillate for sufficiently large r. Suppose that ϕ1 is bounded. Then,
{
ϕ1(r) =

[
1 + o(1)

]
r as r → 0,

ϕ1(r) =
[
c̄1 + o(1)

]
r−1 for some c̄1 > 0 as r → ∞.

(4.5)

Let {ϕ1, ϕ̂1} form a fundamental set of solutions for (4.1) with k = 1. Since ϕ1(r) = O(r) near r = 0 and 
ϕ1(r) = O(r−1) as r → ∞, we deduce that ϕ̂1(r) = O(r−1) near r = 0 and ϕ̂1(r) = O(r) as r → ∞. By the 
above discussion, we may assume that

{
ϕ̂1(r) =

[
1 + o(1)

]
r−1 as r → 0,

ϕ̂1(r) =
[
ĉ1 + o(1)

]
r for some ĉ1 �= 0 as r → ∞.

(4.6)

Let W (r) = ϕ′
1(r)ϕ̂1(r) −ϕ1(r)ϕ̂′

1(r) be the Wronskian of ϕ1 and ϕ̂1. Since ϕ1 and ϕ̂1 are solutions of (4.1)
with k = 1, it holds that

[
rϕ′

1(r)
]′
ϕ̂1(r) −

[
rϕ̂′

1(r)
]′
ϕ1(r) = 0 for r > 0.
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Integrating this equation on (0, r), we see from (4.5) and (4.6) that W (r) = 2r−1. Then, w can be written 
as

w(r) = ν1ϕ1(r) + ν̂1ϕ̂1(r) + wp(r) for r > 0.

Here ν1 and ν̂1 are constants and wp is a particular solution given by wp(r) = −v1(r)ϕ1(r) + v̂1(r)ϕ̂1(r), 
where

v1(r) = 2aλ
ε2

r∫
1

ϕ̂1(s)s−2aλ−1f
(
U(s)

)
2s−1 ds,

v̂1(r) = 2aλ
ε2

r∫
1

ϕ1(s)s−2aλ−1f
(
U(s)

)
2s−1 ds.

Since f
(
U(r)

)
= O(eau) = O(r2aλ) as r → 0, we are led from (4.6) that v1(r) = O(ln r) as r → 0. Thus,

w(r) =
[
ν̂1 + v̂1(0)

]
ϕ̂1(r) + o(1) =

[
ν̂1 + v̂1(0)

]
· 1
r

+ o(1) as r → 0.

In view of the initial condition of w in (4.3), we get

ν̂1 + v̂1(0) = 2λ. (4.7)

Meanwhile, since f
(
U(r)

)
= O(eau) = O(ra(2λ−β)) as r → ∞ and aβ > 4 by Theorem A, it follows that

v1(∞) := lim
r→∞

v1(r) and v̂1(∞) := lim
r→∞

v̂1(r)

exist. So, as r → ∞,

w(r) =
[
ν1 − v1(∞) + o(1)

]
ϕ1(r) +

[
ν̂1 + v̂1(∞) + o(1)

]
ϕ̂1(r),

which implies by (4.4) that

c̄1
[
ν1 − v1(∞)

]
= 2λ− β and ĉ1

[
ν̂1 + v̂1(∞)

]
= 0. (4.8)

Since ĉ1 �= 0, (4.7) and (4.8) tell us that

2λ = v̂1(0) − v̂1(∞) = −aλ

ε2

∞∫
0

ϕ1(r)r−2aλf
(
U(r)

)
dr = −2λ.

Hence, we get λ = 0, a contradiction. Here, the last equality is derived by the equations of ϕ1 and w:

2aλ
ε2

∞∫
0

ϕ1(r)r−2aλf
(
U(r)

)
dr =

[
rw′(r)ϕ1(r) − rϕ′

1(r)w(r)
]∞
0

= 4λ.

In the sequel, ϕ1 is unbounded and ϕ1(r) =
[
c̃1 + o(1)

]
r for some c̃1 > 0 as r → ∞.

(iii) Let k ≥ 2 be fixed and set

t = rλ+1, ũ(t) = U(r) − 2λ ln r and ϕ̃k(t) = ϕk(r).
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It is not difficult to show that

1
t
(tϕ̃′

k)′ = k2

(λ + 1)2t2 ϕ̃k − 1
ε2(λ + 1)2 t

−2aλ−2λ
λ+1 f ′(U)ϕ̃k,

1
t
(tũ′)′ = − 1

ε2(λ + 1)2 t
−2aλ−2λ

λ+1 f(U).

Set ṽ(t) = ũ′(t). Then we get

ṽ(t) = 1
(λ + 1)t (rU

′(r) − 2λ) < 0 for all t > 0,

1
t
(tṽ′)′ = 1

t2
ṽ − 1

ε2(λ + 1)2 t
−2aλ−2λ

λ+1 f ′(U)ṽ + 2aλ
ε2(λ + 1)3 t

2−2aλ
λ+1 −3f(U)

+ 2λ
ε2(λ + 1)3 t

2−2aλ
λ+1 −3[f(U) − f ′(U)].

Assume that ϕ̃k has a zero on (0, ∞). If t1 is the first zero of ϕ̃k, then ϕ̃k > 0 on (0, t1). It follows from 
the comparison argument that

0 > −t1ϕ̃
′
k(t1)ṽ(t1) = t

[
ṽ′ϕ̃k − ϕ̃′

kṽ
]t1
t=0

=
t1∫

0

(
1 − k2

(λ + 1)2
)1
t
ṽϕ̃kdt + 2aλ

ε2(λ + 1)3

t1∫
0

t
−2aλ−2λ

λ+1 f(U)ϕ̃kdt

+ 2λ
ε2(λ + 1)3

t1∫
0

t
−2aλ−2λ

λ+1
[
f(U) − f ′(U)

]
ϕ̃kdt > 0,

a contradiction. Here, we use the fact that k2 ≥ (λ + 1)2 for k ≥ 2 and 0 < λ ≤ 1, and

f(U) − f ′(U) = ea(U−eU )[(1 − eU )(1 − a + aeU ) + eU
]
> 0 for 0 < a < 1.

Thus, ϕ̃k > 0 on (0, ∞) and consequently, ϕk > 0 on (0, ∞).
Next, we claim that ϕk(r) → ∞ as r → ∞. Since ũ(t) = −β(λ + 1)−1 ln t + O(1) as t → ∞, we have 

ṽ(t) = O(t−1) and ṽ′(t) = O(t−2) as t → ∞. If ϕ̃k is bounded, then ϕ̃k(t) = O(t−k/(λ+1)), which yields a 
contradiction:

0 = lim
t→∞

t(ṽ′ϕ̃k − ϕ̃′
kṽ) − lim

t→0
t(ṽ′ϕ̃k − ϕ̃′

kṽ)

=
∞∫
0

(
1 − k2

(λ + 1)2
)1
t
ṽϕ̃kdt + 2λ

ε2(λ + 1)3

∞∫
0

t
−2aλ−2λ

λ+1 [f(U) − f ′(U)]ϕ̃kdt

+ 2aλ
ε2(λ + 1)3

t1∫
0

t
−2aλ−2λ

λ+1 f(U)ϕ̃kdt > 0.

Therefore, ϕ̃k is unbounded and ϕk(r) = [ck + o(1)]rk as r → ∞ for some ck > 0. �
For 1 ≤ j ≤ b1, we define the linearized operator Lj : Xγ → Yγ by

Lj = Δ + ω2
j |x|−2af ′(Uj(|x|)).
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Here, the function spaces Xγ , Yγ are defined as follows:

Xγ =
{
v ∈ W 2,2

loc (R2) : ‖v‖2
Xγ

= ‖ρΔv‖2
L2(R2) + ‖ρ̂v‖2

L2(R2) < ∞
}
,

Yγ =
{
v ∈ L2

loc(R2) : ‖v‖2
Yγ

= ‖ρv‖2
L2(R2) < ∞

}
.

Corollary 4.2. If Ljv = 0 and v is bounded in R2, then v(x) ≡ 0.

Proof. By the Fourier expansion, one can express v by

v(r, θ) =
∞∑
k=0

akϕk(r) cos kθ +
∞∑
k=1

bkϕk(r) sin kθ

where ak, bk ∈ R. By Proposition 4.1, the functions ϕk are unbounded for all k ≥ 0. This contradicts to the 
boundedness of v unless v vanishes identically. See Lemma 3.2 of [7] for details. �
Theorem 4.3. For each 1 ≤ j ≤ b1, the linearized operator Lj : Xγ → Yγ is an isomorphism such that

‖v‖Xγ
+ ‖v‖L∞(R2) ≤ C‖Ljv‖Yγ

for all v ∈ Xγ . (4.9)

Proof. The proof is based on the property that Lj is a compact perturbation of Δ : Xγ → Yγ . It is known 
that Δ : Xγ → Yγ is a Fredholm operator with Ker Δ = {c ∈ R} and Range (Δ : Xγ → Yγ) = Yγ ∩Z, where 
Z =

{
u ∈ L1(R2) :

∫
R2 u(x)dx = 0

}
. See Lemma 3.3 of [7]. By Corollary 4.2, one can show that KerLj = 0

in Xγ and the estimate (4.9) is valid. Then, since Lj is a Fredholm operator of index zero, it is onto and 
the proof is complete. See Theorem 4.1 of [5] and Theorem 3.4 of [7] for details. �
Proposition 4.4. Let X̃γ,ε = {v ∈ Xγ,ε : Lεv ≡ 0 on B1(P1)}. Then, there exists 0 < ε∗ < 1 such that for 
any ε ∈ (0, ε∗) and v ∈ X̃γ,ε,

‖v‖Xγ,ε
+ ‖v‖L∞(R2) ≤ C

(
ln 1

ε

)
‖Lεv‖Yγ,ε

.

Proof. The proof is parallel to that of Theorem 3.6 of [7] and we omit the details. One thing to emphasize 
is that Corollary 4.2 is used in the proof. Refer to the proof of Lemma 3.5 of [7] to see how Corollary 4.2 is 
used. �
Proof of Theorem 2.1. It suffices to show the inequality (2.7). Indeed, since Lε is a Fredholm operator of 
index zero and Lε is one-to-one by (2.7), Lε is also onto. The proof of (2.7) is almost the same as the proof 
of Theorem 2.1 of [7] and we give only brief outline of it. Define

h̃j(x) =
{
h(x), x ∈ B1(pj), pj ∈ P1,

0, otherwise.

Since ε2αh̃j(pj + εαy) ∈ Yγ , it follows from Theorem 4.3 that there exists a unique uj ∈ Xγ such that for 
each 1 ≤ j ≤ b1,

Ljuj(y) = ε2αh̃j(pj + εαy),

‖uj‖Xγ
+ ‖uj‖L∞(R2) ≤ C‖ε2αh̃j(pj + εαy)‖Yγ

≤ C‖h‖Yγ,ε
.

If we set
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ŵ(x) = v(x) −
b1∑
j=1

σ(x− pj)ṽj(x),

then Lεŵ = h∗ where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽj(x) = uj

(x− pj
εα

)
,

h∗(x) = h(x) −
b1∑
j=1

σ(x− pj)h̃j(x) − h̃(x),

h̃(x) =
b1∑
j=1

[
Δσ(x− pj)ṽj(x) + 2∇σ(x− pj) · ∇ṽj(x)

]
.

Since h∗ ≡ 0 on B1(P1) and ‖h∗‖Yγ,ε
≤ C‖h‖Yγ,ε

, we deduce from Proposition 4.4 that for small 0 < ε < ε∗,

‖ŵ‖Xγ,ε
+ ‖ŵ‖L∞(R2) ≤ C

(
ln 1

ε

)
‖h‖Yγ,ε

.

Then, recovering v from this inequality, we arrive at the estimate (2.7). �
Remark 4.5. The authors thank the anonymous referee for letting them know the result of Ref. [13]. In [13], 
Lin and Yan improved their results of [5,11] by removing the constraint on the location of blow-up vortex 
points in the construction of nontopological solutions to the self-dual Chern–Simons–Higgs equation. The 
referee mentioned that the constraint (1.19) for our solutions to (1.4) may not be necessary in the spirit of 
[13]. We will treat this issue in the forthcoming paper.
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