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1. Introduction

A complex valued function f is harmonic in a simply connected domain 2 C C if both R{f} and S{f}
are harmonic in 2. Every such f can be uniquely represented as

f=h+3 (L1)

|2 and the second

where h and g are analytic in Q. The Jacobian of f is given by J¢(z) = |h/(2)|* — |¢'(2)
complex (analytic) dilatation of f is given by w(z) = ¢'(z)/h'(z). A result of Lewy [19] states that a
harmonic mapping f is locally univalent at z if and only if its Jacobian J¢(z) # 0, and is sense-preserving
if the Jacobian is positive. The sense-preserving case implies that |w(z)| = |¢'(2)/h/(2)| < 1 in Q.

Let Har(D) denote the family of continuous complex valued functions which are harmonic in the open

unit disk D = {z € C : |z] < 1} and let Hol(D) denote the class of holomorphic functions f in D with
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the normalization f(0) = f(0) —1 = 0 in D. We note that Hol(D) C Har(D). Further, let S := Sy
be the subclass of Hol(D) which are additionally univalent in ID. Clunie and Sheil-Small in [10] developed
the fundamental theory of functions f € Har(D) with the normalization f(0) = A’(0) =1 = 0 in D.
Following Clunie and Sheil-Small notation we next denote by Sy, the subclass of Har(D) consisting of
univalent and sense-preserving harmonic mappings f = h + g in D, where h and ¢ are normalized such
that

h(z) =z + Z anz" and g(z) = Z bpz". (1.2)
n=2 n=1

Here, h and g are called the analytic part and the co-analytic part of f, respectively. Certainly Syop C Spar-
Also, let 8%, = {f € Suar : ¢'(0) = fz(0) = 0}. The family SY,,, is known to be compact and nor-
mal, whereas Sz4, is normal but not compact. For many interesting results and expositions on planar
harmonic univalent mappings, we refer to the monograph of Duren [13] and also the expository articles
[12,26].

Let

1 zh'(2) 3
=<heHoD): —=<R|1 < =, eh,. 1.3
g { Hol(D) 5 <+h’(z) 5 Z (1.3)
The functions h € G are univalent in D [30] and map every circle C, = {z € C: |z| = p}, p € (0,1), onto
a curve bounding a region that is convex in one direction. Recall that, a domain €2 C C is called convex in
the direction ¢ (0 < ¢ < ) if every line parallel to the line going through 0 and e** has a connected or
empty intersection with Q. An analytic function h is said to be convex in the direction ¢ if h(D) is convex

in the direction ¢ [28]. Additionally, one of the conditions % (1 + Z:;;i?) >—Zor R (1 + Zﬁ,:i?) < 3is

a sufficient condition for univalence of h [30]. However, the functions satisfying (1 + Z,’;:;i?) <1+ % are

not necessarily univalent in D if § > 1 [23]. Recently, the second and third authors have studied the radius
of convexity of partial sums of functions in the class G [21].

The analytic parts of harmonic mappings play a vital role in shaping their geometric properties. For
instance if f = h + g is a sense preserving harmonic mapping and h is convex univalent, then f € Sy
and maps D onto a close-to-convex domain [10]. In [15,16] a class of functions f = h + G € Sy, has been
studied, where h and g are given by (1.2), such that by = « € (0,1), h is convex in D (or h is a function
with bounded boundary rotation) and the dilatation w is of the form w(z) = (2 + @) /(1 + az2).

For o (0 < a < 1) let G§,, denote the set of all harmonic functions f = h 4+ g € Har(D), with
9'(0) =b; = @ and

d(z) =w(z)h'(z) and weg (z € D), (1.4)

where w is the Mobius selfmap of D of the form w(z) = (z + «)/(1 + az). The function w has the series
expansion

wz)=a+czte?+--- (2€D, ¢ €C, i=1,2,...). (1.5)

Observe that, a harmonic mapping f = h +7 € Har(D) with ¢'(0) = by = a (0 < a < 1) satisfying

conditions (1.4) need not necessarily univalent in D. For instance, when w(z) = 2 + %z, and a harmonic

function f = h + g, where

_ Lo _1 L 3
h(z) =z 5% and g(z)—Qz 6%
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(a) The image of the mapping f (b) An enlarged view of right cusp of image of f

Fig. 1. Graph of the function f(z) = z — 12> + 12 — 123,

we obtain ¢'(z) = w(z)h/(z). It follows that

R (1 + Z:/(g)) < g (z € D),

but we see that f is not univalent in D (see the graph of f shown in Fig. 1).
If f € G5, then according to the form of w(z) = (2 + a)/(1 + az), and the relation w = ¢’/h’ we have
co=b; =q,

|r — «f r+a
— < < 1.
< ) < 1 (16)
and
2 / 1 —Jw(z)?

(see e.g. [2, p. 30, 53]).
Let f be a locally univalent function in ID, then the pre-Schwarzian derivative T of f is defined by

')

=y

The pre-Schwarzian derivative T is a basic part of the Schwarzian derivative Sy that equals Sy = (T})" —
(T¢)?/2. We also define the norm of Ty by

1Tyl = sup (1= 12) 1Ty (1.8)

It is well known that ||T|| < co if and only if f is uniformly locally univalent. Here, an analytic function
f on D is said to be uniformly locally univalent if f is univalent on each hyperbolic disk in D with fixed
radius [31,32]. If f is univalent in D, then ||T¢|| < 6 and the bound 6 is sharp. Conversely if ||T%| < 1
then f is univalent in D [3]. The pre-Schwarzian derivative has been studied in detail by many authors
because of its connection with univalence, convexity, quasiconformality, Teichmiiller spaces, etc. (see, for
example [1,18,14,22]), where several applications were indicated, for a survey we refer to [25]. Therefore,



934 S. Kanas et al. / J. Math. Anal. Appl. 474 (2019) 9831-943

some relevant estimates of its norm in classical subclasses of univalent functions were discussed in [6,17],
and also [24,27,29].

An important problem in the theory of harmonic mappings turned out to be finding a suitable definition
of the Schwarzian derivative (the pre-Schwarzian derivative, respectively). Chuaqui et al. [7,8] introduced the
harmonic Schwarzian using the differential geometry of the associated minimal surface, this for functions that
are not necessarily locally univalent, and then derived the necessary condition for univalence [9]. Following
the definition in the analytic case the harmonic pre-Schwarzian has been proposed in [15], and described by
the formula

~ 20(log))

T 0z

(1.9)
where A\ = |/| + |¢/|. In the case, when f is analytic, A = |f’|, so that log A\ = log f’/2 + log f’/2, therefore
(1.9) in the analytic case agrees with the classical formula f”/f’. We observe that if ¢’ = gh/, and q = w?,
then [13, p. 191]

20(log\) A" 2w W'
_ 20(ogd) _ e R (1.10)

T = — _—
! 0z [T TE 1+ w2

(here local univalence of a function h is required).

The classical Bloch theorem asserts the existence of a positive constant b such that for any holomorphic
mapping f of the unit disk I, with the normalization f’(0) = 1, the image f(ID) contains a Schlicht disk
of radius b. By Schlicht disk, we mean a disk which is the univalent image of some region in . The Bloch
constant is defined as the “best” such constant, that is supremum of such constants b. Chen et al. [4]
estimated Bloch constant for harmonic mappings.

A function f € Har(D) is called a harmonic Bloch mapping if and only if

By = sup &) = flwl (1.11)
2, weD, z#w Q(Z, ’LU)
where
1 _"_ Z—ill) ‘
]. —ZWw -
Q(z,w) = = log ! = arctanh‘ z 7w ‘
2 1— 127771) ’ — 2w

denotes the hyperbolic distance between z and w in D, and By is called the Bloch’s constant of f. In [11]
Colonna proved that

By =sup (1 —[2]%) Ay (1.12)
zED
where
Ap=Ar() = s |£.0) = €20 (3)] = L))+ 12)
= W'+ 19" ()] = ()1 + [w(2)]).
Moreover, the set of all harmonic Bloch mappings forms a complex Banach space with the norm || - || given
by

I£1l = [£(0)] +sup(l - [2[*) A (2).
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This definition agrees with the notion of the Bloch’s constant for analytic functions. Recently, many authors
have studied Bloch’s constant for harmonic mappings (see [4,5,16,20]).
To investigate our main results, we shall use the following Lemmas.

Lemma 1.1. [21] Let h € G be of the form (1.2). Then for |z| =r < 1, the following statements are true

zh"(z
aRze
(b) 1—r < |W(2)] <147

~—

Both inequalities (a) and (b) are sharp, with equality for h(z) = z — 22 /2.

Lemma 1.2. [23] Let h € G be of the form (1.2). Then

(a) |an| < [n(n —1)]7" for all n > 2. Equality holds for f, such, that f/(z) = (1 —z"~1)/ (=1 pn > 2,
o oo aafl < {0 B2

The equality in the Fekete—Szego functional |a3 — )\a§| is attained in each case.

2. Main results

2.1. The harmonic pre-Schwarzian derivative

In this section we shall find bounds on the norm of the pre-Schwarzian derivative for functions in the
class G-

Theorem 2.1. Let o € (0,1) and f € G,,,. The norm of the pre-Schwarzian derivative of f is bounded by

2(1 —a?)(1 = rd)(ro + )

Tl <147+ , 2.1
175l < T 1+ arg) (1 + D)1 + 02) — dar) (2.1)
where ro € (0,1) is the unique root of the equation
a(l+a?)?r® + (=2a° — 13a* + 402 — 1)r* + a(10a* — 402 + 2)r3
+ (88 — 14at 4 2002 — 6)1r? + (—7a® 4+ 10a® — 15a)r + (2a° — 9a* + 8a? + 3) = 0.
Proof. If f = h+7g € G, then h € G. It is then clear from Lemma 1.1 that
h 1
|T| = W < = lz| =r < 1.
From (1.10) and the above, we have
h" 2w'w 2|w’||w| 1 2|w'||w]
Til=|—+ ———| < T < . 2.2
173 ‘h’+1+w|2_|h|+1+w|2_1—r 1+ [w]? (22)

Using that, (1.6) and (1.7), we obtain
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1 N 2(1 —a?®)(1 —7r?)(r + )
1—r (1-=-r)14+ar)[14+r2)(1+ a?) —4ar]
2(1 —a®)(1 —rH)(r + )
(I+ar)[(1+72)(1+a?) —4ar]

IT¢ll < supge,<i(1—7%)

=1+r+

=: F(r).
We note that F’(r) = 0 if and only if G(r) = 0, where G is given as

G(r) = a(l+a?)?r® + (=2a8 — 13a* + 402 — 1)r* + 2a(5a* — 202 + 1)r3
+ (8a8 — 14a* + 200 — 6)1? + (=7a® + 1003 — 15a)r + (2a® — 9a* + 8a? + 3).

We have
G(0) =2a% — 9a* +8a% + 3 =2a° + 8a?(1 —a?) + (1 —a*) +2 >0,
and
G(1) = —4(1 — a)3(1 + 6a + 7a® + 2a%) < 0.

Then, there exists at least one 79 € (0, 1) such, that G(rg) = 0. We will prove that the zero of G in (0,1) is
unique. In order to do this we will prove that G is decreasing in (0, 1), equivalently that G'(r) < 0 in (0, 1).
We have

G'(r) = ba(l + a?)?r* + 4(—2a% — 130 + 402 — 1)r® + 3a(10a* — 4a? + 2)r?
+ 2(8a5 — 14a* 4 2002 — 6)r + (—7a® + 10a® — 15a),

and
G'(0) = (=7a° +10a® — 150) < 0, G'(1) = —4(4 + 13a + 13a* + 20°)(1 — a)® < 0.

In order to determine whether G'(r) < 0 in (0,1) we define a function

L) = (1 + 2)*c’ < ) do - di 4 doa® 4 dy® + dya®,

14+

where the coefficients dy, d1, ..., d4 are negative, since

do
di

—7a® +10a® — 150 = —a(7a* +10(1 — a?) +5) < 0,
4a® — 70® — 7a* +10a? — 15a — 3

= —4a(l —a®) —7a® —Ta* —10a(l —a) —a — 3 <0,
dy = 408 — a® — Ta* + 403 + 1002 — 7o — 3
—(1 - a)(4a® + 3a* + 4a(1 — a?) 4+ 6a + 1) < 0,
dz = 505 +4a® — 170* + 203 + 17a? — 6a — 5
—(1 - a)(5a® +9a* + 403 + 602 + 11a + 5) < 0,
205 4+ 7a° — 200 + 20° + 140 —a — 4
= —(1-a)3(11a® + 13a% + 13a + 4) < 0.

ds

1+z
so G'(r) <0on (0,1) as ¢(z) = /(1 + x) maps (0,00) onto (0,1). Thus G is decreasing for 0 < o < 1 and
r € (0,1), which means that there exists the unique point rg € (0,1) such that G(rg) = 0. The value F(rp)
is the maximum point of F' and the assertion is proved. O

Thus, there are no sign variation of L in the coefficients of L on (0, 1). Hence G’ L) < 0 on (0,00) and
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2.2. Estimate of Bloch constant

In this section, we shall find bounds on the Bloch constant for co-analytic part of functions in the
class G-

Theorem 2.2. Let a € (0,1), and let f € G5,,,.. The Bloch constant By of f is bounded by

< (1+a)(1 —73)(1+70)?
- 1+ arg

By , (2.3)

where T is the unique root of the equation 2 — a — 612 — 4(1+ a)r® — 3ar* = 0 in the interval (0,1).
Proof. Let f =h+g € G, and h € G. Using Lemma 1.1 along with (1.12) and (1.6), we obtain

By = sup (1 =) W (2)] (1 + ()

r+ o
< sup (1—r)Q+r (1+ )1+o¢ sup P(r),
0<rg1< )( ) 1+ar ( )0<r51 (r)

where

(1—r3)(1+ 7“)2-

P(r) := T+ ar

The derivative of P(r) is equal to zero if Q(r) =0 for r € (0,1), where
Q(r)=2—a—6r —4(1 + a)r® — 3ar?.
We note that Q(0) =2 —a > 0 and Q(1) = —8 — 8a < 0 so that there exist a root 19 € (0,1) such that

Q(ro) = 0. Now it suffices to prove that rq is unique. It is enough to prove that the derivative Q’(r) < 0 for
r € (0,1) and a € (0, 1). This holds by virtue of the inequality Q’(r) = —12r(1+ (14 «a)r + ar?) < 0. Hence

(1—7r3)(A +10)?
sup P(r) =
0<7‘51 (r) 1+ arg

where rg is unique root of Q(r) = 0 for r € (0,1). This proves the result. O
2.8. Coefficient bounds

In this section we shall find bounds on coeflicients and the Fekete—Szegd functional for the co-analytic
parts of functions in the class G,

Theorem 2.3. If f = h+ 7 € G5,,,, where h and g are given by (1.2), then

1+a—a?

|ba| < 5

This estimate is sharp and the extremal function is

f(2) = :

=322+ (-1-L+ L+ L2+ (1-1- L + L)In(1 - a2), a#0,
z— 32% + 322 — 128, a=0.
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Moreover,

1 —a? «

n(n —1)

b | < (1+ Hpu) + (n=3,4,...), (2.5)

where H,, denotes n-th harmonic number H, =1+1/2+1/34+---+1/n.

Proof. Applying the relations ¢'(z) = w(z)h'(z) and the series expansions of h, g and w given by (1.2)
and (1.5), we obtain

nb, = S(p + 1apsicn—p-1 (n=2,3,---), (2.6)
p=0
where ¢, € C, n=0,1,2,..., and |¢o| = |w(0)| = |¢'(0)| = |b1| = . For n = 2, we have
2by = ayc1 + 2a9cy.
By (1.7) and Lemma 1.2, we see that

2|bo| < la|ler] + 2laz|[co] < (1 = |eol?) + |eo] <1 —a® +a.

Now, we will show that the estimate is sharp. To this end let for 0 < a < 1, consider a function f(z) =
h(z) + g(z), such that h(z) = z — 122 € G and the dilation of f is of the form

w(z) = 12:52, zeD.

Under the condition ¢'(z) = w(2)h/(z), we obtain for z € D

—a+ (14 a)z — 22 a—(14+a)z+ 22
oy otz a—(ta)

1—az 1—az

=—a+(l+a—-a?)z+(-1+a+a®—-a®)2+...,

that implies that the estimate (2.4) is sharp. Since g(0) = 0, by integration, we uniquely deduce for z € D
that

2

o(z) = (-1-L2+ L)+ 22+ (1-L - L+ H)In(1-az), a#0,
52 _ 1.3

% %27 a=0.

Further, from (2.6), we obtain for n = 3,4, ... that

n—1

1
lbal < — >+ Dlapiallenp
p=0
1 n—2
= l|a1| len—al 4+ >0+ Dlaps1| len—p-1] + nlan||col | - (2.7)
p=1
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Applying (1.7), we obtain |c,—p—1| <1 —|co|? =1 — |b1|> =1 — a?, hence

n—2
1 1
lbal < —len—1| + — D 0+ Dlapiillen—p-1]+ lan] col
p=1
1—a2+1—a27§1+ «
- on n p n(n-—1)
p=1
1-a? 1-a? o)
- Hyop+ ———
n n n(n—1)
1—a? «
- 1+ H,y o] + —2
n 1+ 2]+n(n—1)

This completes the proof of theorem. O

Theorem 2.4. Let f = h+g € Gy, where h and g are given by (1.2). Then for u € R, we have

1o byl 1
by — b3 < = [4 3[pl(1 — 0?) + 212 — 3y | +amax{“41|,g},

and

2w 2(1 —a?)(2n +1)

nlog(n — 1) + (n+ 1)log(n — 2
[brs1 = bn| < —5— + g(n—1) + (n +1)log(n — 2)

nn+1)

+(1-a?)

Proof. From (2.6), we have

1 1 2
by = 501 +agcy and by = 502 + gagcl + asco,

since a; = 1. Therefore

2
1 2 1
b3 — ,U,b§| = 562 + gagcl + azcyp — W (501 + GQCO) (28)
S 2 2
=|g5C2 — 7uc] tazxer | 5 — pco | +co (a3 - Mcoaz)
3 4 3
1 3, 2 )
< g |z = ghei| +lazllerl |5 — peo| + eol |ag — peoay| .

By using the relation (1.7) along with Lemma 1.2, we obtain that

1 3 2
|bs — pub3| < 3 [|Cz| + 4|,uc;‘f|} + |ag] |e1] ‘3 — peo| + alaz — pbiad]
: ; (1-a?) |2 by 1
<= —a?)+ = _a2)2 U—a7) |2 1
=3 |:(1 « )+4|M|(1 o ) :| + B) 3 ,ub1 + v max 16
L-o? bl 1
=L [l - )+ 202 3]+ amax {12212
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Further, using (2.6), we have

n+1 n
b1 — Zpapcn p+l — Zpapcn,p
p:l
1 n—1
= o Zpapcn p+1 T Apt1C0 — — ;papcn p — AnCo
< Ian+1\|00|+Ian|\Co|+—Zplap|\cn pi1l + = Zplap\lcn pl
< o o la||cn]

TL(TL+1) ’I’L(TL—l) ’I’L+1 n_'_lpZ:;p‘a/pch—P"rl‘

n—1

|al|\0n 1
?Jr ZPWPHCTL ol
p=2
20 1-a2 1-a?2< 1 1-a? 1-a23 1
<
_n2—1+n+1+n+lzp—1+ n * n Zp—l
p=2 p=2
2« 1—042 1—a2%1 170[277,—21
S 3 1+ 1 1 _+ Z_
n< — n —+ n -+ plp n p:lp
2c 1—a? 1—a? 1—a? 1 —a?
§n2_1+n+1+n+1[1+log(n71)]+ — [1 4+ log(n — 2)]
20 1—a? 1—o?
=+ 1[2—l—log(n—1)]+ 2+ log(n — 2)],

where in the last but one inequality we use known inequality H,, < 1 + log n for harmonic number H,, (it
can be also easily show by induction). This finishes the proof. O

Theorem 2.5. Let f = h +g € G,,, where h and g are given by (1.2). Then g is univalent, and for
|z| = r < 1, the following statements hold true;

ra(—2+ (2 —r)a +2a?) — 2(1 — a?)(1 — a) log(1 — ra)
2a3

<lg(=)] (2.9)

< 20°7% + 2a(a® + o = 1)r 4+ 2(1 = o?)(1 — a) log(1 + ra)

B 2043 )
ro 7"(1 — 012) Zg”(z) - ’I"(l _ a2)
T+r (-anlr—al | ¢@ |~ 1-r d—anir—ad (2.10)
and
29" (2) r(a? —1) 1
§R<1+ g'(2) > - (1—ar)|r—q +1+7". (2.11)

Proof. Repeated application of Lemma 1.1 along with the relation ¢’(z) = w(2)h/(z) and (1.6) enables us
to write
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oo —r|(1 =)
1—ar

a+r)(l1+r)

<l9'(2)| < ( Trar (|lz] =r < 1). (2.12)

Integrating along a radial line ¢ = te? the right hand side of (2.9) is obtained immediately.
In order to prove the left hand side of (2.9), we first note that g(z) is univalent. Indeed, since ¢'(z) =
w(z)h'(z) then computing the logarithmic derivative, we get

29"(2)  zw'(2) | zh'(2)
7wl W) (219
hence
29"(z)  zw'(2) zh'(2)
T e T R (2.14)

Since we have

then

RS 0 ) e e

that is sufficient for univalence of the function g [30].

Let I' = g({z : |z| = r}) and let & € T" be the nearest point to the origin. By a rotation we may assume
that &; > 0. Let v be the line segment 0 < ¢ < & and suppose that z; = g~!(&;) and L = g~ () with C as
the variable of integration on L, we have that d§ = ¢'(¢)d¢ > 0 on L. Hence

&= 7d€ = 79’(C)d4 = 7|9’(C) |d¢| > /TIQ’(tem)dt
0 0

a—r 1—r ro
d =
1—ar

From (1.6) and (1.7), we conclude that

(=24 (2 —r)a+2a?) —2(1 —a?)(1 — a)log(l — ra)
2a3 ’

1 —a?

lw'(2)] < T—ar?

(2.15)

The relation (2.13) together with Lemma 1.1 (2.15) gives for |z| =7 < 1

29" (2) zh"(2) 2w’ (2) (1—-a?)r r
J'(2) R (z) wiz) |~ I—ar)r—af 1-—7
In view of [23, Corollary 1], we have
zg" (%) zh'"(2) zw'(2) ror(d- a?)
g'(2) n(2) wiz) | T 1+r (Q—ar)|r—al
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By the properties of h € G, and (2.14), we have
29" (2) 2w’ (2) zh"(2) 2w’ (2) 1
R{1+ =—2)=R|—~ R{1+— >R .
1+ wi) ) U W) wiz) ) T
The relation (1.6) and (1.7) therefore yield

WEN re-1) 1
§R<1+ 7(2) > > 1 —ara—r] +1+1”7

and the assertion follows. 0O
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