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1. Introduction

Let H(D) denote the space of all analytic functions in the unit disk D of the complex plane C. For any
f € HD) and 0 < p < 400 the classical integral means of f are defined by

27

1 )
M) = o [IfGetras,  0<r<t
0

These integral means play a prominent role in classical analysis, especially in the theory of Hardy spaces.
For example, the well-known Hardy convexity theorem asserts that M,(f,), as a function of r on (0, 1), is
logarithmically convex. Logarithmic convexity here means that the function r +— log M, (f,r) is convex in
log r. See [2] for example.

For any real «, 5, we consider the measure

dAap(2) = |2/*7(1 = [2]*)* dA(2),

* Research of Wang is supported by the China National Natural Science Foundation (Grant Number 11671357).
* Corresponding author.
E-mail addresses: wcj4983@126.com (C. Wang), ywejie@163.com (W. Yang).

https://doi.org/10.1016/j.jmaa.2018.12.064
0022-247X/© 2019 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmaa.2018.12.064
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:wcj498@126.com
mailto:ywejie@163.com
https://doi.org/10.1016/j.jmaa.2018.12.064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2018.12.064&domain=pdf

C. Wang, W. Yang / J. Math. Anal. Appl. 478 (2019) 510-518 511

where dA is the area measure on . When 8 = 0, such measures are frequently used in the more recent
theory of Bergman spaces. See [3,4]. Let A(a,b) be the annulus {z € C: a < |z| < b} if a < b or the annulus
{zeC:b<|z|<a}ifa>b For f e HD), 0 <p < 400, 0 < ¢ <1, and real o, 5, we consider the area
integral means

/ FEPPAL - 2P dA(2)

A(e,r)

Mpap.e(f,r) =

[2[*7(1 — |21%)* dA(2)
Ae,r)

Here we assume that f is analytic in the entire unit disk D, although the integral means are taken over the
annuli A(e,r), r € (¢,1) or r € (0,¢).

In [10] Xiao and Zhu initiated the study of area integral means of analytic functions in the unit disk D
with respect to the weighted area measure dA, o(z). It was shown in [7,8] that, just like the classical integral
means, M o 0,0(f,7) is also logarithmically convex on (0,1) when —2 < o < 0. Furthermore, if p = 2, then
Ms..0,0(f,r) is logarithmically convex on (0,1) when —3 < a < 0, and this range for « is best possible.
Cui, Wang and Zhu proved in [1] that the function My 0,.(f,7) is logarithmically convex for r € (¢, 1) if
0<ec<1land —3 < a <0. We will consider the logarithmic convexity problem on M, o 3..(f,r) for general
p and 8 and give our main results in Section 3. See [5,6,9] for other recent work in the area.

Throughout the paper we use the symbol =: whenever a new notation is being introduced. We will use
the notation A ~ B to mean that A and B have the same sign.

2. Preliminaries

In this section we collect several preliminary results that will be needed for the proof of our main results.
For any twice differentiable function f on (a,b), we define

@
@)

dp(z) =

and

S, ) (f’(w))?

~ @ ) (@)

It is easy to check
(dy(x))' = Dy (2), (1)
and
aDy(x) = dp(z)(1 +dp (z) — ds(x)). (2)

Lemmas 1 and 2 were stated and proved in [7,8] for the interval (0, 1). But it is clear that the conclusions
still hold if (0,1) is replaced by any interval (a,b), where 0 < a < b < 400. See also [1].

Lemma 1. Suppose that f is positive and twice differentiable on (a,b). Then

(i) f(z) is convex in logx if and only if f(x?) is convex in logz.
(ii) log f(x) is convex in logz if and only if Dy(x) > 0 for all x € (a,b).
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Lemma 2. Suppose that f = f1/f2 is a quotient of two positive and twice differentiable functions on (a,b).
Then

Dy(z) = Dy, (z) — Dy, (x)
for x € (a,b). Consequently, log f(x) is convex in logx if and only if
Dfl(x) - sz(l‘) >0
on (a,b).

To simplify notation, we let

It is easy to check that

d = dy = dy(2) = B+ 7. (4)
Dl:D@/:Dw’(I):(l:T)Q: (5)

and
(IED())/ = (1 + dl)DO + do(D1 - 2D0) (6)

Lemma 3. Suppose —oco < § < 400 and —2 < a < 0. Then Dy — 2Dy > 0 holds for x € (x9,1) if one of the
following conditions is satisfied:

(i) B<0.
(ii) B> 0 and zo >

(iii) 8> 0, zo <

8
at+pB+2°
and (D1 - 2D0)|I > 0.

__ B8 =
atpT2

el
a+pB+2

Proof. It is easy to see that Dy — 2Dy > 0 is equivalent to g1(x) > 0, where

2 2 "
gi(z) = %(Dl —2Dy) = %Dl ~ 2 (1 +a? ) + 22,

¢

Since D; and ¢ are both positive for a < 0, we have

2 2, .1

14 4

gi(z)iDlli/ 1(@/)2
Dy ¢
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a+2

:1—$ T

~(a+B+2)x—p.

In case (i) and (ii), we see that g (z) > 0 and hence g1(x) > g1(zo) > 0. In case (iii), g (z) has a unique
)

ZEeTo T = which ¢;(z) attains its minimum in (zo, 1) and hence g (z) > ¢1(z1) > 0. O

8
atarz A

It should be pointed out that for —2 < o < 0 and general 8 > 0, zq, D1 — 2Dy is not always positive. Let

a=-1,=3,x9= % and z = %. It follows from direct computations that

3

4
3 85
— = 1— —143 :1 —_ —
@(4) /( t)~ > dt =log3 9%’

1
4
and

81
dy= ————~ =5.936--- ,dy = 6,D; = 16,
* 7 64 (log3 - ) ! !

Thus we have
xDy —2xDg = 2(6 — Tdy + d3) = 2(1 — do)(6 — dp) < 0.

Lemma 4. Suppose o < 0 and § > —1. Then (1 + d1)Dg — doD1 < 0 holds for x € (0,z¢) if one of the
following conditions is satisfied:

(i) —2-28<a<0.

(ii) @« < —2—28 and xy < _oﬁ;«lrl'

(iil) a < —2— 28, o > —aﬁ;}H and

(1+d1)Do—doD1) |, __ 55 <0.

at+B+1

Proof. Note that ¢ < 0 and ¢’ > 0. It is easy to see that (1 +dy)Dg — dgD; < 0 is equivalent to go(z) < 0,
where

g%ﬂz—( «D; Q g

(1+d)? 1+d

Since ¢ < 0, D1 > 0 and 1+ d; > 0, we have

92 -

, Dy + D] 22D?
(2) = - ¢
(I+d1)*  (1+d)?

D/
~ (1+dy) (1 + xD—i) —2xDy

B+ 1+(a+p+ 1)z
o 1—x '

In case (i) and (ii), we see that g5(x) > 0 and hence ga(x) < ga(zo) < 0. In case (iii), g5(x) has a unique

B+1
a+B+1

ZEeTo Tg = — at which go(x) attains its maximum in (0, ) and hence go(x) < go(x2) < 0. O
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3. Main results

For M(x) = M,(f,/x), we let

h=nh(z)= /M(t)gp'(t)dt, x,zo € (0,1), (7)

where xg is fixed. Noting that dy; > 0, Dys > 0, we easily obtain
dp =dy +dyr = dpy +dy > dy, (8)
and
Dy = Dy + Dy = Dy + Dy > Dy (9)

If x > =g, since

xT

o) = [ M@0t < M) [ (0t = M@)(),

Zo

we have dj, > dy. If x < x¢, since

Zo

M@=—/M@¢wws4ww/¢ww=Mww@,

x

we also have dj, > dy.
If x > xg, noting that dy > 0,dy; > 0 and d, = dp; + dy, we have

(1 -+ dh’)2 — 4$D0

= (1+dy —2do)* + 2(1 + d1)dns + d3y

= (1 +di; — 2dg + dM)2 + 4dod s

> (1+dy — 2do + da)* (10)

If Dy < 0 whenever x > xg or z < xg, we have

(1+dp)* — 42Dy
= (1+4dy —2do)* +2(1 +dy)dy + d3y

1+d; 2 42Dy,
1+di —2dy M (1+d1—2d0)2 M

1+d, 2
1+d, —2dy ™

= <1+d1—2d0+

> <1+d1—2d0+

We can now prove the main results of the paper.

Theorem 5. Suppose 0 < p < +00, 0 < c= /xp <1, -2 < a <0, and f € H(D). Then the function
My o.8.c(f,1) is logarithmically convex for v € (¢, 1) if one of the following conditions is satisfied:



C. Wang, W. Yang / J. Math. Anal. Appl. 478 (2019) 510-518 515

(i) —1<B<o0.
.. IB
(ll) 6 >0 andﬂjo 2 atpi2”
(i) B> 0, 20 < z7575 and (Dy — 2D0)|,__s_ >0.
: B41
(iv) B <=1 andxo = 57
Proof. Let + = r? and xy = c?. By polar coordinates and Lemma 1, the logarithmic convexity of

My o pc(f,r) for v € (c,1) is equivalent to the logarithmic convexity of h(z)/¢(x) for z € (xg,1), where
¢ and h are defined by (3) and (7) respectively. According to Lemma 2, it is enough for us to show that

A(x) > 0 for = € (x0,1), where
A(x) = xDp(x) — xDg(x)
= —d} + (1 +dp)dy, — 2Dy

(d 1+dh/\/(1+dh/)24£€D0>
= h —
2

<1+dh/+\/(1+dh/)2—4$D0 d )
. —dp | .
2

Noting that dj > dy, it follows from (8) and (10) that

1
dn = 5 (1+ dp = /(T + d)? = 42Dy
1
Zd07§(1+d1+dM*|1+d1*2d0+dM|)

(11 +dy — 2do + dag| — (1 + dy — 2do + das))

DN | =

>

o

Since 1 +dps > 14 d; > 0 when 8 > —1 or in case (iv), we have

1+dp + /(1 +dp)?2 —4aDg > 0.

Thus
1+ dp 14+dy)2 —4zD
Alz) ~ +h+\/(;-h) mo_dh
2xh/
~h_ x =: §(z).
1+dh/+\/(1+dh/)2—41’D0
It is easy to check that
/ Y _ /\2
lim Dy = lim ol —i—mgpQ) 2(¢) = —00

when 0 < g < 1 and

lim .IDO = lim do(l + d1 - do) =0

T—xo T—T0

for zp = 0. Hence for all 0 < zg < 1, 6(xg) = 0.
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It follows from direct computations that

P o' + 2uh”
L+ dp ++/(1+dp)? —4xDy
2zh’ (1 + dh/)Dh/ — Q(I'Do)’
+ 5 Dy, 1.0 .
(1+dh/+\/(1+dh/)274xDo) \/(1+ h') — arlo

Noticing that A’ > 0, we have

2
§ L+ dp — /(1 +dp)? —4xDy (1 +dw + /(1 +dw)? — 4$D0)
14+dy + \/(1—|—dh/)2 —4x Dy 2x

(1+dp)Dp — Q(mDo)/>

\/(1 + dh’)2 — 41’D0
(1+ dp ) Dy — 2(xDyg)’
\/(1 + dh’)2 — 4$D0

~ —2Do\/(1 + dp/)? — 4z Dy — 2(xDy)’

+ (Dh’ +

= —2D¢ + Dy +

+ Dy (1 +dp + \/(]_ + dh/)2 — 4.’ED()) = (51(1‘)

In case (i), (ii), (iii) and (iv), we always have 1+ d; > 0 and, by Lemma 3, D1 — 2Dy > 0. Combining
this with (10) and Dps > Dy, we obtain

(51(IE) > 72D0\/(1 + dh/)2 —4xDgy — 2(SCDO)/

+ D1 (1 + dh/ + \/(1 + dh/)2 — 4IDO)

= (D1 = 2Dy) (\/(1+ d)? = 42Dy + 1+ dy = 2dy ) + dys Dy

> (D1 —2Dg) (|1 +dy — 2do| + 1+ dy — 2dy)
0.

\%

Hence ¢’(z) > 0. This implies d(x) > §(x¢) = 0, and A(z) > 0 on (z¢,1). O

If 29 = ¢ = 0 and 8 = 0, we obtain the main result in [7] as a special case; If p = 2 and 8 = 0, our
approach here yields a proof for the main theorem in [1] for —2 < o < 0, unfortunately, not for —3 < « < 0.
If the annuli ¢ < |z| < r are replaced by r < |z| < ¢, we have the following result.

Theorem 6. Suppose 0 < p < +o00, 0 < ¢ = /g < 1, 8 > —1, and f € H(D). Then the function
T My og.c(f,r) is logarithmically convex for v € (0,c) if one of the following conditions is satisfied:

(i) —2-28<a<0.

(i) @ < —2-28 and wo < —;Fhis.

(i) o < —2—28, mp > -5 and

((1+d1)Do — doDr) ‘z:_ s < 0.

atp+1
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Proof. As in the proof of Theorem 5, we need only to consider the function

[ M(6)tP (1 —t)*dt  h(x)
[ =tedt ()

and show that A(z) = 2Dy (z) —axDo(z) > 0, where h(x), p(z), A(x) are defined as before but for z € (0, zg).
Since dp, < 0,Dg <0 for a < 0,8 > —1, we easily obtain

1+dp + /(1 +dp)? —4xDy

B —dp > 0.
Thus
Alw) ~ d 1+dp — /(1 +dp)? —4zDy
x h D)
!
~—h— 2ah = §(z).
V@ +dp)? —4xDy — 1 —dpy
It is easy to check that
lim Dy = lim P& ETF) 2@
T—To 0 T—T0 @2
when 0 < z¢ < 1. Hence d(zg) = 0.
It follows from direct computations that
5 — 2h' + 2zh"
V@ +dp)?—4xDy — 1 —dpy
2xh’ (1 + dh/)Dh/ — 2($D0)/ D
- 2\ VO +dy)?—dzD, )"
(\/<1+dh/>2—4{1}D0—1—dh/) h’' Lo

Noticing that A’ > 0, Dg < 0 and Dy, > D; > 0, we have

2
V(L +dp)?2 —4aDo + 1+ dy (\/(1 +dp)? —4zDo — 1 — dh')
\/(1 + dh,)2 —4xDg — 1 —dp 2z
_ ’
+ (]. + dh/)Dh/ 2(.’EDO) _ Dh/
VA +dp)? = 4xDy
(1 + dh/)Dh/ - 2($D0)/

— 2Dy + ~ Dy
O/t dw)? - 4zDy "

~ 2D()\/(1 + dh/)2 —4x Dy + Dy (1 +dp — \/(1 + dh/)2 — 4xD0) — 2(xD0)/

§ ~—

< 2Do\/(1 + dp )2 — 4zDy + Dy (1 tdp — /(L +dp)? — 43:D0> — 2(zDy)’

= (2Dg — D1)\/(1 + dp)2 — 4aDg + dpr Dy + (D1 — 2Do) (1 + dy — 2dy)
= (52(:1’,‘)
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Note that Dy <0, D1 >0,1+4+d; > 0and dy <0 for « <0 and 5> —1. By (11) and Lemma 4,
1+d;

T+d —2dy ™

+dp Dy + (Dl — QDQ)(I +d; — 2d0)

(1+dy)Do — doD:
1 + dl - 2d0

(52(.13) < (2D0 — D]_) 1 —|—d1 — 2d0 +

= 2dym

<0.
Hence ¢’(z) < 0. This implies §(z) > §(xg) =0, and A(z) > 0 on (0,z0). O
4. A remark

Note that Theorems 5 and 6 are proved for g > —1. It is natural to ask if the results remain true for
B < —1. We show by an example that the answer is negative even for a = 0.

Consider the case wherep =2, a=0,8=-3,c= % and f(z) = z. It follows from a direct computation
that

2r2
Mao, s, (:07) = 1o

As before, we let g = ¢> = % and z = r2. Then by Lemma 2, we just need to verify if the function

2
2z
H(w) =175,
is logarithmically convex on z. By direct computations,
Dy(z) = 2z <0.
(1+2x)2
This implies that log H(x) is concave in logz for x € (xg,1) and z € (0,z0). And hence M270,_37%(z,r) is

logarithmically concave whenever r € (¢,1) or r € (0, ¢).
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