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In this paper, we study the long time behavior of the Kirchhoff type wave equation 
in the space H1

0 (Ω) × L2(Ω). We prove the existence of the global attractor for the 
equation which covers the case of possible generation of the stiffness coefficient. We 
also consider the geometrical property of the global attractor. By means of the Z2
index, we provide, under suitable assumptions, the fractal dimension of the global 
attractor is infinite.
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1. Introduction

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. We consider the following Kirchhoff wave 
equation:

⎧⎪⎪⎨
⎪⎪⎩
∂ttu− δΔ∂tu− φ(‖∇u‖2)Δu + f(u) = h(x), x ∈ Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(1.1)

Here h ∈ L2(Ω) is an external force term, f(u) is a given source term and φ is a nonlinear scalar function 
specified later, δ > 0 is a constant.

One dimensional model (1.1) without the damping term was introduced by Kirchhoff [19] to describe 
small vibrations of an elastic stretched string. The original model is
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where u = u(x, t) is the transverse deflection, 0 < x < L the space co-ordinate, t ≥ 0 the time, E the 
Young’s modulus, ρ the mass density, h the cross-section area, L the length, a0 the initial axial tension, and 
f the external force. This kind of models have been studied by many authors, see [4,23,28,37] and references 
therein.

In general, we call the Kirchhoff equation non-degenerate if the stiffness φ satisfies the strict hyperbolicity 
condition

φ(s) ≥ μ1 > 0, ∀ s ≥ 0.

And we call it degenerate if φ just satisfies the degenerate hyperbolicity condition

φ(s) ≥ 0, ∀ s ≥ 0.

In addition, if φ(s) ≥ 0 but φ(‖∇u0‖2) > 0, we call it mildly degenerate. It is easy to see that the degenerate 
stiffness coefficient φ(s) in Kirchhoff equation corresponds to the case that the initial axial tension equals 
zero.

For Kirchhoff type model without damping, well-posedness issues were studied intensively in decades. 
The reader is referred to [1,2,4] about the local existence results. Global existence has been proved by many 
authors in heterogeneous sets of initial data, such as analytic data or quasi-analytic data [8,14,33], small 
data [9,16,27,44], etc. This model with boundary damping is first considered in [42] for Ω ⊂ R. Some years 
later, [29,35] generalised the results in [42] to n-dimensional models. In [21], the authors further studied 
the n-dimensional model with a nonlinear boundary damping. For the Kirchhoff wave equation with weak 
interior damping, global existence has been studied both in the strictly hyperbolic case (see [5,39,43]) and 
in the mildly degenerate case (see [13,34]). However, at the present, the global in time solvability in usual 
Sobolev spaces is open in the theory of Kirchhoff equations in these cases.

Global existence results of the Kirchhoff equation with strong damping utt − m(‖∇u‖2)Δu − Δut = 0
was first obtained by Nishihara [32], as we know. From the physical point of view, the dissipativeness plays 
an important spreading role for the energy gather arising from the nonlinearity in real process. At the same 
time, the strong damping term −Δut provides an additional a priori estimate as viewed from mathematics. 
In recent years many mathematicians and physicists paid their attentions in this type of problem under 
different types of hypotheses. We refer to [6,15,26,30,36,38] and references therein.

Our aim is to show the existence of the global attractor and estimate the fractal dimension of the attractor 
of the problem (1.1). For the dynamical system generated by (1.1) in the non-degenerate case, the issues 
on the global attractor have been studied by many authors last years, see [6,12,20,31,45,47], etc. As the 
first step of investigation, Nakao and Yang [31] obtained the existence of the global attractor in the regular 
phase space (H2(Ω) ∩H1

0 (Ω)) ×H1
0 (Ω) for the problem (1.1) with

φ(s) = 1 + s
m
2 , m ≥ 2,

and the term f = f(x, u) satisfies the condition |fu(x, u)| ≤ C(|u|p−1 + L(x)), where 1 ≤ p < n+2
(n−2)+ . In 

general, the exponent p∗ = n+2
(n−2)+ is called to be critical when someone study the problem in H1

0 (Ω)) ×L2(Ω). 
The first result in the supercritical case (p∗ < p < n+4

(n−4)+ ) we are aware of is given by Chueshov [6]. He 
studied the well-posedness of problem (1.1) with more general stiffness φ (cover the case of degenerate) 
and the supercritical nonlinear term f(u). However, when he proved the existence of a finite-dimensional 
global attractor for problem (1.1) in the natural energy space (H1

0 (Ω) ∩ Lp+1(Ω)) × L2(Ω) endowed with 
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a partially strong topology (in the sense, if (un
0 , u

n
1 ) → (u0, u1) with a partially strong topology, then 

(un
0 , u

n
1 ) → (u0, u1) strongly in H1

0 × L2 and un
0 ⇀ u0 weakly in Lp+1), he assumed that

φ(s) > 0, ∀ s ≥ 0, φ ∈ C1(R+).

More related work concerning the global attractor of Kirchhoff wave equations can be found in [18,22,24,46], 
etc. However, all these papers deal with the problem in the non-degenerate case or in the case with φ(s) > 0.

In this paper, we consider the problem (1.1) under the condition φ(s) ≥ 0, such as φ(s) = bsγ with γ ≥ 1
in the subcritical case. Based on the result in [6], we first prove the existence of the global attractor in 
H1

0 (Ω)) × L2(Ω) if φ is really degenerate. However, the method in [6] (Theorem 3.9) can not be applied to 
the case of φ(s) ≥ 0. It is well known that if φ(s) > 0 in R+ and φ ∈ C1(R+), then for every bounded set 
B ⊂ H1

0 (Ω) there exists a positive constant c0 such that

φ(‖∇u‖2) ≥ c0 > 0, ∀ u ∈ B. (1.3)

Since for every solution u of the problem (1.1) with the initial data (u0, u1) ∈ B0 (B0 ⊂ (H1
0 (Ω) ∩Lp+1(Ω)) ×

L2(Ω) bounded) the author has proved that there exists M > 0 such that ‖∇u(t)‖ ≤ M(t ≥ 0), it is obvious 
that

φ(‖∇u(t)‖2) ≥ c0 > 0, ∀ t ≥ 0.

Then in this case, we can obtain the estimates

φ(‖∇u(t)‖2)(−Δu, u) ≥ c0‖∇u‖2, (1.4)

or

φ(‖∇u(t)‖2)(Δw,Δw) ≥ c0‖Δw‖2 (1.5)

if we decompose the solution semigroup u = v + w for w ∈ H1
0 (Ω) ∩ H2(Ω). It is a critical step when we 

prove that the semigroup is “asymptotically smooth” (it is one of the necessary conditions for the existence 
of the global attractor, see Definition 2.4 and Theorem 2.2) by the classical energy method or by the method 
of semigroup decomposition. The reason is that we need to use Gronwall’s lemma to obtain the existence 
of a bounded set in a more regular space, such as (H1

0(Ω) ∩H2(Ω)) ×H1
0 (Ω). However, the inequality (1.3)

doesn’t hold under the condition of φ(s) ≥ 0 and it leads to the lack of the key estimates (1.4) and (1.5). 
Then in the degenerate case we can not entirely rely on the method of classical energy estimate or the 
semigroup decomposition to prove that the semigroup is asymptotically smooth. To overcome the above 
difficulties caused by the degeneration, we apply a special energy method combining with the criterion via 
“the measure of noncompactness” (see [25]) to prove that the semigroup is ω-limit compact. The criterion 
(see Theorem 2.1) is also regarded as one of the methods of proving “asymptotically smooth” via “weak 
quasi-stability”.

Secondly, under some additional assumptions, we show that the fractal dimension of the attractor is 
infinite. As we know, the global attractor of dynamical systems can be very complicated. And to study 
the geometry of the attractors, some concepts such as Lyapunov exponents, the Hausdorff dimension and 
the fractal dimension were proposed. Numerous works have contributed to establish the estimates for the 
Hausdorff or fractal dimension of the attractors for some physical systems. However, as far as we know, all the 
present papers that concern the Kirchhoff equation study the finiteness of the fractal dimension. Although 
the finite dimensionality of the global attractor is essential, we think that it is also interesting to consider the 
global attractors with infinite dimension. In [11] the authors obtained that the global attractor of porous 
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media equation may be infinite. [10] proved the infinite dimension of the global attractor for parabolic 
equations involving p-Laplacians. In [48], by using the Z2 index, the authors provided a new approach to 
study the geometry of the global attractor. They also proved that the dimension of the attractor is infinite 
for a class of symmetric p-Laplacian equations. In [49], the authors proved the existence of the multiple 
equilibrium points in the global attractors for the symmetric dynamical systems by estimating the lower 
bound of Z2 index. In this paper, we apply the method providing in [48] to the symmetric Kirchhoff equation 
and prove that the fractal dimension is infinite for a class of degenerate Kirchhoff equation.

The paper is organized as follows. In section 2, we introduce some notations and preliminaries. In section 3, 
we discuss the existence of the global attractor for the equation (1.1), see Theorem 3.1. In section 4, we use 
the means of the Z2 index to estimate the fractal dimension of the global attractor in Theorem 4.1. As a 
corollary, we show that the fractal dimension is infinite if the semigroup generated by the system is odd.

2. Preliminaries

In this section, we will give some notations and results. Subsequently, we denote by ‖ · ‖ and (·, ·) the 
norm and the inner product in L2(Ω). Let H = H1

0 (Ω) × L2(Ω). We define the norms in H by

‖(u0, u1)‖2
H = ‖∇u0‖2 + ‖u1‖2.

Let λ1 > 0 be the first eigenvalue of −Δ, we know that ‖∇w‖ ≥ λ
1
2
1 ‖w‖, ∀w ∈ H1

0 (Ω). Throughout the 
paper, C stands for a generic positive constant. We also denote the different positive constant by Ci, i ∈ N, 
for special differentiation. For the sake of simplicity we assume that δ = 1 in the equation (1.1).

Definition 2.1. A function u(t) is said to be a weak solution to problem (1.1) on an interval [0, T ] if u satisfies 
equation in the sense of distributions and

u ∈ L∞(0, T ;H1
0 (Ω)), ∂tu ∈ L∞(0, T ;L2(Ω)).

Now, we recall some definitions and results related to the global attractor, which will be used in the 
present paper. More details can be found in [3,7,25,41].

Definition 2.2. Let {S(t)}t≥0 be a semigroup on a metric space (X, d). A subset A of X is called a global 
attractor for the semigroup, if A is compact and enjoys the following properties:

(1) A is invariant, that is, S(t)A = A, for all t ≥ 0;
(2) A attracts all bounded sets of X. That is, for any bounded subset B of X,

d(S(t)B,A) → 0, as t → +∞,

where d(B, A) is the Hausdorff semi-distance.

Definition 2.3. A strongly continuous semigroup {S(t)}t≥0 in a Banach space X is said to satisfy the Con-
dition (C) if for any ε > 0 and for any bounded set B of X, there exist t(B) > 0 and a finite dimensional 
subspace X1(B) of X such that {‖PS(t)x‖X , x ∈ B, t ≥ t(B)} is bounded and

‖(I − P )S(t)x‖X < ε, t ≥ t(B), x ∈ B,

where P : X → X1(B) is a bounded projector.
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Theorem 2.1. (Theorem 3.11, [25]) Let X be a uniformly convex Banach space and {S(t)}t≥0 be a strongly 
continuous semigroup in X. Then {S(t)} has a global attractor A in X if and only if

(1) {S(t)} satisfies the Condition (C);
(2) there is a bounded absorbing set B ⊂ X.

Now it is known that the Condition (C) is a convenient criteria for asymptotic smoothness/compactness 
of evolution operators and dynamical systems.

Definition 2.4. An evolution semigroup {S(t)}t≥0 in a complete metric space X is said to be asymptotically 
smooth if the following condition is valid: for every bounded set B such that S(t)B ⊂ B for t > 0 there 
exists a compact set K in the closure B of B, such that S(t)B converges uniformly to K in the sense that

lim
t→+∞

d(S(t)B,K) = 0.

Proposition 2.1. (Proposition 2.29, [7]) Let {S(t)}t≥0 be an evolution semigroup on a reflexive Banach 
space X. Assume that the Condition (C) holds. Then the evolution semigroup {S(t)}t≥0 is asymptotically 
smooth.

Theorem 2.2. (Theorem 2.3.5, [7]) Let {S(t)}t≥0 be an evolution semigroup on a complete metric space X. 
Then {S(t)} has a global attractor A in X if

(1) {S(t)} is asymptotically smooth;
(2) there is a bounded absorbing set B ⊂ X.

In the following, we recall some basic results on the Z2 index. More details can be found in [40]. The 
concept of an index theory is most easily explained for an even functional E on some Banach space X, with 
symmetry group G = Z2 = {id, −id}. Define Σ = {A ⊂ X|A closed, A = −A} to be the class of closed 
symmetric subsets of X.

Definition 2.5. For A ∈ Σ, A �= ∅, let

γ(A) =
{

inf{m : ∃ g ∈ C0(A;Rm\{0}), g(−u) = −g(u)},
∞, if {· · · } = ∅, in particular, if 0 ∈ A,

and define γ(∅) = 0. γ(A) is called the Z2 index or Z2 genus.

The Z2 index has properties as follows.

Lemma 2.1. A Z2 index defined on Σ satisfies:

(1) γ(A) = 0 ⇔ A = ∅;
(2) if A ⊂ B, then γ(A) ≤ γ(B), for any A, B ⊂ Σ;
(3) γ(A ∪B) ≤ γ(A) + γ(B) for any A, B ⊂ Σ;
(4) if A ∈ Σ is a compact set, then ∃δ > 0 such that γ(Nδ(A)) = γ(A), where Nδ(A) is a symmetric 

δ-neighborhood of A;
(5) γ(A) ≤ γ(h(A)), ∀A ∈ Σ, and h : X → X is odd and continuous.
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For the proof of the above lemma, we refer readers to [40]. In order to use the Z2 index to prove the 
infinite dimensional of the global attractor, we need the following lemma (see [48], Lemma 2.3).

Lemma 2.2. Assume that S(t) is an odd and continuous semigroup on X, and A is a symmetric global 
attractor. If there exists a bounded symmetric set B such that γ(B) ≥ m, m < ∞, and ω(B) ⊂ A\{0}, then 
γ(A\N(0)) ≥ m for some neighborhood N(0) of 0, where ω(B) =

⋂
s≥0

⋃
t≥s

S(t)B.

By the definition of the Z2 index, we know that a set B with Z2 index γ(B) ≥ m can not be mapped 
into Rm−1\{0} by an odd continuous map. On the other hand, any compact set B with fractal dimension 
dimF = m can be mapped into R2m−1 by a linear (odd) Hölder continuous one-to-one projector from the 
Mane projection theorem, see [17]. It means that if the Z2 index of a set B is larger than 2m, then the 
fractal dimension of the set B must be larger than m. Thus, by estimation of the lower bound of the Z2
index of the global attractor, we can obtain the corresponding lower bound of the fractal dimension of the 
global attractor. In particular we have the following corollary.

Corollary 2.1. Let A be an symmetric compact set. If for any m ∈ N the inequality γ(A) ≥ m holds, then 
the fractal dimension of A is infinite.

3. Existence of the global attractor

In this section we prove the existence of the global attractor when φ(s) is really degenerate and f(u) is 
subcritical. We assume that f and φ satisfy the following conditions.

Assumptions 3.1. f(u) is a C1 function, f(0) = 0 (without loss of generality),

μf = lim inf
|s|→+∞

f(s)
s

> −∞, (3.1)

and the following properties hold:

(a) if n = 1, then f is arbitrary;
(b) if n = 2, then |f ′(u)| ≤ C(1 + |u|p−1) for some p ≥ 1;
(c) if n ≥ 3, then

|f ′(u)| ≤ C(1 + |u|p−1) with 1 ≤ p < p∗ = n + 2
n− 2 , (3.2)

where ci are positive constants.

Assumptions 3.2. The function φ ∈ C1(R+) possess the following properties:

(i) φ(s) ≥ min{L1s
α, L2}, where α ≥ 0, L1, L2 > 0 are constants;

(ii) μ̂φλ1 + μf > 0, where λ1 is the first eigenvalue of −Δ, μ̂φ = lim inf
s→+∞

φ(s) > 0.

The condition (ii) in Assumptions 3.2 is from Assumptions 3.11 (ii) in [6].

Remark 3.1. (1) φ(s) = L1s
α (α ≥ 1) satisfies Assumptions 3.2. It indicates that we include into the 

consideration the case of possibly degenerate φ since φ(0) = 0. Moreover, because μ̂φ = +∞ in this case, 
we need no additional assumptions concerning f except Assumptions 3.1.
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(2) If φ(s) =
{
L1s

α, 0 ≤ s ≤ 1
L2, s > 1

, then μ̂φ = L2 and Assumptions 3.2 (ii) will be L2λ1 + μf > 0.

(3) If α = 0, then φ(s) ≡ min{L1, L2} and the equation (1.1) is the nonlinear wave equation with strong 
damping.

Now, we state some results in [6], which will still be used in the present paper.

Proposition 3.1. ([6], Theorem 2.2) Let Assumptions 3.1 and 3.2 be in force and (u0, u1) ∈ H. Then for every 
T > 0 problem (1.1) has a unique weak solution u(t) with (u, ut) ∈ C([0, T ]; H). This solution possesses the 
following properties:

(1) For every t ∈ [0, T ], ‖(u0, u1)‖H ≤ R, there exist CR,T > 0 such that

‖ut(t)‖2 + ‖∇u(t)‖2 +
t∫

0

‖∇ut(τ)‖2dτ ≤ CR,T , (3.3)

and

E(u(t), ut(t)) +
t∫

s

‖∇u(τ)‖2dτ = E(u(s), ut(s)), t > s ≥ 0, (3.4)

where E(u0, u1) = 1
2 [‖u1‖2+Φ(‖∇u0‖2)] +

∫
Ω F (u0)dx −

∫
Ω hu0dx, Φ(s) =

∫ s

0 φ(τ)dτ , F (s) =
∫ s

0 f(τ)dτ .
(2) For every 0 < a < T ,

ut ∈ L∞(a, T ;H1
0 (Ω)), utt ∈ L∞(a, T ;H−1(Ω)) ∩ L2(a, T ;L2(Ω)),

and there exist β > 0 and CR,T > 0 such that

‖ utt(t) ‖2
−1 + ‖ ∇ut(t) ‖2 +

t+1∫
t

‖ utt(τ) ‖2 dτ ≤ CR,T

tβ
(3.5)

for every t ∈ (0, T ] and ‖ (u0, u1) ‖H≤ R.

Define the operator S(t) : H → H, S(t)(u0, u1) = (u(t), ut(t)), where u(t) is the solution of problem 
(1.1).

Proposition 3.2. ([6], Proposition 3.2, 3.5) Let Assumptions 3.1 and 3.2 be in force. Then the evolution 
semigroup S(t) possesses the following properties.

(1) It is a continuous mapping in H with respect to the H-norm.
(2) It has a bounded absorbing set B(0, R0), i.e., for every R > 0 and (u0, u1) ∈ B(0, R), there exists 

tR ≥ 0, such that

‖(u(t), ut(t)‖H ≤ R0, ∀ t ≥ tR.

According to Proposition 3.2, we know that

β∗ = {(u0, u1) ∈ H : ‖(u0, u1)‖H ≤ R0}
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is a bounded absorbing set. Let β0 =
⋃

t≥1+t∗
S(t)β∗, where t∗ ≥ 0 is chosen such that S(t)β∗ ⊂ β∗ for t ≥ t∗. 

It is obvious that β0 is the close bounded absorbing set for S(t) with S(t)β0 ⊂ β0 ⊂ β∗. Then for every 
(u0, u1) ∈ β0, (u(t), ut(t)) = S(t)(u0, u1), one can get

‖(u(t), ut(t)‖H ≤ R0, ∀ t ≥ 0. (3.6)

Now, let (u0, u1) ∈
⋃

t≥1+t∗
S(t)β∗. Then there exists t0 ≥ 1 + t∗ and (u∗

0, u
∗
1) ∈ β∗, such that (u0, u1) =

s(t0)(u∗
0, u

∗
1). For every t ≥ 0, it gives that

(u(t), ut(t)) = S(t)(u0, u1) = S(t + t0)(u∗
0, u

∗
1) = S(1)S(t + t0 − 1)(u∗

0, u
∗
1).

Choosing T = 1 and R = R0 in (3.5) and noticing ‖S(t + t0 − 1)(u∗
0, u

∗
1)‖H ≤ R0, we find that

‖utt(t)‖2
−1 + ‖∇ut(t)‖2 +

t+1∫
t

‖utt(τ)‖2dτ ≤ CR0,1

1 � CR0 , (3.7)

where CR0 is independent of t. It means that β0 is bounded in H1
0 (Ω) ×H1

0 (Ω). Moreover, by taking s = 0
in the energy relation (3.4), we get that

sup
t∈R+

E(u(t), ut(t)) +
+∞∫
0

‖∇ut(τ)‖2dτ ≤ CR0 . (3.8)

Therefore, by using (3.6)-(3.8), we have that

‖utt(t)‖2
−1 + ‖∇u(t)‖2 + ‖∇ut(t)‖2 +

t∫
0

‖∇ut(τ)‖2dτ +
t+1∫
t

‖utt(τ)‖2dτ ≤ C2
β0
. (3.9)

For simplicity, we assume that α > 0, L1 = L2 = 1 in the following.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Then the problem (1.1) has a global attractor in H.

Proof. According to Proposition 3.2, one can see that S(t) : [0, +∞) × H → H is continuous and β0 is 
a bounded absorbing set in H. Therefore, to prove the existence of the global attractor it is sufficient to 
prove that the solution semigroup {S(t)} satisfies the condition (C) in H for any bounded set B ⊂ H by 
Theorem 2.1. Without loss of generality, we assume (u(t), ut(t)) ∈ β0 for t ≥ 0, since β0 is an absorbing set 
in H. Then we need to verify that for every ε > 0, there exist t0 > 0 and a finite dimensional subspace Y
of H, such that for any (u0, u1) ∈ β0 and t ≥ t0,

‖(I − P )S(t)(u0, u1)‖H < ε,

where P : H → Y is an orthogonal projector.
Let {ej}∞j=1 be an orthonormal basis of L2(Ω) which consists of eigenvectors of −Δ. It is well known that 

{ej}∞j=1 is also an orthogonal basis of H1
0 (Ω). The corresponding eigenvalues are denoted by {λj}∞j=1:

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj → ∞,
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i.e., −Δej = λjej , j ∈ N. Let Vm = span{e1, · · · , em} in H1
0 (Ω) and let Pm : H1

0 (Ω) → Vm be an orthogonal 
projector. Denote Qm = I − Pm and

u = Pmu + Qmu � u1 + u2. (3.10)

It is easy to see that (u1, u2) = 0 by the orthogonality of the projectors. Using the multiplier u2 in equation 
(1.1), we obtain that

d

dt
(‖∇u2‖2) + 2φ(‖∇u‖2)‖∇u2‖2

= −2(u2
tt, u

2) − 2(f(u), u2) + 2(h2, u2)

≤ 2‖u2‖ · ‖u2
tt‖ + ‖f(u)‖

L
p+1
p

· ‖u2‖Lp+1 + ‖u2‖ · ‖h2‖. (3.11)

Since 2 ≤ p + 1 < p∗ = 2n
n− 2 , there exists θ ∈ (0, 1] such that 1

p + 1 = θ

2 + 1 − θ

p∗
. Then the interpolation 

inequality implies that

‖u2‖Lp+1 ≤ ‖u2‖θ · ‖u2‖1−θ
Lp∗ ≤ C‖u2‖θ · ‖∇u2‖1−θ ≤ C · C1−θ

β0
‖u2‖θ =: C1‖u2‖θ. (3.12)

At the same time, noticing that the nonlinear term f(u) is of subcritical growth, there exists M > 0 such 
that ‖f(u)‖

L
p+1
p

≤ M holds for every (u(t), ut(t)) ∈ β0.
Since β0 is bounded in H1

0 (Ω) × H1
0 (Ω) and H1

0 (Ω) ↪→ L2(Ω) compactly, for any ε > 0, there exists 
m1 ∈ N, such that for m ≥ m1, Pm : L2(Ω) → Vm,

‖(u2, u2
t )‖L2(Ω)×L2(Ω) < ε, ∀ (u, ut) ∈ β0, (3.13)

where u2 = Qmu and u2
t = Qmut. Choosing appropriate ε in (3.13), by (3.12), we can find Vm2 (m2 ≥ m1), 

such that

‖u2‖Lp+1 <
ε2
1

M
for u2 = Qm2u, (3.14)

where ε1 = ε2+2α

2C2
β0

+ 2 and C2
β0

is a constant as shown in (3.9). Similarly, because of h ∈ L2(Ω), without loss 

of generality, we assume that h = h1 + h2, h1 ∈ Vm2 , h2 = Qm2h, and

‖h2‖ < ε1. (3.15)

In the following, we will verify the existence of Pm3 : H1
0 (Ω) → Vm3 ⊂ H1

0 (Ω) and t0 ≥ 0, such that for any 
(u(t), ut(t)) ∈ β0 and t ≥ t0,

‖∇u2(t)‖ < ε for u2 = Qm3u. (3.16)

Thus by taking m0 = max{m2, m3}, Pm0 : H1
0 (Ω) → Vm0 ⊂ H1

0 (Ω), u2 = Qm0u and u2
t = Qm0ut, we can 

conclude from (3.13) and (3.16) that

‖(u2, u2
t )‖H < ε, ∀ (u, ut) ∈ β0.

Now, we will consider two situations to prove (3.16). Without loss of generality, we assume 0 < ε < 1 .
3
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Case I. There exists t1 ≥ 0, such that ‖∇u(t1)‖ < ε.

In this case, we claim that the following inequality is true, i.e., for every t ≥ t1,

‖∇u2(t)‖ ≤ 2ε, for u2 = Qm2u. (3.17)

In fact, if there exists t2 > t1, such that

2ε < ‖∇u2(t2)‖ < 3ε, (3.18)

then we know from u ∈ C([0, +∞), H1
0 (Ω)) that there exists t3 : t1 < t3 < t2 satisfying

3
2ε ≤ ‖∇u2(t)‖ ≤ 3ε, ∀t ∈ [t3, t2], (3.19)

‖∇u2(t3)‖ = 3
2ε. (3.20)

Notice ‖∇u‖ ≥ ‖∇u2‖ and ‖∇u2(t)‖2 ≤ (3ε)2 ≤ 1 for t ∈ [t3, t2], we have that

φ(‖∇u(t)‖2) ≥ min{‖∇u(t)‖2α, 1} ≥ min{‖∇u2(t)‖2α, 1} = ‖∇u2(t)‖2α. (3.21)

Then integrating (3.11) in dt on (t3, t2) and combining the above inequality and (3.14) yield that

‖∇u2(t2)‖2 + 2
t2∫

t3

‖∇u2(s)‖2α+2ds

≤ ‖∇u2(t3)‖2 + 2ε1

t2∫
t3

‖utt(s)‖ds + 4ε2
1(t2 − t3)

≤ (3
2ε)

2 + 2ε1(
t2∫

t3

‖utt(s)‖2ds) 1
2 ·

√
t2 − t3 + 4ε2

1(t2 − t3). (3.22)

If 0 < t2 − t3 ≤ 1, according to (3.9), (3.19) and (3.20), we can get

‖∇u2(t2)‖2 + 2(3
2ε)

2α+2(t2 − t3)

≤ (3
2ε)

2 + 2ε1Cβ0 ·
√
t2 − t3 + 2ε2

1(t2 − t3)

≤ (3
2ε)

2 + ε1

2 + (2ε1C
2
β0

+ 2ε1)(t2 − t3)

≤ (3
2ε)

2 + ε1

2 + ε2+2α(t2 − t3). (3.23)

Thus

‖∇u2(t2)‖2 ≤ (3
2ε)

2 + ε1

2 ≤ (3
2ε)

2 + ε2+2α

2 < 4ε2, (3.24)

which is in contradiction with (3.18).
On the other hand, if t2 − t3 > 1, then it can be written as n0 + τ with 0 < τ ≤ 1. Using (3.23) on the 

interval [t3, t3 + 1], one can easily get
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‖∇u2(t3 + 1)‖2 + 2(3
2ε)

2α+2 ≤ (3
2ε)

2 + ε1

2 + 2ε1C
2
β0

+ 2ε1 ≤ (3
2ε)

2 + ε2+2α

2 + ε2+2α, (3.25)

which indicates ‖∇u2(t3 + 1)‖ ≤ 3
2ε. Similarly, we obtain that ‖∇u2(t3 + n0)‖ ≤ 3

2ε. Then repeat the 
previous steps as for 0 < t2 − t3 ≤ 1, we obtain that ‖∇u2(t2)‖ ≤ 2ε, which is in contradiction with (3.18). 
It shows that the claim (3.17) is correct and Condition (C) holds for every t ≥ t1.

Case II. For every t ≥ 0, the inequality

‖∇u(t)‖ ≥ ε (3.26)

always holds.

In this case, it is clear that φ(‖∇u‖2) ≥ min{‖∇u‖2α, 1} ≥ min{ε2α, 1} = ε2α. Combining with (3.13)
and (3.14), one can find m3 ≥ m2, such that ‖u2

t (t)‖ + ‖u2(t)‖ < ε1 for u2
t = Qm3ut, u2 = Qm3u. Moreover, 

because of m3 ≥ m2, it is clear that (3.13)-(3.15) hold. Multiplying (1.1) by u2, we have

d

dt

(
(u2

t , u
2) + 1

2‖∇u2‖2
)

+ ε2α‖∇u2‖2

≤ ‖u2
t‖2 + (f(u), u2) + (h2, u2). (3.27)

Denote Y (t) = (u2
t , u

2) + 1
2‖∇u2‖2. By (3.27), we can find that

d

dt
Y (t) + 2ε2αY (t)

≤ 2ε2α(u2
t , u

2) + ‖u2
t‖2 + (f(u), u2) + (h2, u2)

≤ 2ε2α · ‖u2
t‖ · ‖u2‖ + ‖u2

t‖2 + ‖f(u)‖
L

p+1
p

· ‖u2‖Lp+1 + ‖h2‖ · ‖u2‖

≤ 2ε2αε2
1 + 3ε2

1

≤ 4ε2
1 = 4ε4+4α

2C2
β0

+ 2

By Gronwall’s inequality, we obtain that

Y (t) ≤ Y (0)e−2ε2αt + ε4+2α

C2
β0

+ 1(1 − e−2ε2αt) ≤ Y (0)e−2ε2αt + ε4+2α. (3.28)

Since Y (0) is bounded, there exists t0 ≥ 0, such that Y (0)e−2ε2αt ≤ ε2

4 for t ≥ t0. Then

Y (t) ≤ ε2

2 + ε4+2α, ∀t ≥ t0.

And because of Y (t) ≥ 1
2‖∇u2‖2 − ε2

1, we get that

‖∇u2‖2 ≤ 2(ε2
1 + ε2

4 + ε4+2α) ≤ 4ε2,

i.e., ‖∇u2(t)‖ ≤ 2ε for every t ≥ t0. Thus the proof of Theorem 3.1 is complete. �
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4. Fractal dimension of the global attractor

In this section, we will estimate the fractal dimension of the global attractor for problem (1.1) by the 
Z2 index. However, the Z2 index is defined for the class of symmetric subsets, so we consider the following 
problem, which is the special case of (1.1):

⎧⎪⎪⎨
⎪⎪⎩
∂ttu− ηΔ∂tu− φ(‖∇u‖2)Δu + f(u) = 0, x ∈ Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(4.1)

Here η > 0, φ(s) = L1s
α( ∀s ≥ 0, without loss of generality, we assume L1 = 1) with α ≥ 1.

Because of the limit of Z2 index, we assume that the dynamical system is odd. It means that f(u) should 
be an odd function. Moreover, we need f(u) to satisfy some specific structure (there should be a negative 
term in f) to guarantee the infinite of dimension. Concretely, we assume that f satisfies the following 
conditions.

Assumptions 4.1. f(u) = |u|r−2u − b|u|s−2u + g(u), where g is a C1 function such that g(−u) = −g(u), 
q, r, s ≥ 2, b > 0,

μg = lim inf
|s|→+∞

g(s)
s

> −∞, (4.2)

lim
|s|→0

|g(s)s|
|s|q = a ≥ 0, (4.3)

and the following properties hold:

(a) if n = 1, then g is arbitrary;
(b) if n = 2, then |g′(u)| ≤ C(1 + |u|p−1) for some p ≥ 1;
(c) if n ≥ 3, then

|g′(u)| ≤ C(1 + |u|p−1) with 1 ≤ p < p∗ = n + 2
n− 2 , 2 ≤ r <

2n
n− 2 , (4.4)

where C is a positive constant. We also assume that 2 ≤ s < min{p + 1, r, q, 2α + 2}.

By the above assumptions, we know that

|G(u)| ≤ C1|u|q + C2|u|p+1 (4.5)

for every u ∈ R with G(u) =
∫ u

0 g(s)ds. Moreover, under the assumptions given in this section, Assump-
tions 3.1 and 3.2 hold naturally, so the existence of the global attractor for problem (4.1) follows directly 
from Theorem 3.1. And because the system that we consider is odd, we can prove that the global attractor 
A is symmetric.

Lemma 4.1. Under the assumptions 4.1, the semigroup S(t) generated by problem (4.1) is odd, and the global 
attractor A is symmetric.

Proof. We prove the result using the same method as in [48].
Let (u(t), ut(t)) = S(t)(u0, u1). Since f is an odd function, −u(t) is the unique solution of problem (1.1)

corresponding to initial data (−u0, −u1). Thus
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S(t)(−u0,−u1) = (−u(t),−ut(t)) = −S(t)(u0, u1),

which means that S(t) is an odd semigroup.
It is well known that

A = ω(β∗) =
⋂
s≥0

⋃
t≥s

S(t)β∗,

where β∗ is the absorbing set generated by Proposition 3.2 and ω(β∗) is its ω-limit set. Clearly, β∗ is a 
symmetric set. Assume (x, y) ∈ A. Then there exists a sequence {(xn, yn)} ⊂ β∗ and tn → ∞ (as n → ∞), 
such that

S(tn)(xn, yn) → (x, y), in H.

Because the semigroup S(t) is odd, we have

S(tn)(−xn,−yn) = −S(tn)(xn, yn) → (−x,−y), in H.

Hence, A is symmetric, and the proof is completed. �
Our main results in this section is as follows:

Theorem 4.1. Let Assumptions 4.1 hold. Then for any m ∈ N, there exists a neighborhood N(0) of 0 such 
that the Z2 index of the set A\N(0) satisfies γ(A\N(0)) ≥ m.

As indicated in the last paragraph in Section 2, we conclude from Theorem 4.1 that the following result.

Corollary 4.1. Let Assumptions 4.1 hold. Then the fractal dimension of the global attractor A is infinite.

Proof of Theorem 4.1. Following the ideas of Lemma 2.2, we only need to verify that for any m ∈ N, there 
exists a symmetric set Bm ∈ H with γ(Bm) ≥ m, ω(Bm) ⊂ A\{0}.

Let u(t) be the solution of problem (4.1). Multiplying (4.1) by ut and integrating by parts, we obtain 
that

d

dt

⎛
⎝1

2‖ut‖2 + 1
2α + 2‖∇u‖2α+2 + 1

r
‖u‖rLr − b

s
‖u‖sLs +

∫
Ω

G(u)dx

⎞
⎠ + η‖∇ut‖2 = 0. (4.6)

Denote

E(u0, u1) = 1
2‖u1‖2 + 1

2α + 2‖∇u0‖2α+2 + 1
r
‖u0‖rLr − b

s
‖u0‖sLs +

∫
Ω

G(u0)dx,

we can get from (4.6) that

E(u(t), ut(t)) + η

t∫
t0

‖∇ut‖2dτ = E(u(t0), ut(t0)) (4.7)

holds for every t > t0 ≥ 0. Hence t → E(u(t), ut(t)) is nonincreasing.
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Now, let {ej}∞j=1 be an orthonormal basis of L2(Ω) which consists of eigenvectors of −Δ. The corre-
sponding eigenvalues are denoted by {λj}∞j=1:

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj → ∞.

For any integer m > 0, let Vm = span{e1, · · · , em} in H1
0 (Ω) and let V ′

m = span{e1, · · · , em} in L2(Ω). 
Then γ(Vm × V ′

m) ≥ m. Setting Am = {(u0, u1) ∈ Vm × V ′
m : ‖∇u0‖2 + ‖u1‖2 = 1}, then Am is compact 

in H, γ(Am) = γ(Vm × V ′
m) ≥ m, and there exists δ1 > 0 such that

inf
(u0,u1)∈Am

‖u‖sLs = δ1. (4.8)

Setting Aε
m = {(εu0, εs+1u1) : (u0, u1) ∈ Am}, we get that γ(Aε

m) = γ(Am) ≥ m by Lemma 2.1. For 
(v0, v1) = (εu0, εs+1u1) ∈ Aε

m, according to the Sobolev embedding inequality and (4.5) we have that

E(v0, v1) = ε2s+2

2 ‖u1‖2 + ε2α+2

2α + 2‖∇u0‖2α+2 + εr

r
‖u0‖rLr − bεs

s
‖u0‖sLs

+
∫
Ω

(C1ε
q|u0|q + C2ε

p+1|u0|p+1)dx

≤ ε2s+2

2 + ε2α+2

2α + 2 + C0
εr

r
− bεs

s
δ1 + C ′

1ε
q + C ′

2ε
p+1. (4.9)

Since 2 ≤ s < min{p + 1, r, q, 2α + 2}, for ε small enough, we have E(v0, v1) < 0 for any (v0, v1) ∈ Aε
m. 

Because E(0, 0) = 0 and the function t → E(v(t), vt(t)) in nonincreasing for (v(t), vt(t)) = S(t)(v0, v1), 
we have ω(Aε

m) ⊂ A\{0}. By Lemma 2.2 and the properties of Z2 index, we get that

γ(A\N(0)) ≥ m, (4.10)

for some neighborhood N(0) of 0. This completes the proof. �
Acknowledgments

We would like to express our sincere thanks to the anonymous referee for his(her) valuable comments and 
suggestions. This work was partly supported by the NSFC Grants 11801071 and 11731005, the Fundamental 
Research Funds for the Central Universities Grant 2018B03314.

References

[1] A. Arosio, S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci. 14 (3) (1991) 177–195.
[2] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1) (1996) 305–330.
[3] A.V. Babin, M.I. Vishik, Attractors for Evolution Equations, North-Holland, Amsterdam, 1992.
[4] S. Berstein, Sur une classe d’équations fonctionelles aux dérivées, Bull. Acad. Sci. URSS Ser. Math. 4 (1940) 17–26.
[5] E.H. De Brito, The damped elastic stretched string equation generalized: existence, uniqueness, regularity and stability, 

Appl. Anal. 13 (3) (1982) 219–233.
[6] I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations 252 

(2012) 1229–1262.
[7] I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer International Publishing, Switzerland, 2015.
[8] P. D’ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 

108 (1) (1992) 247–262.
[9] P. D’ancona, S. Spagnolo, A class of nonlinear hyperbolic problems with global solutions, Arch. Ration. Mech. Anal. 

124 (3) (1993) 201–219.
[10] M. Efendiev, M. Ôtani, Infinite-dimensional attractors for evolution equations with p-Laplacian and their Kolmogorov 

entropy, Differential Integral Equations 20 (2007) 1201–1209.
[11] M. Efendiev, S. Zelik, Finite- and infinite-dimensional attractors for porous media equations, Proc. Lond. Math. Soc. 96 

(2008) 51–77.

http://refhub.elsevier.com/S0022-247X(19)30938-2/bib15699A953C7EC36F16DB04B918C8BA11s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib6BA92FD08472131C1A71F538F3C7CB1Fs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib23998D7E98EBFB77FC14DF27BA672344s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibB91470BE75DA7214760C2935E12908ADs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibACA8698EAC2050EFA48CC339CAAD3989s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibACA8698EAC2050EFA48CC339CAAD3989s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib74674BE81214072568A4327EB18687EDs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib74674BE81214072568A4327EB18687EDs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibB24C475A1DE5048EC876FB7236CF6A9Cs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib517D71C66BC4DB3E587E673ABB51ECAFs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib517D71C66BC4DB3E587E673ABB51ECAFs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib3B445E2F8DA23F0DE9525203694EB758s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib3B445E2F8DA23F0DE9525203694EB758s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib0E1D3AFE31D43BC264372CE7314FDF29s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib0E1D3AFE31D43BC264372CE7314FDF29s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib83F086F2741679D7FBC49D68552AA8C3s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib83F086F2741679D7FBC49D68552AA8C3s1


H. Ma et al. / J. Math. Anal. Appl. 484 (2020) 123670 15
[12] X. Fan, S. Zhou, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, 
Appl. Math. Comput. 158 (2004) 253–266.

[13] M. Ghisi, M. Gobbino, Global existence and asymptotic behavior for a mildly degenerate dissipative hyperbolic equation 
of Kirchhoff type, Asymptot. Anal. 40 (1) (2004) 25–36.

[14] M. Ghisi, M. Gobbino, Kirchhoff equations from quasi-analytic to spectral-gap data, Bull. Lond. Math. Soc. 43 (2) (2011) 
374–385.

[15] M. Ghisi, M. Gobbino, Kirchhoff equations with strong damping, J. Evol. Equ. 16 (2016) 441–482.
[16] J.M. Greenberg, S.C. Hu, The initial value problem for a stretched string, Quart. Appl. Math. 38 (3) (1980/1981) 289–311.
[17] B.R. Hunt, V.Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, 

Nonlinearity 12 (1999) 1263–1275.
[18] V. Kalantarov, S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential 

Equations 247 (2009) 1120–1155.
[19] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Stuttgart, 1883.
[20] S. Kolbasin, Attractors for Kirchhoff’s equation with a nonlinear damping coefficient, Nonlinear Anal. 71 (2009) 2361–2371.
[21] I. Lasiecka, J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary 

dissipation, Comm. Partial Differential Equations 24 (11–12) (1999) 2069–2107.
[22] K. Li, A Gronwall-type lemma with parameter and its application to Kirchhoff type nonlinear wave equation, J. Math. 

Anal. Appl. 447 (2017) 683–704.
[23] J. Lions, On some questions in boundary value problems in mathematical physics, in: International Symposium on Contin-

uum Mechanics and Partial Differential Equations, Rio de Janeiro, 1977, North-Holland, Amsterdam, 1978, pp. 284–346.
[24] H. Ma, C. Zhong, Attractors for the Kirchhoff equations with strong nonlinear damping, Appl. Math. Lett. 74 (2017) 

127–133.
[25] Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and 

applications, Indiana Univ. Math. J. 51 (2002) 1541–1559.
[26] T. Matsuyama, R. Ikehata, On global solution and energy decay for the wave equation of Kirchhoff type with nonlinear 

damping term, J. Math. Anal. Appl. 204 (1996) 729–753.
[27] T. Matsuyama, M. Ruzhansky, Global well-posedness of Kirchhoff systems, J. Math. Pures Appl. 100 (2) (2013) 220–240.
[28] L.A. Medeiros, J.L. Ferrel, S.B. de Menezes, Vibration of elastic strings: mathematical aspects, part one, J. Comput. Anal. 

Appl. 4 (3) (2002) 211–263.
[29] M. Milla Miranda, L.P. San Gil Jutuca, Existence and boundary stabilization of solutions for the Kirchhoff equation, 

Comm. Partial Differential Equations 24 (9–10) (1999) 1759–1800.
[30] M. Nakao, An attractor for a nonlinear dissipative wave equation of Kirchhoff type, J. Math. Anal. Appl. 353 (2009) 

652–659.
[31] M. Nakao, Z. Yang, Global attractors for some quasi-linear wave equations with a strong dissipation, Adv. Math. Sci. 

Appl. 17 (2007) 89–105.
[32] K. Nishihara, Degenerate quasilinear hyperbolic equation with strong damping, Funkcial. Ekvac. 27 (1984) 125–145.
[33] K. Nishihara, On a global solution of some quasilinear hyperbolic equation, Tokyo J. Math. 7 (2) (1984) 437–459.
[34] K. Nishihara, Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, 

Funkcial. Ekvac. 33 (1990) 151–159.
[35] J. Ong, Global Existence, Uniqueness and Stability of a Quasilinear Hyperbolic Equations with Boundary Dissipation, 

Ph.D. Thesis, University of Virginia, 1997, pp. 1–93.
[36] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations 

of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci. 20 (1997) 151–177.
[37] S.I. Pohozhaev, On a class of quasilinear hyperbolic equations, Math. USSR, Sb. 25 (1) (1975) 145–158.
[38] P. Pucci, S. Saldi, Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian 

operator, J. Differential Equations 263 (2017) 2375–2418.
[39] K.P. Solange, S. Koumou-Patcheu, Global existence and exponential decay estimates for damped quasilinear equation, 

Comm. Partial Differential Equations 22 (11–12) (1997) 2007–2024.
[40] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, second 

ed., Springer-Verlag, Berlin, 1996.
[41] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer, New York, USA, 

1997.
[42] M. Tucsnak, On the initial boundary value problem for the nonlinear Timoshenko beam, Differential Integral Equations 

6 (1993) 925–935.
[43] Y. Yamada, On some quasilinear wave equations with dissipative terms, Nagoya Math. J. 87 (1982) 17–39.
[44] T. Yamazaki, Global solvability for the Kirchhoff equations in exterior domains of dimension three, J. Differential Equations 

210 (2) (2005) 290–316.
[45] Z. Yang, Long-time behavior of the Kirchhoff type equation with strong damping in RN , J. Differential Equations 242 

(2007) 269–286.
[46] Z. Yang, P. Ding, Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on RN , 

J. Math. Anal. Appl. 434 (2016) 1826–1851.
[47] Z. Yang, Y. Wang, Global attractor for the Kirchhoff equation with a strong dissipation, J. Differential Equations 249 

(2010) 3258–3278.
[48] C. Zhong, W. Niu, On the Z2 index of the global attractor for a class of p-Laplacian equations, Nonlinear Anal. 73 (2010) 

3698–3704.
[49] C. Zhong, B. You, R. Yang, The existence of multiple equilibrium points in a global attractor for some symmetric dynamical 

systems, Nonlinear Anal. Real World Appl. 19 (2014) 31–44.

http://refhub.elsevier.com/S0022-247X(19)30938-2/bibF1A013888AF2044B84AA638A290A8D3As1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibF1A013888AF2044B84AA638A290A8D3As1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib6F4B6D8C6841E1C79426006A15573253s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib6F4B6D8C6841E1C79426006A15573253s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib56E00D56AB8B64DB747BE4798FE3CD39s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib56E00D56AB8B64DB747BE4798FE3CD39s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibEFB76CFF97AAF057654EF2F38CD77D73s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibC31A9FC4A6D9936FBEA29F744AC08582s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibBC9BF7BB6C4AB8D0DAF374963110F4A7s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibBC9BF7BB6C4AB8D0DAF374963110F4A7s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib3FB451CA2E89B3A13095B059D8705B15s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib3FB451CA2E89B3A13095B059D8705B15s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib8274DDFB82B0799878CDA4B59315B330s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibF4BE9D8F6551C8049A0505CE440C0AA6s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibB0FE8E6E8321A23B4087F2C719B97CD5s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibB0FE8E6E8321A23B4087F2C719B97CD5s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibAB43886294F2977C80B748D8A2FA6929s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibAB43886294F2977C80B748D8A2FA6929s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib1C20F1B2257DD2BAC39B54E1D9147A75s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib1C20F1B2257DD2BAC39B54E1D9147A75s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib964C8B1026B81FE01F41D264F10C5D8Cs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib964C8B1026B81FE01F41D264F10C5D8Cs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibB74DF323E3939B563635A2CBA7A7AFBAs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibB74DF323E3939B563635A2CBA7A7AFBAs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib7691DE3FA16BD8AEC6AD50139553F1FEs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib7691DE3FA16BD8AEC6AD50139553F1FEs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib896BB8382C780E17C68B878DABF18857s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib667F41D9ECDCCAB2B637443F52B98566s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib667F41D9ECDCCAB2B637443F52B98566s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib1EE1877C6655ECC71DFEAD311C771BD0s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib1EE1877C6655ECC71DFEAD311C771BD0s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib3195F19E2546092D79038EC25D35D088s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib3195F19E2546092D79038EC25D35D088s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib8418E0CCD2E2EB291AC0C3A68185DA0Es1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib8418E0CCD2E2EB291AC0C3A68185DA0Es1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibEAC873E7039579FA26570AFB651D5685s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibE1A30C909D92D2932546D011120D02C6s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib936CACB76CA9F49A3E8448B15FA35B99s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib936CACB76CA9F49A3E8448B15FA35B99s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibDDF10D41D5D840F6A7D0079028DDD3D6s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibDDF10D41D5D840F6A7D0079028DDD3D6s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibC722AFE23409C2D50A32C93FC709E861s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibC722AFE23409C2D50A32C93FC709E861s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibF48E5D630F3F8C01BF2997654079C4DFs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib5272C2377DA51784EF609FABF90BA018s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib5272C2377DA51784EF609FABF90BA018s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib358C811EF60B3E28BB49E910F55FF473s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib358C811EF60B3E28BB49E910F55FF473s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibE3E9EF1B39743D57BE2DEDEF0832FA7Ds1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibE3E9EF1B39743D57BE2DEDEF0832FA7Ds1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib1B989CAD7F2D9C096B9D5ADDBC448994s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib1B989CAD7F2D9C096B9D5ADDBC448994s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibA022BB926A01C9B9D177B44F66BC6F82s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibA022BB926A01C9B9D177B44F66BC6F82s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib53FEC4CDA201806226C4852E4678EAA0s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib82BD29A3FB25B666C1A89FABE6E20C48s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib82BD29A3FB25B666C1A89FABE6E20C48s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib451AAD6499713E83BCE8D0611F33802Bs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib451AAD6499713E83BCE8D0611F33802Bs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib46031B3D04DC90994CA317A7C55C4289s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib46031B3D04DC90994CA317A7C55C4289s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib83D5D0B31AEAF7FB085B6F11F02163FAs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib83D5D0B31AEAF7FB085B6F11F02163FAs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibFD79700222A9DFFF733EE9340428E57Fs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bibFD79700222A9DFFF733EE9340428E57Fs1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib321BEECE8CCC861EB2FD8C2BD3FF1522s1
http://refhub.elsevier.com/S0022-247X(19)30938-2/bib321BEECE8CCC861EB2FD8C2BD3FF1522s1

	Attractors for the degenerate Kirchhoff wave model with strong damping: Existence and the fractal dimension
	1 Introduction
	2 Preliminaries
	3 Existence of the global attractor
	4 Fractal dimension of the global attractor
	Acknowledgments
	References


