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For 0 < p < +∞ and an analytic function f in the unit disk D we show that the 
Lp integral mean of f on c ≤ |z| ≤ r or r ≤ |z| ≤ c with respect to the weighted 
area measure |z|2β(1 −|z|2)α dA(z) is a logarithmically convex function of r if α, β, c
satisfy certain conditions.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let H(D) denote the space of all analytic functions in the unit disk D of the complex plane C. For any 
f ∈ H(D) and 0 < p < +∞ the classical integral means of f are defined by

Mp(f, r) = 1
2π

2π∫
0

|f(reiθ)|p dθ, 0 ≤ r < 1.

These integral means play a prominent role in classical analysis, especially in the theory of Hardy spaces. 
For example, the well-known Hardy convexity theorem asserts that Mp(f, r), as a function of r on (0, 1), is 
logarithmically convex. Logarithmic convexity here means that the function r �→ logMp(f, r) is convex in 
log r. See [2] for example.

For any real α, β, we consider the measure

dAα,β(z) = |z|2β(1 − |z|2)α dA(z),
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where dA is the area measure on D. When β = 0, such measures are frequently used in the more recent 
theory of Bergman spaces. See [3,4]. Let A(a, b) be the annulus {z ∈ C : a ≤ |z| ≤ b} if a < b or the annulus 
{z ∈ C : b ≤ |z| ≤ a} if a > b. For f ∈ H(D), 0 < p < +∞, 0 < c < 1, and real α, β, we consider the area 
integral means

Mp,α,β,c(f, r) =

∫
A(c,r)

|f(z)|p|z|2β(1 − |z|2)α dA(z)

∫
A(c,r)

|z|2β(1 − |z|2)α dA(z)
.

Here we assume that f is analytic in the entire unit disk D, although the integral means are taken over the 
annuli A(c, r), r ∈ (c, 1) or r ∈ (0, c).

In [10] Xiao and Zhu initiated the study of area integral means of analytic functions in the unit disk D
with respect to the weighted area measure dAα,0(z). It was shown in [7,8] that, just like the classical integral 
means, Mp,α,0,0(f, r) is also logarithmically convex on (0, 1) when −2 ≤ α ≤ 0. Furthermore, if p = 2, then 
M2,α,0,0(f, r) is logarithmically convex on (0, 1) when −3 ≤ α ≤ 0, and this range for α is best possible. 
Cui, Wang and Zhu proved in [1] that the function M2,α,0,c(f, r) is logarithmically convex for r ∈ (c, 1) if 
0 ≤ c < 1 and −3 ≤ α ≤ 0. We will consider the logarithmic convexity problem on Mp,α,β,c(f, r) for general 
p and β and give our main results in Section 3. See [5,6,9] for other recent work in the area.

Throughout the paper we use the symbol =: whenever a new notation is being introduced. We will use 
the notation A ∼ B to mean that A and B have the same sign.

2. Preliminaries

In this section we collect several preliminary results that will be needed for the proof of our main results.
For any twice differentiable function f on (a, b), we define

df (x) = x
f ′(x)
f(x)

and

Df (x) = D(f(x)) = f ′(x)
f(x) + x

f ′′(x)
f(x) − x

(
f ′(x)
f(x)

)2

.

It is easy to check

(df (x))′ = Df (x), (1)

and

xDf (x) = df (x)(1 + df ′(x) − df (x)). (2)

Lemmas 1 and 2 were stated and proved in [7,8] for the interval (0, 1). But it is clear that the conclusions 
still hold if (0, 1) is replaced by any interval (a, b), where 0 ≤ a < b < +∞. See also [1].

Lemma 1. Suppose that f is positive and twice differentiable on (a, b). Then

(i) f(x) is convex in log x if and only if f(x2) is convex in log x.
(ii) log f(x) is convex in log x if and only if Df (x) ≥ 0 for all x ∈ (a, b).
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Lemma 2. Suppose that f = f1/f2 is a quotient of two positive and twice differentiable functions on (a, b). 
Then

Df (x) = Df1(x) −Df2(x)

for x ∈ (a, b). Consequently, log f(x) is convex in log x if and only if

Df1(x) −Df2(x) ≥ 0

on (a, b).

To simplify notation, we let

ϕ = ϕ(x) =
x∫

x0

ϕ′(t) dt, ϕ′ = ϕ′(x) = xβ(1 − x)α, (3)

where x0, x are in (0, 1) and α, β are real numbers. We also write

d0 = dϕ = dϕ(x), D0 = Dϕ = Dϕ(x).

It is easy to check that

d1 = dϕ′ = dϕ′(x) = β + −αx

1 − x
, (4)

D1 = Dϕ′ = Dϕ′(x) = −α

(1 − x)2 , (5)

and

(xD0)′ = (1 + d1)D0 + d0(D1 − 2D0). (6)

Lemma 3. Suppose −∞ < β < +∞ and −2 ≤ α ≤ 0. Then D1 − 2D0 ≥ 0 holds for x ∈ (x0, 1) if one of the 
following conditions is satisfied:

(i) β ≤ 0.
(ii) β > 0 and x0 ≥ β

α+β+2 .
(iii) β > 0, x0 < β

α+β+2 and (D1 − 2D0)
∣∣
x= β

α+β+2
≥ 0.

Proof. It is easy to see that D1 − 2D0 ≥ 0 is equivalent to g1(x) ≥ 0, where

g1(x) = ϕ2

ϕ′ (D1 − 2D0) = ϕ2

ϕ′ D1 − 2ϕ
(

1 + x
ϕ′′

ϕ′

)
+ 2xϕ′.

Since D1 and ϕ′ are both positive for α ≤ 0, we have

g′1(x) = D′
1
ϕ2

ϕ′ −D1
ϕ2ϕ′′

(ϕ′)2

∼ D′
1 − ϕ′′

′
D1 ϕ
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= α + 2
1 − x

− β

x

∼ (α + β + 2)x− β.

In case (i) and (ii), we see that g′1(x) ≥ 0 and hence g1(x) ≥ g1(x0) ≥ 0. In case (iii), g′1(x) has a unique 
zero x1 = β

α+β+2 at which g1(x) attains its minimum in (x0, 1) and hence g1(x) ≥ g1(x1) ≥ 0. �
It should be pointed out that for −2 ≤ α ≤ 0 and general β > 0, x0, D1 − 2D0 is not always positive. Let 

α = −1, β = 3, x0 = 1
4 and x = 3

4 . It follows from direct computations that

ϕ

(
3
4

)
=

3
4∫

1
4

(1 − t)−1t3 dt = log 3 − 85
96 ,

and

d0 = 81
64

(
log 3 − 85

96
) = 5.936 · · · , d1 = 6, D1 = 16.

Thus we have

xD1 − 2xD0 = 2(6 − 7d0 + d2
0) = 2(1 − d0)(6 − d0) < 0.

Lemma 4. Suppose α ≤ 0 and β ≥ −1. Then (1 + d1)D0 − d0D1 ≤ 0 holds for x ∈ (0, x0) if one of the 
following conditions is satisfied:

(i) −2 − 2β ≤ α ≤ 0.
(ii) α < −2 − 2β and x0 ≤ − β+1

α+β+1 .
(iii) α < −2 − 2β, x0 > − β+1

α+β+1 and

((1 + d1)D0 − d0D1)
∣∣
x=− β+1

α+β+1
≤ 0.

Proof. Note that ϕ < 0 and ϕ′ ≥ 0. It is easy to see that (1 + d1)D0 − d0D1 ≤ 0 is equivalent to g2(x) ≤ 0, 
where

g2(x) = −
(

xD1

(1 + d1)2
− 1

)
ϕ− xϕ′

1 + d1
.

Since ϕ < 0, D1 > 0 and 1 + d1 ≥ 0, we have

g′2(x) = −
(
D1 + xD′

1
(1 + d1)2

− 2xD2
1

(1 + d1)3

)
ϕ

∼ (1 + d1)
(

1 + x
D′

1
D1

)
− 2xD1

= β + 1 + (α + β + 1)x
1 − x

.

In case (i) and (ii), we see that g′2(x) ≥ 0 and hence g2(x) ≤ g2(x0) ≤ 0. In case (iii), g′2(x) has a unique 
zero x2 = − β+1

α+β+1 at which g2(x) attains its maximum in (0, x0) and hence g2(x) ≤ g2(x2) ≤ 0. �
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3. Main results

For M(x) = Mp(f, 
√
x), we let

h = h(x) =
x∫

x0

M(t)ϕ′(t)dt, x, x0 ∈ (0, 1), (7)

where x0 is fixed. Noting that dM ≥ 0, DM ≥ 0, we easily obtain

dh′ = dM + dϕ′ = dM + d1 ≥ d1, (8)

and

Dh′ = DM + Dϕ′ = DM + D1 ≥ D1. (9)

If x > x0, since

h(x) =
x∫

x0

M(t)ϕ′(t)dt ≤ M(x)
x∫

x0

ϕ′(t)dt = M(x)ϕ(x),

we have dh ≥ d0. If x < x0, since

h(x) = −
x0∫
x

M(t)ϕ′(t)dt ≤ −M(x)
x0∫
x

ϕ′(t)dt = M(x)ϕ(x),

we also have dh ≥ d0.
If x > x0, noting that d0 ≥ 0, dM ≥ 0 and dh′ = dM + d1, we have

(1 + dh′)2 − 4xD0

= (1 + d1 − 2d0)2 + 2(1 + d1)dM + d2
M

= (1 + d1 − 2d0 + dM )2 + 4d0dM

≥ (1 + d1 − 2d0 + dM )2. (10)

If D0 ≤ 0 whenever x > x0 or x < x0, we have

(1 + dh′)2 − 4xD0

= (1 + d1 − 2d0)2 + 2(1 + d1)dM + d2
M

=
(

1 + d1 − 2d0 + 1 + d1

1 + d1 − 2d0
dM

)2

+ −4xD0

(1 + d1 − 2d0)2
d2
M

≥
(

1 + d1 − 2d0 + 1 + d1

1 + d1 − 2d0
dM

)2

. (11)

We can now prove the main results of the paper.

Theorem 5. Suppose 0 < p < +∞, 0 ≤ c = √
x0 < 1, −2 ≤ α ≤ 0, and f ∈ H(D). Then the function 

Mp,α,β,c(f, r) is logarithmically convex for r ∈ (c, 1) if one of the following conditions is satisfied:
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(i) −1 ≤ β ≤ 0.
(ii) β > 0 and x0 ≥ β

α+β+2 .
(iii) β > 0, x0 < β

α+β+2 and (D1 − 2D0)
∣∣
x= β

α+β+2
≥ 0.

(iv) β < −1 and x0 ≥ β+1
α+β+1 .

Proof. Let x = r2 and x0 = c2. By polar coordinates and Lemma 1, the logarithmic convexity of 
Mp,α,β,c(f, r) for r ∈ (c, 1) is equivalent to the logarithmic convexity of h(x)/ϕ(x) for x ∈ (x0, 1), where 
ϕ and h are defined by (3) and (7) respectively. According to Lemma 2, it is enough for us to show that 
Δ(x) ≥ 0 for x ∈ (x0, 1), where

Δ(x) = xDh(x) − xD0(x)

= −d2
h + (1 + dh′)dh − xD0

=
(
dh − 1 + dh′ −

√
(1 + dh′)2 − 4xD0

2

)

·
(

1 + dh′ +
√

(1 + dh′)2 − 4xD0

2 − dh

)
.

Noting that dh ≥ d0, it follows from (8) and (10) that

dh − 1
2

(
1 + dh′ −

√
(1 + dh′)2 − 4xD0

)
≥ d0 −

1
2 (1 + d1 + dM − |1 + d1 − 2d0 + dM |)

= 1
2 (|1 + d1 − 2d0 + dM | − (1 + d1 − 2d0 + dM ))

≥ 0.

Since 1 + dh′ ≥ 1 + d1 ≥ 0 when β ≥ −1 or in case (iv), we have

1 + dh′ +
√

(1 + dh′)2 − 4xD0 ≥ 0.

Thus

Δ(x) ∼ 1 + dh′ +
√

(1 + dh′)2 − 4xD0

2 − dh

∼ h− 2xh′

1 + dh′ +
√

(1 + dh′)2 − 4xD0
=: δ(x).

It is easy to check that

lim
x→x0

D0 = lim
x→x0

ϕ(ϕ′ + xϕ′′) − x(ϕ′)2

ϕ2 = −∞

when 0 < x0 < 1 and

lim
x→x0

xD0 = lim
x→x0

d0(1 + d1 − d0) = 0

for x0 = 0. Hence for all 0 ≤ x0 < 1, δ(x0) = 0.
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It follows from direct computations that

δ′ = h′ − 2h′ + 2xh′′

1 + dh′ +
√

(1 + dh′)2 − 4xD0

+ 2xh′(
1 + dh′ +

√
(1 + dh′)2 − 4xD0

)2

(
Dh′ + (1 + dh′)Dh′ − 2(xD0)′√

(1 + dh′)2 − 4xD0

)
.

Noticing that h′ > 0, we have

δ′ ∼ −1 + dh′ −
√

(1 + dh′)2 − 4xD0

1 + dh′ +
√

(1 + dh′)2 − 4xD0
·

(
1 + dh′ +

√
(1 + dh′)2 − 4xD0

)2

2x

+
(
Dh′ + (1 + dh′)Dh′ − 2(xD0)′√

(1 + dh′)2 − 4xD0

)

= −2D0 + Dh′ + (1 + dh′)Dh′ − 2(xD0)′√
(1 + dh′)2 − 4xD0

∼ −2D0
√

(1 + dh′)2 − 4xD0 − 2(xD0)′

+ Dh′

(
1 + dh′ +

√
(1 + dh′)2 − 4xD0

)
=: δ1(x).

In case (i), (ii), (iii) and (iv), we always have 1 + d1 ≥ 0 and, by Lemma 3, D1 − 2D0 ≥ 0. Combining 
this with (10) and Dh′ ≥ D1, we obtain

δ1(x) ≥ −2D0
√

(1 + dh′)2 − 4xD0 − 2(xD0)′

+ D1

(
1 + dh′ +

√
(1 + dh′)2 − 4xD0

)
= (D1 − 2D0)

(√
(1 + dh′)2 − 4xD0 + 1 + d1 − 2d0

)
+ dMD1

≥ (D1 − 2D0) (|1 + d1 − 2d0| + 1 + d1 − 2d0)

≥ 0.

Hence δ′(x) ≥ 0. This implies δ(x) ≥ δ(x0) = 0, and Δ(x) ≥ 0 on (x0, 1). �
If x0 = c2 = 0 and β = 0, we obtain the main result in [7] as a special case; If p = 2 and β = 0, our 

approach here yields a proof for the main theorem in [1] for −2 ≤ α ≤ 0, unfortunately, not for −3 ≤ α ≤ 0.
If the annuli c ≤ |z| ≤ r are replaced by r ≤ |z| ≤ c, we have the following result.

Theorem 6. Suppose 0 < p < +∞, 0 < c = √
x0 < 1, β ≥ −1, and f ∈ H(D). Then the function 

r �→ Mp,α,β,c(f, r) is logarithmically convex for r ∈ (0, c) if one of the following conditions is satisfied:

(i) −2 − 2β ≤ α ≤ 0.
(ii) α < −2 − 2β and x0 ≤ − β+1

α+β+1 .
(iii) α < −2 − 2β, x0 > − β+1

α+β+1 and

((1 + d1)D0 − d0D1)
∣∣
x=− β+1

α+β+1
≤ 0.
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Proof. As in the proof of Theorem 5, we need only to consider the function

∫ x0
x

M(t)tβ(1 − t)αdt∫ x0
x

tβ(1 − t)αdt
= h(x)

ϕ(x)

and show that Δ(x) = xDh(x) −xD0(x) ≥ 0, where h(x), ϕ(x), Δ(x) are defined as before but for x ∈ (0, x0).
Since dh ≤ 0, D0 ≤ 0 for α ≤ 0, β ≥ −1, we easily obtain

1 + dh′ +
√

(1 + dh′)2 − 4xD0

2 − dh ≥ 0.

Thus

Δ(x) ∼ dh − 1 + dh′ −
√

(1 + dh′)2 − 4xD0

2

∼ −h− 2xh′√
(1 + dh′)2 − 4xD0 − 1 − dh′

=: δ(x).

It is easy to check that

lim
x→x0

D0 = lim
x→x0

ϕ(ϕ′ + xϕ′′) − x(ϕ′)2

ϕ2 = −∞

when 0 < x0 < 1. Hence δ(x0) = 0.
It follows from direct computations that

δ′ = −h′ − 2h′ + 2xh′′√
(1 + dh′)2 − 4xD0 − 1 − dh′

+ 2xh′(√
(1 + dh′)2 − 4xD0 − 1 − dh′

)2

(
(1 + dh′)Dh′ − 2(xD0)′√

(1 + dh′)2 − 4xD0
−Dh′

)
.

Noticing that h′ > 0, D0 ≤ 0 and Dh′ ≥ D1 > 0, we have

δ′ ∼ −
√

(1 + dh′)2 − 4xD0 + 1 + dh′√
(1 + dh′)2 − 4xD0 − 1 − dh′

·

(√
(1 + dh′)2 − 4xD0 − 1 − dh′

)2

2x

+
(

(1 + dh′)Dh′ − 2(xD0)′√
(1 + dh′)2 − 4xD0

−Dh′

)

= 2D0 + (1 + dh′)Dh′ − 2(xD0)′√
(1 + dh′)2 − 4xD0

−Dh′

∼ 2D0
√

(1 + dh′)2 − 4xD0 + Dh′

(
1 + dh′ −

√
(1 + dh′)2 − 4xD0

)
− 2(xD0)′

≤ 2D0
√

(1 + dh′)2 − 4xD0 + D1

(
1 + dh′ −

√
(1 + dh′)2 − 4xD0

)
− 2(xD0)′

= (2D0 −D1)
√

(1 + dh′)2 − 4xD0 + dMD1 + (D1 − 2D0)(1 + d1 − 2d0)

=: δ2(x).
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Note that D0 ≤ 0, D1 ≥ 0, 1 + d1 ≥ 0 and d0 < 0 for α ≤ 0 and β ≥ −1. By (11) and Lemma 4,

δ2(x) ≤ (2D0 −D1)
∣∣∣∣1 + d1 − 2d0 + 1 + d1

1 + d1 − 2d0
dM

∣∣∣∣
+ dMD1 + (D1 − 2D0)(1 + d1 − 2d0)

= 2dM
(1 + d1)D0 − d0D1

1 + d1 − 2d0

≤ 0.

Hence δ′(x) ≤ 0. This implies δ(x) ≥ δ(x0) = 0, and Δ(x) ≥ 0 on (0, x0). �
4. A remark

Note that Theorems 5 and 6 are proved for β ≥ −1. It is natural to ask if the results remain true for 
β < −1. We show by an example that the answer is negative even for α = 0.

Consider the case where p = 2, α = 0, β = −3, c = 1√
2 and f(z) = z. It follows from a direct computation 

that

M2,0,−3, 1√
2
(z, r) = 2r2

1 + 2r2 .

As before, we let x0 = c2 = 1
2 and x = r2. Then by Lemma 2, we just need to verify if the function

H(x) = 2x
1 + 2x

is logarithmically convex on x. By direct computations,

DH(x) = − 2
(1 + 2x)2 < 0.

This implies that logH(x) is concave in log x for x ∈ (x0, 1) and x ∈ (0, x0). And hence M2,0,−3, 1√
2
(z, r) is 

logarithmically concave whenever r ∈ (c, 1) or r ∈ (0, c).
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