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In this paper we consider two linear Hamiltonian differential systems on an open 
unbounded interval. We assume that the systems are completely controllable and 
satisfy the Sturmian majorant condition and the Legendre condition. We derive 
a singular Sturmian comparison theorem for the case when the minorant system has 
a solution, which is principal at both endpoints of the considered interval. The main 
result is new even for the second order differential equations and it generalizes the 
singular comparison theorem obtained by Aharonov and Elias (2010). We illustrate 
our new theory by several examples.
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1. Introduction

In this paper we investigate Sturmian comparison theorems for two second order linear differential equa-
tions, or more generally for two linear Hamiltonian systems (also called canonical systems), which satisfy 
a certain majorant condition for their coefficients. Such theorems provide a comparison of the numbers of 
zeros of solutions of these equations. The monographs [8,14,20,21] represent a sample of classical references 
on this subject.

The motivation of this work comes from a singular Sturmian comparison theorem for the second order 
linear differential equations, which was proven in [1,2] by Aharonov and Elias. Consider the open unbounded 
interval (a, ∞) with a ∈ R ∪ {−∞} and the differential equations(

r(t)x′)′ + p(t)x = 0, t ∈ (a,∞), (1.1)(
r̂(t) x̂′)′ + p̂(t) x̂ = 0, t ∈ (a,∞), (1.2)
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where r, p, ̂r, p̂ : (a, ∞) → R are continuous functions satisfying the majorant condition

p(t) ≥ p̂(t), r̂(t) ≥ r(t) > 0, t ∈ (a,∞). (1.3)

The term “singular” refers to the fact that the endpoints of the considered interval (a, ∞) are allowed to 
be singular points of equations (1.1) and (1.2). The results of [1, Theorem 1] and [2, Theorem 1] read as 
follows.

Proposition 1.1 (Singular Sturmian comparison theorem). Assume that (1.3) holds with r(t) = r̂(t) ≡ 1
and p(t) �≡ p̂(t) on (a, ∞). In addition, suppose that the minorant equation (1.2) has a solution x̂, which is 
principal at a and at the same time at ∞. Then every (nontrivial) solution of the majorant equation (1.1)
has a zero in the interval (a, ∞).

The result in Proposition 1.1 uses the principal solutions of equation (1.2) at the endpoints ∞ and a. We 
recall that a solution x̂ of (1.2) is principal at ∞ if x̂(t) �= 0 on [α, ∞) for some α ∈ (a, ∞) and

∞∫
α

1
r̂(t) x̂2(t) dt = ∞. (1.4)

Similarly, a solution x̂ of (1.2) is principal at a if x̂(t) �= 0 on (a, β] for some β ∈ (a, ∞) and

β∫
a

1
r̂(t) x̂2(t) dt = ∞. (1.5)

Note that when a ∈ R and the functions r̂ and p̂ are continuous on [a, ∞), then condition (1.5) is equivalent 
with x̂(a) = 0, see e.g. [14, Theorem XI.6.4] with ω := a. The principal solutions of (1.2) at a and at ∞ are 
unique up to a nonzero multiple and we denote them by x̂a and x̂∞. The main assumption of Proposition 1.1
can then be formulated as x̂a = x̂∞.

The main purpose of this paper is to establish a generalization of Proposition 1.1 to completely control-
lable linear Hamiltonian differential systems. That is, we consider the systems

y′ = JH(t) y, t ∈ (a,∞), (H)

ŷ′ = J Ĥ(t) ŷ, t ∈ (a,∞), (Ĥ)

where for a fixed dimension n ∈ N the matrix-valued functions H, Ĥ : (a, ∞) → R2n×2n are symmetric 
and piecewise continuous, and where J ∈ R2n×2n is the canonical skew-symmetric matrix. Furthermore, 
we assume that H(t) and Ĥ(t) satisfy the Sturmian majorant condition

H(t) ≥ Ĥ(t), t ∈ (a,∞), (1.6)

and the Legendre condition

B(t) ≥ 0, B̂(t) ≥ 0, t ∈ (a,∞), (1.7)

where B(t) and B̂(t) are the lower right n × n blocks of H(t) and Ĥ(t). In this setting we say that system 
(H) is a Sturmian majorant of (Ĥ), or that system (Ĥ) is a Sturmian minorant of (H). In the special case 
of the second order differential equations (1.1) and (1.2) satisfying majorant condition (1.3) we have
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H(t) =
(
p(t) 0
0 1/r(t)

)
, Ĥ(t) =

(
p̂(t) 0
0 1/r̂(t)

)
, t ∈ (a,∞), (1.8)

so that systems (H) and (Ĥ) with (1.8) are completely controllable on (a, ∞) and they satisfy assumptions 
(1.6) and (1.7).

Our aim is to derive a singular Sturmian comparison theorem for systems (H) and (Ĥ) in the spirit 
of Proposition 1.1, that is, for the case when the minorant system (Ĥ) has a solution Ŷa = Ŷ∞ which is 
principal both at a and at ∞. For this purpose we utilize our recent Sturmian comparison theorem for general 
possibly uncontrollable systems (H) and (Ĥ) on (a, ∞), which was derived in [27]. Therefore, this work can 
be regarded as a follow up paper to the latter reference dedicated to completely controllable systems (H)
and (Ĥ) and notably to the second order differential equations (1.1) and (1.2), see [27, Remark 6.9]. The 
main results of this paper (Theorems 3.1, 3.4, and 3.6) include exact formulas for the numbers of focal 
points of two conjoined bases Y and Ŷ of (H) and (Ĥ), as well as a detailed analysis of the consequences of 
the assumption Ŷa = Ŷ∞ used in Proposition 1.1 for equations (1.1) and (1.2). This analysis connects the 
majorant condition (1.6), i.e., the coefficients of systems (H) and (Ĥ), with the distinguished solution of the 
Riccati matrix differential equation associated with system (Ĥ). Similarly to [27], the results are formulated 
in terms of a conjoined basis of an auxiliary transformed linear Hamiltonian system

ỹ′ = J H̃(t) ỹ, t ∈ (a,∞), (H̃)

which is obtained from the majorant system (H) by a transformation involving a special symplectic fun-
damental matrix of the minorant system (Ĥ). This approach allows to improve the lower bound for the 
number of focal points of any conjoined basis of (H) in (−∞, ∞) presented in [11, Theorem 2] by Došlý and 
Kratz (see Proposition 2.2). Moreover, for systems (H) and (Ĥ) with (1.8) we then obtain (Theorem 4.1 and 
Corollaries 4.2 and 4.3) that the above general theory can be applied also in the situation when p(t) ≡ p̂(t)
and r(t) �≡ r̂(t) on (a, ∞), which is excluded in Proposition 1.1.

The interval considered in this paper is of the form (a, ∞) with a ∈ R ∪ {−∞} being called a singular 
endpoint. If a ∈ R and if the coefficients H(t) and Ĥ(t) are defined and satisfy the main assumptions (1.6)
and (1.7) on the closed interval [a, ∞), then we call a to be a regular endpoint. The main results of this 
paper are formulated in a way which includes both regular and singular endpoint a.

Remark 1.2. The problem on the singular interval (a, ∞) with a ∈ R can be transformed into an equivalent 
problem on the interval (−∞, ∞) by a suitable transformation s = ϕ(t) of the independent variable, where 
ϕ is an increasing continuously differentiable function mapping (a, ∞) onto (−∞, ∞). For example, we can 
use ϕ(t) = ln(t −a). In a similar way, the singular interval (a, b) with b ∈ R used in [1,2] can be transformed 
into the type (a, ∞) considered in this paper. Therefore, the results from [27, Sections 4–6] regarding the 
singular interval (−∞, ∞) can be applied without loss of generality also when the left endpoint of (a, ∞)
is singular and a ∈ R. More details about the transformation theory of differential equations can be found 
e.g. in the monographs [6,18].

2. Theory of linear Hamiltonian systems

In this section we first review some results from the oscillation theory of completely controllable linear 
Hamiltonian systems and their solutions. As basic literature we refer to the monographs [8,15,19,20]. In the 
second part we deal with basic notions regarding a possibly uncontrollable system (H̃). A 2n × n matrix 
solution Y of (H) is a conjoined basis if

Y T (t)J Y (t) = 0, rank Y (t) = n, J :=
(

0 I
−I 0

)
,
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for some (and hence for all) t ∈ (a, ∞). Suppose that systems (H) and (Ĥ) are completely controllable on 
(a, ∞). This means under condition (1.7), see [15, Theorem 4.1.3], that conjoined bases Y = (XT , UT )T of 
(H) and Ŷ = (X̂T , ÛT )T of (Ĥ) have their first components X(t) and X̂(t) invertible for all t ∈ (a, ∞) \ T , 
where T is finite or countable. Then a point t0 ∈ (a, ∞) such that X(t0) is singular is called a focal point
of Y and its multiplicity is given by

m(t0) := def X(t0) = dim KerX(t0) = n− rankX(t0). (2.1)

Moreover, we denote by

m(I) :=
∑
t0∈I

m(t0) (2.2)

the total number of focal points of Y in the indicated interval I ⊆ (a, ∞). Sturmian comparison theorems for 
completely controllable linear Hamiltonian systems on bounded interval [a, b] are derived in [7, Theorem 4]
by Coppel, in [4, pg. 252] by Arnold, and in [15, Section 7.3] by Kratz. In the special case when the two 
systems (H) and (Ĥ) coincide we obtain the Sturmian separation theorem, saying that the difference between 
the numbers of focal points in I of any two conjoined bases of (H) is at most n, see e.g. [19, Corollary 1, 
pg. 366] or [15, Corollary 7.3.2]. This justifies the definition of system (H) to be nonoscillatory if the quantity 
m(a, ∞) is finite for all (or equivalently for some) conjoined basis Y of (H). Note that the nonoscillation 
condition is imposed at both endpoints of the interval (a, ∞).

Recently we showed in [26,27] that in the singular Sturmian theory it is essential to include the multiplic-
ities of focal points at ∞ and/or at a. Following [26, Remark 3.7], for a conjoined basis Y of a nonoscillatory 
and completely controllable system (H) the multiplicity of its focal point at a and at ∞ is defined by the 
quantity

m(t0) := def W (Yt0 , Y ) = n− rankW (Yt0 , Y ), t0 ∈ {a,∞}, (2.3)

where Y∞ and Ya are the principal solutions of (H) at ∞ and at a, respectively, and where W (Yt0 , Y ) :=
Y T
t0 (t)J Y (t) is the constant Wronskian of Yt0 and Y . Definition (2.3) complies with (2.1), since for t0 ∈

(a, ∞) we have rankX(t0) = rankW (Yt0 , Y ), where Yt0 is the principal solution of (H) at the point t0 ∈
(a, ∞). Recall that the principal solution of (H) at the point s ∈ (a, ∞) is defined as the solution Y satisfying 
the initial condition Y (s) = E, where the matrix E := (0, I)T . As in (1.4), the principal solution of (H)
at ∞ is defined as the conjoined basis Y = (XT , UT )T such that X(t) is invertible on [α, ∞) for some 
α ∈ (a, ∞) and

lim
t→∞

( t∫
α

X−1(s)B(s)XT−1(s) ds
)−1

= 0. (2.4)

And similarly to (1.5), the principal solution of (H) at a is defined as the conjoined basis Y = (XT , UT )T
such that X(t) is invertible on (a, β] for some β ∈ (a, ∞) and

lim
t→a+

(
−

β∫
t

X−1(s)B(s)XT−1(s) ds
)−1

= 0. (2.5)

The principal solution of (H) at t0 ∈ (a, ∞) ∪ {a, ∞} will be denoted by the common notation Yt0 . This 
unified notation is justified by the comments in [3, pg. 173] and by the results of [25, Theorem 5.8] and [26, 
Section 5], where it is shown that the principal solution at a defined according to (2.5) coincides with the 
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principal solution at a defined by the initial condition Y (a) = E when the endpoint a is regular. We note 
that under the complete controllability assumption the nonoscillation of system (H) is equivalent with the 
existence (and uniqueness up to a constant nonsingular right multiple) of the principal solutions Ya and Y∞.

Given the definition of the multiplicity of a focal point of Y in (2.3), we will use the notation in (2.2) also 
for unbounded intervals which include the points a or ∞, i.e., for I = (a, ∞], or I = [a, ∞). The quantities 
in (2.1), (2.3), and (2.2) corresponding to the principal solutions Ya and Y∞ of (H) will be denoted by 
ma(t0), ma(I) and m∞(t0), m∞(I). For a conjoined basis Ŷ of the minorant system (Ĥ) we will use the 
notation m̂(t0) and m̂(I) in the corresponding meaning of (2.1), (2.3), and (2.2). Finally, we will denote by 
Ŷs the principal solution of system (Ĥ) at s ∈ (a, ∞) ∪ {a, ∞}, and use the notation m̂s(t0) and m̂s(I) for 
the corresponding quantities in (2.1), (2.3), and (2.2).

For our reference we state the following comparison theorem for nonoscillatory and completely controllable 
linear Hamiltonian systems, see [8, Proposition 2.10] and [15, Proposition 5.1.5(v)].

Proposition 2.1. Assume that (1.6) and (1.7) hold. If system (H) is nonoscillatory, then system (Ĥ) is also 
nonoscillatory. If system (Ĥ) is completely controllable, then system (H) is also completely controllable.

The following comparison result involving any conjoined basis of (H) and the principal solution Ŷ∞ of 
(Ĥ) at ∞ is proven in [11, Theorem 2].

Proposition 2.2. Assume that (1.6) and (1.7) hold and that systems (H) and (Ĥ) are nonoscillatory and 
completely controllable. Then for any conjoined basis Y of (H) we have the estimate m[t, ∞) ≥ m̂∞[t, ∞)
for all t ∈ (a, ∞), so that

m(a,∞) ≥ m̂∞(a,∞). (2.6)

The formulation of the main results employs system (H̃), which is connected with the majorant system 
(H) by the transformation ỹ = Ẑ−1(t) y, where Ẑ is a symplectic fundamental matrix of the minorant system 
(Ĥ). In this paper we will utilize a special symplectic fundamental matrix Ẑ∞ of (Ĥ), which contains the 
principal solution Ŷ∞ of (Ĥ) as its second block column, i.e., Ŷ∞(t) = Ẑ∞(t) E on (a, ∞). Then, as in [10], 
we can verify that

H̃(t) = ẐT
∞(t) [H(t) − Ĥ(t)] Ẑ∞(t), t ∈ (a,∞). (2.7)

It follows that H̃(t) ≥ 0 on (a, ∞) under the majorant condition (1.6), and in particular the lower right 
n × n block B̃(t) of H̃(t) satisfies the Legendre condition

B̃(t) ≥ 0, t ∈ (a,∞). (2.8)

It is obvious that we cannot expect that system (H̃) is in general completely controllable. For instance, if 
H(t) ≡ Ĥ(t) on (a, ∞), then H̃(t) ≡ 0 on (a, ∞) by (2.7) and system (H̃) is not controllable. Therefore, 
regarding system (H̃) we need to recall the concept of left and right focal points, introduced in [29, Def-
inition 1.1] by Wahrheit and in [17, pg. 513] by Kratz and the second author. The point t0 ∈ (a, ∞) is 
a left focal point, resp. a right focal point, of a conjoined basis Ỹ of (H̃) if Ker X̃(t−0 ) � Ker X̃(t0), resp. 
Ker X̃(t+0 ) � Ker X̃(t0), and then

m̃L(t0) := rank X̃(t−0 ) − rank X̃(t0), m̃R(t0) := rank X̃(t+0 ) − rank X̃(t0) (2.9)

are the corresponding multiplicities. The notations Ker X̃(t±0 ) and rank X̃(t±0 ) represent the one-sided limits 
at t0 of the quantities Ker X̃(t) and rank X̃(t), which are under condition (2.8) piecewise constant on (a, ∞)
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by [16, Theorem 3]. The multiplicities in (2.9) then coincide with the number m̃(t0) defined by (2.1) when 
the system (H̃) is completely controllable. The nonoscillation of a possibly uncontrollable system (H̃) means 
that the kernel of X̃(t) is constant in some neighborhoods of a and ∞ for some (and hence for any) conjoined 
basis Ỹ = (X̃T , ŨT )T of (H̃), see [28, Theorem 2.2]. The following result is based on a generalized reciprocity 
principle in [12, Theorem 2.2].

Proposition 2.3. Assume that (1.6) and (1.7) hold on (a, ∞) and that system (H) is nonoscillatory. Then 
system (H̃) is also nonoscillatory, where the coefficient matrix H̃(t) is given in (2.7) with the symplectic 
fundamental matrix Ẑ∞ of (Ĥ) satisfying Ẑ∞E = Ŷ∞.

The quantities in (2.3) are extended to a possibly uncontrollable system (H̃) as

m̃R(a) :=
(

lim
t→a+

rank X̃(t)
)
− rankW (Ỹa, Ỹ ),

m̃L(∞) :=
(

lim
t→∞

rank X̃(t)
)
− rankW (Ỹ∞, Ỹ ),

⎫⎬⎭ (2.10)

see [26, Section 3]. In (2.10) the conjoined bases Ỹa and Ỹ∞ are the minimal principal solutions of (H̃) at a
and at ∞, which are defined as in (2.4) and (2.5) with the replacement of all inverses by the Moore–Penrose 
pseudoinverses and imposing the smallest possible rank on the first blocks X̃a(t) and X̃∞(t) of Ỹa and Ỹ∞
near the corresponding singular endpoint, see [25, Definition 5.1] and [22–24] for more details. The notation 
from (2.2) then extends naturally to the notation

m̃L(I) :=
∑
t0∈I

m̃L(t0), m̃R(I) :=
∑
t0∈I

m̃R(t0),

where I ⊆ (a, ∞) ∪ {a, ∞} is an interval which may include one of the singular endpoints. When dealing 
with the principal solution Ỹs of (H̃) at the point s ∈ (a, ∞) and with the minimal principal solution Ỹs

of (H̃) at s ∈ {a, ∞}, we will use the notation m̃Ls(t0), m̃Ls(I) and m̃Rs(t0), m̃Rs(I) in the corresponding 
meaning.

In the following statement we complement the nonoscillation of system (H̃) in Proposition 2.3 by the 
information about the transformation of the minimal principal solutions of systems (H) and (H̃) at a and 
at ∞.

Proposition 2.4. Assume that (1.6) and (1.7) hold and that systems (H) and (Ĥ) are nonoscillatory. In 
addition, assume that Ŷa = Ŷ∞ holds. Let Ẑ∞ be the symplectic fundamental matrix of (Ĥ) satisfying 
Ẑ∞E = Ŷ∞. Then the minimal principal solutions Ya, Y∞ and Ỹa, Ỹ∞ of (H) and (H̃) satisfy Ỹa = Ẑ−1

∞ Ya

and Ỹ∞ = Ẑ−1
∞ Y∞.

Proof. This result is proven in [27, Theorem 4.4] for the case when a ∈ R is a regular point. When a is 
a singular point (including a = −∞), the result follows from [27, Theorem 6.3 and Remark 6.7], taking 
Remark 1.2 into account. We note that under the assumption Ŷa = Ŷ∞ we have Ẑ∞ = Ẑa, where Ẑa is the 
symplectic fundamental matrix of (Ĥ) satisfying ẐaE = Ŷa. �

We conclude this section by the following auxiliary statement from matrix analysis, see [15, Lemma 3.1.10]
or [5, Proposition 8.2.3]. For this purpose we split the matrix H̃(t) in (2.7) into n × n blocks as

H̃(t) =
(
−C̃(t) ÃT (t)

˜ ˜

)
, t ∈ (a,∞). (2.11)
A(t) B(t)
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Proposition 2.5. Assume that (1.6) holds on (a, ∞). Then the matrices Ã(t), B̃(t), and C̃(t) defined by (2.11)
satisfy

Ã(t) = B̃(t) D̃(t), B̃(t) ≥ 0, D̃T (t) B̃(t) D̃(t) + C̃(t) ≤ 0, t ∈ (a,∞), (2.12)

for some n × n matrix function D̃(t) on (a, ∞).

Proof. The result follows from [15, Lemma 3.1.10] or [5, Proposition 8.2.3], since we have H̃(t) ≥ 0 on 
(a, ∞) under (1.6). Note that we may take D̃(t) = B̃†(t) Ã(t) for t ∈ (a, ∞), where the dagger refers to the 
Moore–Penrose pseudoinverse of the given matrix. �
3. Singular Sturmian comparison theorems

In this section we present the main results of this paper regarding the singular Sturmian comparison 
theorems for completely controllable and nonoscillatory systems (H) and (Ĥ) on the interval (a, ∞). In the 
first result we present formulas for the numbers of focal points of conjoined bases of systems (H) and (Ĥ)
under the assumption Ŷa = Ŷ∞ for the principal solutions of (Ĥ) at a and ∞. We recall from Section 1 that 
we allow a to be a singular point, especially we allow a = −∞.

Theorem 3.1 (Singular Sturmian comparison theorem). Assume that (1.6) and (1.7) hold on (a, ∞) and that 
systems (H) and (Ĥ) are nonoscillatory and completely controllable. In addition, assume that Ŷa = Ŷ∞
holds. Then

ma(a,∞] = m̂a(a,∞] + m̃La(a,∞], ma[a,∞) = m̂a[a,∞) + m̃Ra[a,∞), (3.1)

and for any conjoined basis Y of (H) we have the equality

m(a,∞) = rankW (Ya, Y ) + m̂a(a,∞) + m̃R[a,∞), (3.2)

where the quantity m̃R[a, ∞) refers to the conjoined basis Ỹ := Ẑ−1
∞ Y of (H̃). In particular,

m(a,∞) ≥ ma(a,∞) = m̂a(a,∞) + m̃Ra[a,∞). (3.3)

Proof. We split the proof into two parts. Assume first that the endpoint a is regular. The formulas in (3.1)
then follow from [27, Corollary 5.4] by using the fact that Ŷ∞(a) = Ŷa(a) = E. Similarly, for any conjoined 
basis Y of (H) we obtain from [27, Theorem 5.3] by using the complete controllability assumption that

m[a,∞) = m̂∞[a,∞) + m̃R[a,∞) = m̂a[a,∞) + m̃R[a,∞). (3.4)

According to (2.1) we have m(a) = n − rankX(a) with rankX(a) = rankW (Ya, Y ), as well as m̂a(a) =
def X̂a(a) = n. Then formula (3.2) follows from (3.4). Finally, the inequality m(a, ∞) ≥ ma(a, ∞) holds by 
the Sturmian separation theorem [26, Theorem 5.10], while the equality ma(a, ∞) = m̂a(a, ∞) + m̃Ra[a, ∞)
in (3.3) follows from (3.1) or from (3.2) with Y := Ya (note that in this case Ỹ = Ẑ−1

∞ Ya = Ỹa by 
Proposition 2.4). Next we assume that the point a is singular and in this case we may take without loss 
of generality a = −∞ by Remark 1.2. The equalities in (3.1) are then proven in [27, Theorem 6.8]. By the 
same reference (with Ŷ := Ŷ−∞ and under the complete controllability assumption) we also obtain that for 
every conjoined basis Y of (H) the equality

m[−∞,∞) = m̂−∞[−∞,∞) + m̃R[−∞,∞) (3.5)
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holds. Since by (2.3) we have m(−∞) = n − rankW (Y−∞, Y ) and m̂−∞(−∞) = n, separating these 
multiplicities in formula (3.5) yields

m(−∞,∞) = rankW (Y−∞, Y ) + m̂−∞(−∞,∞) + m̃R[−∞,∞), (3.6)

which is (3.2) with a = −∞. Next, by the separation theorem in [26, Eq. (8.7)] and by equation (3.6) with 
Y := Y−∞ (note that again Ỹ = Ẑ−1

∞ Y−∞ = Ỹ−∞ by Proposition 2.4) we get

m(−∞,∞) ≥ m−∞(−∞,∞) = m̂−∞(−∞,∞) + m̃R−∞[−∞,∞),

which is formula (3.3) with a = −∞. The proof is complete. �
As a consequence of Theorem 3.1 we obtain that the conjoined bases of the majorant system (H), except 

of the principal solution Ya of (H) at a (up to a right nonsingular multiple), have at least one focal point in 
the open interval (a, ∞).

Corollary 3.2. Assume that (1.6) and (1.7) hold on (a, ∞) and that systems (H) and (Ĥ) are nonoscilla-
tory and completely controllable. If Ŷa = Ŷ∞ and Y is a conjoined basis of (H) such that Y �= Ya, then
m(a, ∞) ≥ 1.

Proof. The result follows from (3.2), since under the given assumptions we have rankW (Ya, Y ) ≥ 1. �
Remark 3.3. The equality in (3.3) yields the traditional comparison theorem for principal solutions Ya and 
Ŷa. Namely, if Ya has no focal points in (a, ∞), then also Ŷa has no focal points in (a, ∞). Moreover, 
compared to inequality (2.6) in Proposition 2.2, the estimate in (3.3) provides an improved lower bound for 
the number of focal points in (a, ∞) of any conjoined basis Y of (H) for the case when Ŷa = Ŷ∞.

In the following result we derive the properties of the coefficients of the transformed system (H̃) for the 
case when the principal solution Ya of (H) has no focal points in (a, ∞). We also show that the number of 
focal points in (a, ∞) of any conjoined basis Y of (H) is given by the rank of the Wronskian of Y with Ya. 
This result will be utilized in the subsequent Sturmian comparison theorem (Theorem 3.6).

Theorem 3.4. Assume that (1.6) and (1.7) hold on (a, ∞) and that systems (H) and (Ĥ) are nonoscillatory 
and completely controllable. In addition, assume that Ŷa = Ŷ∞ and that Ya has no focal points in (a, ∞). 
Then Ya = Y∞ and the coefficient matrices of the transformed system (H̃) in (2.11) satisfy

Ã(t) ≡ 0, B̃(t) ≡ 0, C̃(t) ≤ 0, t ∈ (a,∞). (3.7)

Moreover, for every conjoined basis Y of (H) we have the equalities

m(a,∞) = rankW (Ya, Y ), m(a) = def W (Ya, Y ) = m(∞). (3.8)

Proof. The assumptions imply that ma(a, ∞) = 0. Then from (3.3) and (3.1) in Theorem 3.1 and from 
m̂a(∞) = n we obtain

m̂a(a,∞) = 0, m̃Ra[a,∞) = 0, ma(∞) = n + m̃La(a,∞]. (3.9)

Since the multiplicity of a focal point at ∞ is always at most n, the third condition in (3.9) implies that 
ma(∞) = n and the kernel of X̃a(t) is nonincreasing on (a, ∞). By (2.3) (with t0 := ∞ and Y := Ya) 
it follows that rankW (Y∞, Ya) = 0, so that Ya = Y∞. Next, the second condition in (3.9) implies that 
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m̃Ra(a) = 0 and the kernel of X̃a(t) is nondecreasing on (a, ∞). This means that the kernel of X̃a(t) is 
constant on (a, ∞). From the definition of the multiplicity of the right focal point of Ỹa at a in (2.10) we 
obtain that X̃a(t) ≡ 0 on some right neighborhood of a, and hence by the above mentioned property of the 
kernel of X̃a(t) it follows that X̃a(t) ≡ 0 on the entire interval (a, ∞). Consequently, Ũa(t) is invertible on 
(a, ∞). Using the first equation of system (H̃), i.e., the equation X̃ ′

a(t) = Ã(t) X̃a(t) + B̃(t) Ũa(t) on (a, ∞), 
we derive that B̃(t) ≡ 0 on (a, ∞). The properties in (3.7) then follow from (2.12) in Proposition 2.5. For 
(3.8) we note that, under B̃(t) ≡ 0 on (a, ∞), for every conjoined basis Ỹ of (H̃) the matrix X̃(t) has 
constant kernel on (a, ∞). Therefore,

m̃R[a,∞) = m̃R(a) (2.10)= rank X̃(a+) − rankW (Ỹa, Ỹ ),

rankW (Ỹa, Ỹ ) ≡ rank ŨT
a (t) X̃(t) = rank X̃(t), t ∈ (a,∞).

This implies that m̃R[a, ∞) = 0 for every conjoined basis Ỹ of (H̃). Therefore, given a conjoined basis Y
of (H), equality (3.2) then implies that m(a, ∞) = rankW (Ya, Y ). Finally, the second condition in (3.8)
follows from the definition of m(a) and m(∞) in (2.3) and from the already proven property Ya = Y∞. The 
proof is complete. �
Remark 3.5. Under the assumptions of Theorem 3.4, the equalities in (3.8) can be combined to obtain 
m[a, ∞) = n = m(a, ∞] for every conjoined basis Y of (H). We note that the same conclusion m̂[a, ∞) =
n = m̂(a, ∞] for every conjoined basis Ŷ of (Ĥ) follows from the singular Sturmian separation theorem for 
system (Ĥ) in [26, Theorem 5.7 and Eq. (8.7)] under the assumption Ŷa = Ŷ∞. Also, given that Ŷa = Ŷ∞
and Ya = Y∞, it follows by the transformation result in Proposition 2.4 that the statement of Theorem 3.4
can be supplemented by the additional conclusion Ỹa = Ỹ∞. Note that when the point a is regular, then in 
(3.8) we have m(a, ∞) = rankX(a) and m(a) = def X(a), since in this case W (Ya, Y ) = −X(a).

In the second main result of this paper we complement the result in Theorem 3.1 (resp. in Remark 3.3) 
by providing an exact relationship between the considered properties of the principal solutions Ya and Ŷa. 
This relationship is expressed in terms of the coefficients of systems (H) and (Ĥ) via the Riccati quotient 
associated with the principal solution Ŷa of (Ĥ).

Theorem 3.6 (Singular Sturmian comparison theorem). Assume that (1.6) and (1.7) hold on (a, ∞) and that 
systems (H) and (Ĥ) are nonoscillatory and completely controllable. In addition, assume that Ŷa = Ŷ∞
holds. Then the following statements are equivalent.

(i) The principal solution Ya of (H) has no focal points in (a, ∞).
(ii) The principal solution Ŷa of (Ĥ) has no focal points in (a, ∞) and

H(t) − Ĥ(t) =
(
− Q̂a(t), I

)T [B(t) − B̂(t)]
(
− Q̂a(t), I

)
, t ∈ (a,∞), (3.10)

where Q̂a(t) := Ûa(t) X̂−1
a (t) is the symmetric Riccati quotient which corresponds to the principal 

solution Ŷa of (Ĥ) on (a, ∞).

In this case, in addition to (3.7) we have

C̃(t) = −X̂−1
a (t) [B(t) − B̂(t)] X̂T−1

a (t), t ∈ (a,∞), (3.11)

and the symmetric Riccati quotient Qa(t) := Ua(t) X−1
a (t) corresponding to the principal solution Ya of (H)

satisfies Qa(t) = Q̂a(t) on (a, ∞).
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Proof. Assume that (i) holds, i.e., ma(a, ∞) = 0. Then by Remark 3.3 we have m̂a(a, ∞) = 0. From (3.7)
in Theorem 3.4 in combination with (2.7) and Ŷ∞ = Ŷa we obtain that

H(t) − Ĥ(t) (2.7)= ẐT−1
∞ (t) H̃(t) Ẑ−1

∞ (t) (3.7)= J Ẑa(t)J
(
−C̃(t) 0

0 0

)
J ẐT

a (t)J

= J Ẑa(t)
(

0 0
0 C̃(t)

)
ẐT
a (t)J = J Ŷa(t) C̃(t) Ŷ T

a (t)J

= −
(
− Q̂a(t), I

)T
X̂a(t) C̃(t) X̂T

a (t)
(
− Q̂a(t), I

)
(3.12)

on (a, ∞). Comparing the right lower blocks of the matrices H(t) − Ĥ(t) and (3.12) we get B(t) − B̂(t) =
−X̂a(t) C̃(t) X̂T

a (t), which yields equality (3.11). Upon inserting (3.11) back to (3.12) we obtain formula 
(3.10). Conversely, assume that (ii) holds. Then m̂a(a, ∞) = 0 and

H̃(t) (2.7)= ẐT
a (t) [H(t) − Ĥ(t)] Ẑa(t)

(3.10)=
(
X̂−1

a (t) [B(t) − B̂(t)] X̂T−1
a (t) 0

0 0

)

on (a, ∞), where we also used that Ẑa = ( ˆ̄Y a, Ŷa) with W ( ˆ̄Y a, Ŷa) = I. Therefore, Ã(t) ≡ 0, B̃(t) ≡ 0, and 
(3.11) holds. It follows that every solution Ỹ of system (H̃) has its first component X̃(t) with constant kernel 
on (a, ∞). In particular, the principal solution Ỹa has X̃a(t) ≡ 0 and Ũa(t) invertible on (a, ∞), since Ỹa is 
the minimal principal solution of (H̃) at a (note that Ỹa is a conjoined basis of (H̃) with the smallest possible 
rank of X̃(t) near a and that system (H̃) has the maximal possible order of abnormality equal to n when 
B̃(t) ≡ 0), see [25, Definition 5.1]. This yields that m̃Ra[a, ∞) = 0. The equality in (3.3) in Theorem 3.1
then implies that ma(a, ∞) = 0, which proves part (i). Finally, since Ya = ẐaỸa by Proposition 2.4, it 
follows that Ya(t) = Ŷa(t) Ũa(t) on (a, ∞), where the matrix Ũa(t) is invertible. Therefore, the equality 
Qa(t) = Q̂a(t) holds on (a, ∞) and the proof is complete. �
Remark 3.7. If we split the symmetric matrices H(t) and Ĥ(t) into n × n blocks as

H(t) =
(
−C(t) AT (t)
A(t) B(t)

)
, Ĥ(t) =

(
−Ĉ(t) ÂT (t)
Â(t) B̂(t)

)
, t ∈ (a,∞),

see also (2.11), then condition (3.10) has the form

A(t) = Â(t) − [B(t) − B̂(t)] Q̂a(t),
C(t) = Ĉ(t) − Q̂a(t) [B(t) − B̂(t)] Q̂a(t),

}
t ∈ (a,∞).

The advantage of Theorem 3.6 lies in the fact that knowing the relationship between the coefficients 
H(t) and Ĥ(t) we can obtain the information about the number of focal points of the principal solution Ya

of (H) from the information about the principal solution Ŷa of (Ĥ) alone. Hence, via the formulas in (3.8)
in Theorem 3.1 we can obtain the information about the number of focal points of any conjoined basis Y
of (H).

Corollary 3.8. Assume that (1.6) and (1.7) hold on (a, ∞) and that systems (H) and (Ĥ) are nonoscillatory 
and completely controllable. In addition, assume that Ŷa = Ŷ∞ holds and condition (ii) of Theorem 3.6 is 
satisfied. Then for every conjoined basis Y of (H) the equalities in (3.8) hold.
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4. Second order differential equations

In this section we apply Theorem 3.6 to systems (H) and (Ĥ) representing the Sturm–Liouville differential 
equations (1.1) and (1.2). Even in this special situation we obtain a new result, which extends Proposition 1.1
to the case of variable coefficients r(t) and/or r̂(t). We note that the property in (2.3) now translates as

t0 ∈ {a,∞}, m(t0) =
{

1, ⇔ x is principal at t0,

0, ⇔ x is nonprincipal at t0,

that is, the principal solution of (1.1) at ∞ (or at a) has by definition a zero at ∞ (or at a). With this 
extended terminology the condition x̂a = x̂∞ means that the principal solution x̂∞ of (1.2) has zeros at a
and at ∞, so that the statement of Proposition 1.1 agrees with the classical Sturmian comparison theorem 
on a bounded interval [a, b].

Theorem 4.1 (Singular Sturmian comparison theorem). Assume that (1.3) holds on (a, ∞) and that equations 
(1.1) and (1.2) are nonoscillatory. In addition, assume that the principal solution x̂∞ of (1.2) has a zero at 
a, i.e., x̂∞ = x̂a. Then the following statements are equivalent.

(i) The principal solution xa of (1.1) satisfies xa(t) �= 0 on (a, ∞).
(ii) The principal solution x̂a of (1.2) satisfies x̂a(t) �= 0 on (a, ∞) and

[r(t) − r̂(t)] x̂′
a(t) = 0, p(t) = p̂(t), t ∈ (a,∞). (4.1)

In this case x∞ = xa and every nonprincipal solution of (1.1) at ∞ (or at a) has exactly one zero in the 
interval (a, ∞).

Proof. The equivalence of (i) and (ii) above follows from the equivalence of (i) and (ii) in Theorem 3.6
when we use the form of H(t) and Ĥ(t) in (1.8). In particular, condition (3.10) reduces to (4.1). Moreover, 
if condition (i) holds, then Theorem 3.4 applies to this case and consequently, we have x∞ = xa and 
m(a, ∞) = 1 for every nonprincipal solution x of (1.1) at ∞ (or at a) by (3.8). �

We note that the assumption x̂∞ = x̂a in Theorem 4.1 is naturally satisfied when the point a is chosen 
to be a zero of the principal solution x̂∞ of (1.2). The result in Theorem 4.1 also shows that, under the 
given assumptions, the property m(a, ∞) ≥ 1 for a solution x of (1.1) in Proposition 1.1 always holds for 
nonprincipal solutions of (1.1) at ∞, and it also holds for the principal solution x∞ of (1.1) exactly when 
condition (ii) in Theorem 4.1 is violated.

Corollary 4.2 (Singular Sturmian comparison theorem). Assume that (1.3) holds on (a, ∞) and that equations 
(1.1) and (1.2) are nonoscillatory. In addition, assume that the principal solution x̂∞ of (1.2) has a zero at 
a, i.e., x̂∞ = x̂a. Then every nonprincipal solution of (1.1) at ∞ has at least one zero in (a, ∞), and the 
principal solution x∞ of (1.1) has at least one zero in (a, ∞) if and only if condition (ii) in Theorem 4.1 is 
violated.

Proof. Let x be a nonprincipal solution of (1.1) at ∞. The number of zeros m(a, ∞) of x in the interval 
(a, ∞) depends on the number of zeros of the principal solution xa of (1.1) in this interval. If ma(a, ∞) = 0, 
then m(a, ∞) = 1 by Theorem 4.1. If ma(a, ∞) ≥ 1, then m(a, ∞) ≥ ma(a, ∞) ≥ 1 by the singular Sturmian 
separation theorem, i.e., by (3.3) in Theorem 3.1. Consider now the principal solution x∞ of (1.1) and its 
number of zeros in (a, ∞). By [11, Corollary 1] we know that m∞(a, ∞) = ma(a, ∞). Hence, applying 
Theorem 4.1 we obtain that m∞(a, ∞) ≥ 1 if and only if condition (ii) in Theorem 4.1 is violated. �
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The statement in Corollary 4.2 provides a way to explicitly describe sufficient conditions in terms of the 
coefficients of equations (1.1) and (1.2), which guarantee that every (nontrivial) solution of (1.1) has at least 
one zero in the interval (a, ∞). These sufficient conditions are formulated as a violation of condition (4.1). 
One such a condition, namely r(t) = r̂(t) ≡ 1 and p(t) �≡ p̂(t) on (a, ∞), was discovered by Aharonov and 
Elias in [1, Theorem 1] and [2, Theorem 1], see also Proposition 1.1. Observe that the assumption of the 
nonoscillation of the majorant equation (1.1) can now be dropped.

Corollary 4.3 (Singular Sturmian comparison theorem). Assume that (1.3) holds on (a, ∞) and that the 
minorant equation (1.2) is nonoscillatory. In addition, assume that the principal solution x̂∞ of (1.2) has 
a zero at a, i.e., x̂∞ = x̂a, and that condition (4.1) does not hold. Then every (nontrivial) solution of (1.1)
has at least one zero in the interval (a, ∞).

Proof. If equation (1.1) is oscillatory, then the result holds trivially. If equation (1.1) is nonoscillatory, then 
the result follows directly from Corollary 4.2. �
Remark 4.4. Condition (4.1) does not hold for example when a is a regular point and r(t) < r̂(t) on [a, a +ε)
for some ε > 0, because in this case x̂a(a) = 0, x̂′

a(a) = 1/r̂(a), and thus x̂′
a(t) �= 0 for t close to a. Further 

sufficient conditions of a similar type can now be formulated based on this argument.

In the remaining part of this paper we present several examples, which illustrate our new singular Stur-
mian comparison theorems. These examples are based on a specific choice of the reference equation (1.2)
for which x̂a = x̂∞. First we consider a regular point a.

Example 4.5. Consider equations (1.1) and (1.2) on [0, ∞) with the coefficients

r̂(t) =
{

e2t, for t ∈ [0, 1],
e2, for t ∈ (1,∞),

p(t) = p̂(t) =

⎧⎪⎨⎪⎩
6e2t(1 − t)
t2 − 3t + 3 , for t ∈ [0, 1],

0, for t ∈ (1,∞),

where r(t) will be specified later. Then the function x̂∞(t) = 1
3 (t − 1)3 + 1

3 for t ∈ [0, 1] and x̂∞(t) ≡ 1
3 for 

t ∈ (1, ∞) is the principal solution of (1.2) at ∞ satisfying x̂∞(0) = 0, i.e., x̂∞ = x̂0. Also, we have x̂0(t) �= 0
on (0, ∞), x̂′

0(t) = (t − 1)2 on [0, 1], and x̂′
0(t) ≡ 0 on [1, ∞). Let r(t) be any positive continuous function 

on [0, ∞) such that r(t) = e2t on [0, 1] and r(t) ≤ e2 on (1, ∞). Then condition (4.1) is satisfied, equation 
(1.1) is nonoscillatory, and hence by Theorem 4.1 the principal solution x0 of (1.1) satisfies x0(t) �= 0 on 
(0, ∞) and x∞ = x0. Moreover, every nonprincipal solution x of (1.1) at 0 or at ∞ has exactly one zero in 
the interval (0, ∞).

Another example is motivated by [9, Example 1].

Example 4.6. Consider equations (1.1) and (1.2) on [0, ∞) with the coefficients

r̂(t) =

⎧⎪⎨⎪⎩
1 + t− 2et−1

1 − t
, for t �= 1,

1, for t = 1,
p(t) = p̂(t) ≡ 1, t ∈ [0,∞),

where r(t) will be specified later. Then the function x̂∞(t) = te−t for t ∈ [0, ∞) is the principal solution 
of (1.2) at ∞ satisfying x̂∞(0) = 0, i.e., x̂∞ = x̂0. Also, we have x̂0(t) �= 0 on (0, ∞) and x̂′

0(t) �= 0 for all 
t �= 1. Let r(t) be any positive continuous function on [0, ∞) such that r(t) ≤ r̂(t) and r(t) �≡ r̂(t) on [0, ∞). 
Then by Corollary 4.3 every (nontrivial) solution of (1.1) has at least one zero in the interval (0, ∞).
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Next we consider the case of a singular point a = −∞.

Example 4.7. Consider equation (1.2) of the form x̂′′ = 0 on (−∞, ∞), i.e., r̂(t) ≡ 1 and p̂(t) ≡ 0. Then 
x̂∞(t) ≡ 1 is the principal solution of (1.2) at ±∞, i.e., x̂∞ = x̂−∞. Also, we have x̂∞(t) �= 0 on (−∞, ∞)
and x̂′

∞(t) ≡ 0. Let r(t) and p(t) be continuous functions with 0 < r(t) ≤ 1 and p(t) ≥ 0 on (−∞, ∞) such 
that p(t) �≡ 0 on (−∞, ∞). Then by Corollary 4.3 every (nontrivial) solution of (1.1) has at least one zero 
in the interval (−∞, ∞).

In the last example we consider a singular point a = 0.

Example 4.8. Consider equation (1.2) to be the Euler differential equation x̂′′ + 1
4t2 x̂ = 0 on (0, ∞), i.e., 

r̂(t) ≡ 1 and p̂(t) = 1/(4t2) on (0, ∞). Then x̂∞(t) =
√
t is the principal solution of (1.2) at ∞ and at 0, 

i.e., x̂∞ = x̂0. Let r(t) and p(t) be continuous functions with 0 < r(t) ≤ 1 and p(t) ≥ 1/(4t2) on (0, ∞) such 
that r(t) �≡ 1 or p(t0) > 1/(4t20) for some t0 > 0. Then by Corollary 4.3 every (nontrivial) solution of (1.1)
has at least one zero in the interval (0, ∞).

Further examples can be constructed e.g. by considering [1, Example, pg. 762] as the reference equation 
(1.2) and incorporating the leading coefficient r(t). We refer to [13] for a possible source of such singular 
Sturm–Liouville equations depending on a parameter λ ∈ R.
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