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We examine the chaotic behavior of certain continuous linear operators on infinite-
dimensional Banach spaces, and provide several equivalent characterizations of 
when these operators have infinite topological entropy. For example, it is shown 
that infinite topological entropy is equivalent to non-zero topological entropy for 
translation operators on weighted Lebesgue function spaces. In particular, finite 
non-zero entropy is impossible for this class of operators, which answers a question 
raised by Yin and Wei.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we examine the chaotic behavior of certain continuous linear operators on infinite-
dimensional Banach spaces: namely, left translation operators on the weighted Lebesgue function spaces 
Lp
v(R+) and on the related spaces C0,v(R+). Our main result is to characterize when such operators have 

infinite topological entropy.
The notion of “chaotic behavior” does not have a single precise meaning in topological dynamics: it 

indicates vaguely that a dynamical system becomes mixed up and disordered over time. This vague notion 
has been made precise via many different (and inequivalent) definitions of chaos: there is Devaney chaos 
[12], or the specification property [9,15], or the property of having infinite topological entropy [1], for 
example. Similarly, there are many different (and inequivalent) notions of anti-chaotic behavior in topological 
dynamical systems: equicontinuity, for example, or the property of having zero topological entropy.

Continuous linear mappings on infinite-dimensional vector spaces can be highly chaotic; see, e.g., [7,13]. 
However, for such mappings, and in particular for the translation operators discussed in this paper, the 
distinctions between many different notions of chaos and anti-chaos disappear. Strong forms of chaos become 
equivalent to seemingly much weaker forms of chaos, or to the mere absence of certain anti-chaos properties.
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However, not all forms of chaotic behavior are equivalent for the operators under discussion. The picture 
that emerges in this paper seems to be that the translation operators on Lp

v(R+) organize themselves, for 
the most part, into three tiers of increasingly chaotic behavior. (See Fig. 1 in the following section.) Our 
main result is to delineate the weakest tier of chaotic behavior by proving that several weak versions of 
chaos are equivalent in this context:

Main Theorem. Let X be one of the Banach spaces Lp
v(R+) or C0,v(R+), where v is an admissible weight 

function, and let T = {Tt : t ∈ R+} be the semigroup of left translation operators on X. The following are 
equivalent:

(1) sup
{

v(x)
v(y) : y ≥ x

}
= ∞.

(2) For some f ∈ X, lim inft→∞‖Ttf‖ > 0.
(3) T is not uniformly bounded.
(4) T is not uniformly equicontinuous.
(5) T is not equicontinuous.
(6) T has nonzero entropy.
(7) T has infinite entropy.

All of the terms in the statement of this theorem will be defined in the following section. The equivalence 
of (6) and (7) shows that finite, nonzero entropy is impossible for the left translation operators on the 
weighted Lebesgue function spaces Lp

v(R+), answering a question of Yin and Wei [19].
In addition to this theorem, we also prove that a close relative of (2) is equivalent to hypercyclicity, and 

thus fits into the middle tier of chaos mentioned above. Namely, we show that T is hypercyclic (i.e., has a 
dense orbit) if and only if there is some f ∈ X and some [0, a] ⊆ R+ such that lim inft→∞‖(Ttf)χ[0,a]‖ > 0. 
In other words, T is hypercyclic if and only if some f ∈ X does not tend to 0 on some fixed bounded 
interval.

2. Preliminaries

Let R+ = [0, ∞). The weighted Lebesgue space Lp
v(R+) is defined as

Lp
v(R+) =

⎧⎨
⎩f : R+ → R :

∞∫
0

|f(x)|pv(x) dx < ∞

⎫⎬
⎭ ,

where 0 < p < ∞ and v : R+ → R+ is an admissible weight function, which means that v is strictly positive, 
locally integrable, and there exist some M ≥ 1 and w ∈ R+ such that

v(x) ≤ Mewtv(x + t)

for all t ≥ 0. This definition follows [13, chapter 7].
The admissibility condition ensures that the translation operators Tt (defined below) are all contin-

uous, and that they form a strongly continuous semigroup under composition. It is also worth noting 
that for admissible v(x), on any finite interval [0, a] ⊆ R+ we have infx∈[0,a] v(x) ≥ v(0)/Mewa > 0, and 
supx∈[0,a] v(x) ≤ Mewav(a) < ∞. Thus the condition on v(x) in the statement of our main theorem, 
that sup

{
v(x)
v(y) : y ≥ x

}
= ∞, cannot be satisfied on a bounded interval; in other words, it is a condition 

concerning the behavior of v(x) “at infinity.”
Formally, we consider two functions in Lp

v(R+) to be equal if they are equal Lebesgue almost everywhere. 
This does not play an important part in what follows, and we will abuse notation slightly (as above) by 
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speaking of the elements of Lp
v as functions, and not equivalence classes of functions. However, making this 

identification allows us to assert that setting

‖f‖ =

⎛
⎝ ∞∫

0

|f(x)|pv(x) dx

⎞
⎠

1/p

defines a norm on Lp
v(R+). With this norm, Lp

v(R+) is a Banach space.
Similarly, we also define

C0,v(R+) =
{
f : R+ → R : f is continuous, and lim

x→∞
|f(x)|v(x) = 0

}
.

We define a norm on C0,v(R+) by

‖f‖ = sup {|f(x)|v(x) : x ∈ R+} ,

and note that C0,v is a Banach space with this norm.
Let X denote one of the Banach spaces Lp

v(R+) or C0,v, where v is an admissible weight function. For 
each t ≥ 0, let Tt : X → X denote the left translation operator defined by setting

Ttf(x) = f(x + t)

for all x ≥ 0. Let T = {Tt : t ≥ 0}, and note that each member of T is a continuous linear operator on X.
The orbit of a point f ∈ X under T is {Ttf : t ≥ 0} ⊆ X. We say T is hypercyclic if there is a point 

whose orbit is a dense subset of X. A point f ∈ X is periodic for T if there exists t > 0 such that Ttf = f . 
We say that T is Devaney chaotic if it is hypercyclic and the set of periodic points is dense in X.

The following theorem delineates the “strongest tier of chaos” described in the introduction for the spaces 
Lp
v(R+) and C0,v(R+). A proof can be found in [6]. We refer the reader to [3] or [16] for the definition of 

frequently hypercyclic; roughly, it states that some member of X not only has a dense orbit, but that it visits 
each open subset of X “frequently.” We refer the reader to [4] or [5] for the definition of the specification 
property in the present context, an adaptation of Bowen’s definition for compact metric spaces in [9].

Theorem. Let X = Lp
v(R+), where v is an admissible weight function, and let T = {Tt : t ∈ R+} be the 

semigroup of left translation operators on X. The following are equivalent:

(1)
∞∫
0

v(x) dx < ∞.

(2) T is frequently hypercyclic.
(3) T has the specification property.
(4) T has Devaney chaos.
(5) Some f ∈ X \ {0} is periodic.

In [10], it was shown (in the context of a single operator, not a semigroup of operators) that these 
equivalent conditions all imply infinite entropy, but that this implication does not reverse. It is worth 
mentioning that some of these results hold in a broader context than backward shift operators on Lp

v(R+). 
For example, the specification property is equivalent to Devaney chaos for backward shift operators on 
Banach sequence spaces [4] and for weighted backward shifts on sequence F -spaces [3]. However, the above 
theorem does not hold with C0,v(R+) in the place of Lp

v(R+).
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Recall that a strongly continuous semigroup T = {Tt : t ≥ 0} on a space X is topologically transitive
if for all nonempty open U, V ⊆ X, Tt(U) ∩ V 
= ∅ for arbitrarily large t. If X is separable, then this 
is equivalent to T being hypercyclic (having a point with a dense orbit). In [11], it was shown that the 
translation operators Tt on Lp

v(R+) or C0,v(R+) are topologically transitive (and thus hypercyclic) if and 
only if lim infx→∞ v(x) = 0. Of course, this condition on v(x) is strictly weaker than the integrability 
condition from the previous theorem. In [19], Yin and Wei show a number of other chaotic behaviors to be 
equivalent to the hypercyclicity of the mapping semigroup T . These results are summarized in the following 
theorem.

Theorem. Let X be one of the Banach spaces Lp
v(R+) or C0,v(R+), where v is an admissible weight function, 

and let T = {Tt : t ∈ R+} be the semigroup of left translation operators on X. The following are equivalent:

(1) lim inf
x→∞

v(x) = 0.
(2) T is hypercyclic.
(3) T is topologically transitive.
(4) Some f ∈ X \ {0} is a recurrent point of T .
(5) Some f ∈ X \ {0} is a non-wandering point of T .
(6) Some f ∈ X \ {0} has a non-trivial ω-limit set.

Here “trivial” means either empty or equal to {0}. We prove in the following section that equivalent to 
all these conditions is

(7) There is some f ∈ X and some bounded [0, a] ⊆ R+ such that

lim inf
t→∞

‖(Ttf)χ[0,a]‖ > 0.

Together, these seven equivalent statements represent the “middle tier” of chaos mentioned in the intro-
duction.

Yin and Wei also show in [19] that:

◦ Any of the conditions from the previous theorem(s) imply that T has infinite entropy.
◦ If the weight function v(x) is bounded, then each of the conditions from the previous theorem is equiv-

alent to T having infinite entropy.
◦ There is an unbounded weight function v(x) such that the semigroup of translation operators on Lp

v(R+)
is not hypercyclic, but nonetheless has infinite entropy.

The following picture summarizes the results of the previous two theorems, along with the main result 
of this paper stated in the introduction.

As this picture indicates, surprisingly many of the (ostensibly different) possible behaviors of Lp
v(R+) fall 

into only three categories. Many, but not all. It is important to remember that this picture is incomplete, 
and is not meant to suggest that the Lp

v(R+) can exhibit only three topologically distinct types of behaviors. 
This is discussed further in Section 4.

The notion of topological entropy was introduced by Adler, Konheim, and McAndrew in [1]. We use the 
notation developed by Bowen in [9].

Definition 2.1. Let X be a separable space with translation-invariant metric d, and let T = {Tt : t ≥ 0} be 
a strongly continuous semigroup of operators on X. Let K ⊆ X be compact, and let t > 0, and let ε > 0. 
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}
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Fig. 1. Three main tiers of chaotic behavior for Lp
v(R+).

A set S ⊆ K is called (t, ε)-separated if for every f, g ∈ S with f 
= g, we have d(Tuf, Tug) ≥ ε for some 
u ∈ [0, t]. We denote by st,ε(T , K) the largest cardinality of a (t, ε)-separated subset of K, and define

h(T ,K) = lim
ε→0

lim sup
t→∞

1
t

log st,ε(T ,K)

If X is already compact, then the topological entropy of T is defined as h(T , X). For non-compact spaces 
(such as the weighted Lebesgue spaces discussed here), the topological entropy of T is

h(T ) = sup {h(T ,K) : K ⊆ X is compact} .

Let us note that the topological entropy of a single operator T : X → X can be expressed in our notation 
as the topological entropy of the semigroup T = {Tn : n ∈ N}. In the case of continuous semigroups of 
operators, studying the full semigroup T = {Tt : t ∈ R+} is related (and often equivalent) to studying a 
discretization of it. For example, for some fixed t0 > 0, the entropy of the single operator Tt0 is related to 
the entropy of the continuous semigroup T via the equation h(Tt0) = t0h(T ) [14].

A family T of functions on a metric space X is equicontinuous if for every ε > 0 and x ∈ X, there is 
some δ > 0 such that for any T ∈ T and any y ∈ X, if d(x, y) < δ then d(T (x), T (y)) < ε. By not allowing 
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δ to depend on x, we arrive at a stronger notion: T is uniformly equicontinuous if for every ε > 0 there is 
some δ > 0 such that for any T ∈ T and any x, y ∈ X, if d(x, y) < δ then d(T (x), T (y)) < ε.

A family T of operators on a Banach space X is uniformly bounded if there is some B ≥ 0 such that for 
any x ∈ X and T ∈ T , ‖T (x)‖ ≤ B‖x‖.

3. Two theorems

We begin this section with our characterization of hypercyclicity stated in the previous section.

Theorem 3.1. Let X be one of the Banach spaces Lp
v(R+) or C0,v(R+), where v is an admissible weight 

function, and let T be the semigroup of left translation operators on X. Then T is hypercyclic if and only 
if there is some f ∈ X and some bounded [0, a] ⊆ R+ such that lim inft→∞‖(Ttf)χ[0,a]‖ > 0.

Proof. Let us denote by (∗) the statement that there is some f ∈ X and some a > 0 such that 
lim inft→∞‖(Ttf)χ[0,a]‖ > 0.

By the results stated in the previous section, it suffices to show that the existence of a nonzero recurrent 
point for T implies (∗), and that (∗) implies lim infx→∞ v(x) = 0.

Let us show first that (∗) implies lim infx→∞ v(x) = 0 by proving the contrapositive. Suppose 
lim infx→∞ v(x) 
= 0. As v is strictly positive, this means there exists c > 0 such that v(x) > c for suffi-
ciently large x. Let f ∈ X and for every a > 0, let Ba = sup {v(x) : x ∈ [0, a]}. Note that Ba is well-defined 
(i.e., {v(x) : x ∈ [0, a]} is bounded above) because v is admissible, which implies v(x) ≤ Mewav(a) for all 
x ∈ [0, a]. We consider two cases, according to whether X = Lp

v(R+) or X = C0,v(R+).
For the first case, suppose X = Lp

v(R+). Then

‖(Ttf)χ[0,a]‖p =
a∫

0

|f(x + t)|p v(x) dx

=
a∫

0

|f(x + t)|p v(x + t) v(x)
v(x + t) dx

≤ Ba

c

a∫
0

|f(x + t)|p v(x + t) dx

≤ Ba

c

t+a∫
t

|f(x)|p v(x) dx

and this goes to 0 as t → ∞.
The second case is similar. Suppose X = C0,v(R+). Then

‖(Ttf)χ[0,a]‖∞ = sup {f(x + t)v(x) : x ∈ [0, a]}

= sup
{
f(x + t)v(x + t) v(x)

v(x + t) : x ∈ [0, a]
}

≤ Ba

c
sup {f(x + t)v(x + t) : x ∈ [0, a]}

≤ Ba

c
sup {f(x)v(x) : x ∈ [t, t + a]}
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which goes to 0 as t → ∞. Note that this is really the same proof as in the first case, except that we must 
reinterpret an integral sign as a supremum. In either case, (∗) implies lim infx→∞ v(x) = 0.

Next we show that the existence of a nonzero recurrent point for T implies (∗). The proofs for X = Lp
v(R+)

and X = C0,v(R+) are once again very similar. (Once again, the difference amounts to reinterpreting an 
integral sign as a supremum.) So we give the proof only for X = Lp

v(R+).
Suppose that f ∈ X \ {0} is recurrent. Then we may find an increasing sequence t1 < t2 < t3 < . . . of 

real numbers, with limk→∞ tk = ∞, such that Ttkf ∈ B(f, 1/k) for all k ∈ N.
As ‖f‖ = lima→∞‖fχ[0,a]‖, we may choose some a > 0 such that

‖fχ[0,a]‖ >
1
2‖f‖.

Note that for any g, h ∈ X, the distance from gχ[0,a] to hχ[0,a] is bounded by the distance from g to h:

‖gχ[0,a] − hχ[0,a]‖ =

⎛
⎝ a∫

0

|g(x) − h(x)|p dx

⎞
⎠

1/p

≤

⎛
⎝ ∞∫

0

|g(x) − h(x)|p dx

⎞
⎠

1/p

= ‖g − h‖.

In particular, (Ttkf)χ[0,a] ∈ B(fχ[0,a] , 1/k) for all k ∈ N. By our choice of a, this implies

‖(Ttkf)χ[0,a]‖ ≥ ‖fχ[0,a]‖ −
1
k

>
1
2‖f‖ −

1
k
.

As ‖f‖ > 0, this shows, as claimed, that ‖(Ttf)χ[0,a]‖ does not converge to 0 as t → ∞. �
The first half of this proof works essentially because, when the weight function v(x) is restricted to a 

bounded interval [0, a], then supx,y∈[0,a]
v(x)
v(y) is well-defined. Our condition on v in the following theorem 

simply allows us to apply the same idea on unbounded intervals.

Theorem 3.2. Let X be one of the Banach spaces Lp
v(R+) or C0,v(R+), where v is an admissible weight 

function, and let T = {Tt : t ∈ R+} be the semigroup of left translation operators on X. The following are 
equivalent:

(1) sup
{

v(x)
v(y) : y ≥ x

}
= ∞.

(2) For some f ∈ X, lim inft→∞‖Ttf‖ > 0.
(3) T is not uniformly bounded.
(4) T is not uniformly equicontinuous.
(5) T is not equicontinuous.
(6) T has nonzero entropy.
(7) T has infinite entropy.

Proof. We prove that (1) and (2) are equivalent, and then we show that (7) ⇒ (6) ⇒ (5) ⇒ (4) ⇒ (3) ⇒
(1) ⇒ (7). Many of these implications are proved for X = Lp

v(R+) and for C0,v(R+) simultaneously. Where 
it is necessary to distinguish between Lp

v(R+) and C0,v(R+), we treat the case X = Lp
v(R+) first.

To show (2) ⇒ (1), we prove the contrapositive. Let X = Lp
v(R+), and suppose (1) does not hold, which 

means that there is some finite B > 0 with sup
{

v(x) : y ≥ x
}

= B. Let f ∈ X and let ε > 0. Because
v(y)
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∞∫
0

|f(x)|pv(x) dx = ‖f‖p < ∞,

there is some t0 ≥ 0 such that

∞∫
t0

|f(x)|pv(x) dx <
εp

B
.

This implies that for every t ≥ t0,

‖Ttf‖p =
∞∫
0

|f(x + t)|pv(x) dx

=
∞∫
0

|f(x + t)|pv(x + t) v(x)
v(x + t) dx

≤ B

∞∫
0

|f(x + t)|pv(x + t) dx

= B

∞∫
t

|f(x)|pv(x) dx

≤ B

∞∫
t0

|f(x)|pv(x) dx

< εp.

Thus ‖Ttf‖ < ε for all t ≥ t0. As f ∈ X and ε > 0 were arbitrary, this shows that (2) does not hold.
For the second case, let X = C0,v(R+), and again suppose (1) does not hold. This means there is some 

finite B > 0 with sup
{

v(x)
v(y) : y ≥ x

}
= B. Let f ∈ X and let ε > 0. Because limx→∞ |f(x)|v(x) = 0, there 

is some t0 ≥ 0 such that

sup {|f(x)|v(x) : x ≥ t0} <
ε

B
.

This implies that for every t ≥ t0,

‖Ttf‖ = sup {|f(x + t)|v(x) : x ≥ 0}

= sup
{
|f(x + t)|v(x + t) v(x)

v(x + t) : x ≥ 0
}

≤ B sup {|f(x + t)|v(x + t) : x ≥ 0}
= B sup {|f(x)|v(x) : x ≥ t}
≤ B sup {|f(x)|v(x) : x ≥ t0}
< ε.

Thus ‖Ttf‖ < ε for all t ≥ t0. As f ∈ X and ε > 0 were arbitrary, this shows that (2) does not hold. This 
completes the proof that (2) ⇒ (1).
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Note that, as in the proof of Theorem 3.1, the cases X = Lp
v(R+) and C0,v(R+) are only superficially 

different: we merely had to trade our integrals for supremums. For the remaining implications, we will 
sometimes leave such straightforward modifications to the reader.

To show (1) ⇒ (2), suppose sup
{

v(x)
v(y) : y ≥ x

}
= ∞. (We begin with a construction that is useful for 

both cases, X = Lp
v(R+) and X = C0,v(R+).) Recall that the admissibility condition on v(x) means there 

exist some M ≥ 1 and w ∈ R+ such that v(x) ≤ Mewtv(x + t) for all t ≥ 0. This implies there is some 
γ > 0 such that, for any x, x′ ∈ R+ with x ≤ x′ ≤ x + γ, v(x)

v(x′) ≤ 2M . (Explicitly, we may take γ = 1
w ln 2, 

noting that w = 0 is impossible because having w = 0 would imply sup
{

v(x)
v(y) : y ≥ x

}
≤ M .)

Let us define two sequences of non-negative real numbers, 〈yn : n ∈ N〉 and 〈zn : n ∈ N〉, via recursion 
such that

◦ y1 < z1 < y2 < z2 < y3 < z3 < . . . ,
◦ zn+1 > zn + γ for all n ∈ N, and

◦ v(yn)
v(zn) > 2n for all n ∈ N.

Consider the case X = Lp
v(R+). Define a function f : R+ → R as follows:

f(x) =
{

(1/v(zn)2n)1/p if x ∈ [zn − γ, zn] for some n ∈ N,

0 if not.

We claim that f ∈ Lp
v(R+) and that lim inft→∞ Ttf > 0.

For each n ∈ N,

zn∫
zn−γ

|f(x)|pv(x) dx =
zn∫

zn−γ

1
v(zn)2n v(x) dx

=
zn∫

zn−γ

1
2n

v(x)
v(zn) dx

≤
zn∫

zn−γ

1
2n 2M dx

= Mγ

2n−1 ,

and this implies

∞∫
0

|f(x)|pv(x) dx =
∞∑

n=1

zn∫
zn−γ

|f(x)|pv(x) dx ≤
∞∑

n=1

Mγ

2n−1 < ∞,

so that f ∈ Lp
v(R+) as claimed.

To show lim inft→∞‖Ttf‖ > 0, set tn = zn − yn − γ for each n ∈ N. Using the admissibility of v(x), 
observe that

2n <
v(yn) ≤ Mew(tn+γ)

v(zn)
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for all n ∈ N. It follows that limn→∞ tn = ∞. Thus in order to show lim inft→∞‖Ttf‖ > 0, it suffices to 
show lim infn→∞‖Ttnf‖ > 0, and for this it suffices to show lim infn→∞‖Ttnf‖p > 0. We have

‖Ttnf‖p =
∞∫
0

|f(x + tn)|pv(x) dx

≥
yn+γ∫
yn

|f(x + tn)|pv(x) dx

=
yn+γ∫
yn

1
v(zn)2n v(x) dx

=
yn+γ∫
yn

1
2n

v(x)
v(yn)

v(yn)
v(zn) dx

>

yn+γ∫
yn

1
2n

1
2M 2n dx

= γ

2M

for every n ∈ N, so lim infn→∞‖Ttnf‖p > 0 as desired.
Next consider the case X = C0,v(R+). The function f defined in the previous case is not continuous, 

though functions in C0,v(R+) must be: to obtain a function suitable for this case, we simply modify the 
function above to make it continuous.

More precisely, define a function f : R+ → R as follows. For each n ∈ N, define f on [zn − γ, zn] by 
letting f(zn) = f(zn − γ) = 0 and f(zn − γ

2 ) = 1/(v(zn)2n), and then letting f be linear from zn − γ to 
zn − γ

2 and from zn − γ
2 to zn. If x is not in [zn − γ, zn] for any n ∈ N, then f(x) = 0.

The function f is continuous. (In fact, it is piecewise linear.) We claim that f ∈ C0,v(R+) and that 
lim inft→∞‖Ttf‖ > 0.

For each n ∈ N, and every x ∈ [zn − γ, zn], |f(x)| ≤ 1/(v(zn)2n), so

sup {|f(x)|v(x) : x ∈ [zn − γ, zn]} ≤ sup
{

1
v(zn)2n v(x) : x ∈ [zn − γ, zn]

}

= sup
{

1
2n

v(x)
v(zn) : x ∈ [zn − γ, zn]

}

≤ sup
{

1
2n 2M : x ∈ [zn − γ, zn]

}

= M

2n−1 ,

as before, and this implies

lim
x→∞

|f(x)|v(x) = lim
n→∞

(
sup {|f(x)|v(x) : x ∈ [zn − γ, zn]}

)

≤ lim
n→∞

M

2n−1 = 0,

so that f ∈ C0,v(R+) as claimed.
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We omit the proof that lim inft→∞‖Ttf‖ > 0, as it is essentially the same as the previous case (the 
primary difference being that we must take supremums instead of taking integrals).

This completes the proof of (1) ⇔ (2).
That (7) ⇒ (6) is obvious.
To show (6) ⇒ (5), we prove the contrapositive. Suppose that (5) fails: i.e., suppose that T is an 

equicontinuous family of functions. Let ε > 0, and let K ⊆ X be compact. Note that the restriction of T
to K is uniformly equicontinuous. (The proof of this is essentially identical to the well-known proof that 
every continuous function defined on a compact metric space is uniformly continuous.) Pick δ > 0 such that 
for any f, g ∈ K, if ‖f − g‖

X
< δ then ‖Ttf − Ttg‖X

< ε for all t ∈ R+. There is some N ∈ N such that 
K can be covered by N open sets of diameter <δ. By our choice of δ, this means that any (t, ε)-separated 
subset of K has size at most N . As ε > 0 was arbitrary, it follows that h(T , K) = 0. As K was an arbitrary 
compact subset of X, it follows that h(T ) = 0.

That (5) ⇒ (4) is obvious.
To show (4) ⇒ (3), we prove the contrapositive (which is just a special case of the Banach-Steinhaus 

Theorem). Suppose that (3) fails. Then there is some B ≥ 0 such that ‖Ttf‖X
≤ B‖f‖

X
for all f ∈ X and 

all t ∈ R+. If f, g ∈ X and t ∈ R+, then,

‖Ttf − Ttg‖X
= ‖Tt(f − g)‖

X
≤ B‖f − g‖

X
.

It follows that for any given ε > 0, if ‖f − g‖
X

< ε/B, then ‖Ttf − Ttg‖X
< ε for all t ∈ R+. Hence T is 

uniformly equicontinuous.
To show (3) ⇒ (1), we again prove the contrapositive. Suppose (1) does not hold, which means there is 

some B > 0 with sup
{

v(x)
v(y) : y ≥ x

}
= B. For the first case, suppose X = Lp

v(R+). If f ∈ X and t ∈ R+, 
then,

‖Ttf‖p =
∞∫
0

|f(x + t)|pv(x) dx

=
∞∫
0

|f(x + t)|pv(x + t) v(x)
v(x + t) dx

≤ B

∞∫
0

|f(x + t)|pv(x + t) dx

= B

∞∫
t

|f(x)|pv(x) dx

≤ B

∞∫
0

|f(x)|pv(x) dx

= B‖f‖p.

It follows that ‖Ttf‖ ≤ B
1/p‖f‖. Hence T is uniformly bounded. The second case, X = C0,v(R+), is proved 

similarly, by replacing integrals with supremums.
It remains to show (1) ⇒ (7). The proof begins in a manner similar to the proof of (1) ⇒ (2) above. 

Suppose sup
{

v(x)
v(y) : y ≥ x

}
= ∞. Recall that the admissibility condition on v(x) means there exist some 

M ≥ 1 and w ∈ R+ such that v(x) ≤ Mewtv(x + t) for all t ≥ 0. This implies there is some γ > 0 such 
that, for any x ∈ R+ and any x′ ∈ [x, x + γ], v(x)

′ ≤ 2M .
v(x )
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Define two sequences 〈yn : n ∈ N〉 and 〈zn : n ∈ N〉 via recursion such that

◦ y1 < z1 < y2 < z2 < y3 < z3 < . . . ,
◦ zn < zn+1 − γ for all n ∈ N,

◦ v(yn)
v(zn) > 2n for all n ∈ N, and

◦ limn→∞(zn − yn) = ∞.

For each n ∈ N, let Jn = [zn−γ, zn] and define tn = zn−yn. Fix a sequence 〈an : n ∈ N〉 of positive integers 
such that

lim sup
n→∞

1
tn

log an = ∞.

For each n ∈ N and each 1 ≤ k ≤ an, let Jk
n =

[
zn − kγ

an
, zn − (k−1)γ

an

]
, so that the Jk

n form a division of 
Jn into exactly an adjacent closed intervals of equal width. To prove that T has infinite entropy, we consider 
a particular collection of functions that are zero everywhere except for on exactly one of the Jk

n for each n.
More specifically, let us consider the set C =

∏∞
n=1{1, 2, . . . , an} of all functions φ : N → N such that 

1 ≤ φ(n) ≤ an for all n ∈ N.
Consider the case X = Lp

v(R+). For each φ ∈ C, define a function fφ : R+ → R+ as follows:

fφ(x) =
{

(an/v(zn)2n)1/p if x ∈ J
φ(n)
n for some n ∈ N,

0 if not.

Let us check first that fφ ∈ Lp
v(R+) for every φ ∈ C. For each n ∈ N and each 1 ≤ k ≤ an,
∫
Jn

|f(x)|pv(x) dx =
∫
Jk
n

an
v(zn)2n v(x) dx

=
∫
Jk
n

an
2n

v(x)
v(zn) dx

≤
∫
Jk
n

an
2n 2M dx

= γ

an

anM

2n−1

= Mγ

2n−1 .

Hence

∞∫
0

|f(x)|pv(x) dx =
∞∑

n=1

∫
Jn

|f(x)|pv(x) dx ≤
∞∑

n=1

Mγ

2n−1 < ∞,

which means fφ ∈ Lp
v(R+).

Let K = {fφ : φ ∈ C}. We claim that K is a compact subset of Lp
v(R+), and that h(T , K) = ∞. This 

suffices to prove (7).
Note that C may be viewed as a topological space, where each set of the form {1, 2, . . . , an} is given the 

discrete topology, and the topology on C is the standard product topology. With this topology, C is compact. 
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(In fact, it is homeomorphic to the Cantor space.) Thus, to prove that K = {fφ : φ ∈ C} is a compact subset 
of X, it suffices to show that the mapping φ �→ fφ is continuous.

To show that the mapping φ �→ fφ is continuous, let fφ be an arbitrary point in the image of this 
mapping, and let ε > 0. Suppose ψ ∈ C and N ∈ N, and suppose φ(n) = ψ(n) for n = 1, 2, . . . , N . This 
implies that fφ and fψ agree on [0, min JN+1) = [0, zN+1 − γ). For the case X = Lp

v(R+), this implies

‖fφ − fψ‖ = ‖fφχ[zN+1−γ,∞) − fψχ[zN+1−γ,∞)‖

≤ ‖fφχ[zN+1−γ,∞)‖ + ‖fψχ[zN+1−γ,∞)‖

=

⎛
⎝ ∞∑

n=N+1

∫
Jn

|fφ(x)|pv(x) dx

⎞
⎠

1/p

+

⎛
⎝ ∞∑

n=N+1

∫
Jn

|fψ(x)|pv(x) dx

⎞
⎠

1/p

≤
( ∞∑

n=N+1

Mγ

2n−1

)1/p

+
( ∞∑

n=N+1

Mγ

2n−1

)1/p

= 2
(
Mγ

2N

)1/p

.

In particular, if N is sufficiently large then

φ(n) = ψ(n) for n = 1, 2, . . . , N implies ‖fφ − fψ‖ < ε.

But U = {ψ ∈ C : φ(n) = ψ(n) for n = 1, 2, . . . , N} is a basic open subset of C; so we have found an open 
U ⊆ C containing φ such that every member of U maps within ε of fφ in X. This shows that the mapping 
φ �→ fφ is continuous, as claimed. The case X = C0,v(R+) is handled similarly, by replacing integrations 
and summations with supremums. In either case, K is compact.

It remains to show that h(T , K) = ∞. To this end, we show first that for all sufficiently small ε, for any 
n ∈ N there is a (tn, ε)-separated subset of K of size an.

Fix ε with 0 < ε <
(

γ
M

)1/p, and let n ∈ N. For each i with 1 ≤ i ≤ an, fix some φi ∈ C such that 
φ(n) = i, and let S = {fφi

: 1 ≤ i ≤ an}. We claim that S is a (tn, ε)-separated subset of K. To see this, let 
1 ≤ i, j ≤ an with i 
= j, and observe that

‖Ttnfφi
− Ttnfφj

‖p

=
∞∫
0

|fφi
(x + tn) − fφj

(x + tn)|pv(x) dx

≥
yn+γ∫
yn

|fφi
(x + tn) − fφj

(x + tn)|pv(x) dx

=

yn− (i−1)γ
an∫

y − iγ

|fφi
(x + tn)|p v(x) dx
n an
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+

yn− (j−1)γ
an∫

yn− jγ
an

|fφj
(x + tn)|p v(x) dx

=

yn− (i−1)γ
an∫

yn− iγ
an

an
v(zn)2n v(x) dx +

yn− (j−1)γ
an∫

yn− jγ
an

an
v(zn)2n v(x) dx

=

yn− (i−1)γ
an∫

yn− iγ
an

an
2n

v(x)
v(yn)

v(yn)
v(zn) dx +

yn− (j−1)γ
an∫

yn− jγ
an

an
2n

v(x)
v(yn)

v(yn)
v(zn) dx

≥
yn− (i−1)γ

an∫
yn− iγ

an

an
2n

1
2M 2n dx +

yn− (j−1)γ
an∫

yn− jγ
an

an
2n

1
2M 2n dx

= γ

an

an
2M + γ

an

an
2M

= γ

M
,

from which it follows that S is a (tn, ε)-separated subset of K.
Recalling that stn,ε(T , K) denotes the largest size of a (tn, ε)-separated subset of K, we have stn,ε(T , K) ≥

|S| = an. Hence

lim sup
n→∞

1
tn

log stn,ε(T ,K) ≥ lim sup
n→∞

1
tn

an = ∞

(by our choice of the an). As in the proof of (1) ⇒ (2), observe that

2n <
v(yn)
v(zn) ≤ Mew(tn+γ)

for all n ∈ N. It follows that limn→∞ tn = ∞. From this and our observation above that
lim supn→∞

1
tn

log stn,ε(T , K) = ∞, we get

lim sup
t→∞

1
t

log st,ε(T ,K) = ∞.

As this holds for all sufficiently small values of ε (any ε with 0 < ε <
(

γ
M

)1/p),
h(T ,K) = lim

ε→0
lim sup
t→∞

1
t

log st,ε(T ,K) = ∞.

It follows that h(T ) = ∞, as claimed.
The case X = C0,v(R+) is very similar. We must simply be careful to define the functions fφ so that they 

are continuous. This can be done as follows: for each φ ∈ C, we define fφ so that on each interval Jφ(n)
n , f

maps the endpoints to zero, sends the midpoint to an/(v(zn)2n), and is linear in between. Then for x not 
in any Jφ(n)

n , let fφ(x) = 0. The remainder of the proof is essentially the same as for the case X = Lp
v(R+)

(the main difference, of course, being that we must replace our integrals signs with supremums). �



W. Brian, J.P. Kelly / J. Math. Anal. Appl. 487 (2020) 123981 15
4. The incompleteness of the three-tiered view

In this final section, we indicate several ways in which the three-tiered picture of Lp
v(R+) does not 

completely capture the varied possibilities for the dynamics of the translation operators on Lp
v(R+) and 

C0,v(R+).
Recall that a function T on a space X is topologically mixing if for all nonempty open U, V ⊆ X, 

Tn(U) ∩ V 
= ∅ for all sufficiently large n. This is a strengthening of topological transitivity. In [8], it was 
shown that the translation operators Tt on Lp

v(R+) or C0,v(R+) are all topological mixing if and only if 
limx→∞ v(x) = 0. Of course, this condition on v(x) is strictly weaker than the integrability condition that 
defines our strongest tier of chaos, but strictly stronger than the condition lim infx→∞ v(x) = 0 that defines 
the middle tier. Thus we have a type of chaotic behavior for Lp

v(R+) that fits strictly in between the top 
two of our three tiers of chaos.

Looking at the top tier of chaotic behaviors for Lp
v(R+) also highlights a difference between Lp

v(R+) and 
C0,v(R+). It is fairly easy to check that C0,v(R+) contains a nonzero periodic point if limx→∞ v(x) = 0. 
(Indeed, if limx→∞ v(x) = 0 then C0,v(R+) contains all constant functions, which are fixed by translation.) 
Thus Lp

v(R+) can exhibit the three distinct tiers of chaotic behavior in our picture, with a fourth possibility 
(mixing) in between the top two, but for C0,v(R+) the situation is different: at least some of the properties 
listed in the top tier are strictly weaker than the integrability of v(x).

Another notion of chaotic behavior, introduced in [18], is distributional chaos. Let μ denote Lebesgue 
measure on R+. We say that T has distributional chaos if there exists an uncountable set S ⊆ X such that 
for every f, g ∈ S with f 
= g, there is some δ > 0 such that

lim inf
t→∞

μ ({s ∈ [0, t] : d(Tsf, Tsg) < δ})
t

= 0

(i.e., f and g are often δ-separated), and for all ε > 0,

lim sup
t→∞

μ ({s ∈ [0, t] : d(Tsf, Tsg) < ε})
t

= 1

(i.e., f and g are often arbitrarily close). A single pair f, g of points with this property is called a distribu-
tionally scrambled pair.

Barrachina and Peris show in [2] that T can have distributional chaos without being hypercyclic. In [17], 
Marínez-Giménez, Oprocha, and Peris show that the backward shift operator on 	pv (the discrete analogue 
of Lp

v(R+)) can be hypercyclic and even topologically mixing, yet fail to have distributional chaos. The 
example they present could be adapted to show the same holds for the translation semigroup on Lp

v(R+). 
Thus the notion of distributional chaos is incomparable with our second tier of chaos, in that it neither 
implies the notions of chaos in that tier nor is implied by them.

Two points f, g ∈ X form a Li-Yorke scrambled pair if

lim inf
t→∞

d(Ttf, Ttg) = 0 and lim sup
t→∞

d(Ttf, Ttg) > 0.

This is a weaker condition on f and g than the one given above; i.e., every distributionally scrambled pair 
is also Li-Yorke scrambled.

The fundamental observation of Schweizer an Smítal in [18] is that if a map T : [0, 1] → [0, 1] has a 
distributionally scrambled pair, then it has nonzero topological entropy. Using Theorem 3.2, we establish 
an even stronger result for translations on Lp

v(R+) and C0,v(R+).
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Theorem 4.1. Let X denote one of the Banach spaces Lp
v(R+) or C0,v(R+), where v is an admissible weight 

function, and let T = {Tt : t ∈ R+} denote the semigroup of left translation operators on X. If there exists 
a Li-Yorke scrambled pair for T , then h(T ) = ∞.

Proof. Suppose there exist some f, g ∈ X that form a Li-Yorke scrambled pair for T . Then letting h = f−g, 
we have

lim sup
t→∞

‖Tth‖X
= lim sup

t→∞
d(Ttf, Ttg) > 0.

which implies that Tth does not converge to 0 as t → ∞. Thus by Theorem 3.2, h(T ) = ∞. �
Finally, let us look at what happens below the lowest tier of chaos included in our picture from Section 2, 

that is, translations on Lp
v(R+) and C0,v(R+) where sup

{
v(x)
v(y) : x ≤ y

}
= b for some b > 0. These dynamical 

systems have zero entropy, and every point tends to 0 under iteration. One might be tempted to think they 
are all helplessly tame, and can exhibit no dynamically interesting behavior. We consider two examples, 
and show that they can in fact behave rather differently.

Suppose X is a metric space and T : X → X is a mapping. Given ε > 0, a sequence 〈fi : 0 ≤ i ≤ n〉 of 
points in X is called an ε-chain from f0 to fn if d(T (fi), fi+1) < ε for every i < n. The idea is that an 
ε-chain is a finite piece of the orbit of f0, but computed with a small error at every step, an error of size 
less than ε. The map T is called chain transitive if for any f, g ∈ X and any ε > 0, there is an ε-chain from 
f to g.

It is fairly easy to check that every transitive dynamical system is also chain transitive. Thus, for Lp
v(R+), 

in our top two tiers of chaos every T ∈ T is chain transitive. We show now that chain transitivity may or 
may not hold in the non-chaotic zone beneath the bottom tier.

Example 4.2. Suppose v is a constant function, v(x) = c. Then we claim that every T ∈ T \ {T0} is chain 
transitive for X = Lp

v(R+). (The example can be modified to show the same for X = C0,v(R+), but we 
leave the details of this to the reader.) Fix T = Tt with t > 0. To prove T is chain transitive, we begin by 
showing that for every g ∈ X and ε > 0, there is an ε-chain from 0 to g. So let ε > 0 and let g ∈ X, and fix 
n ∈ N larger than ‖g‖/ε. For each i ≤ n, let

gi(x) = i

n
T−(n−i)g(x) =

{
0 if x < (n− i)t,
i
n g(x− (n− i)t) if x ≥ (n− i)t.

(In other words, gi is a copy of g that has been scaled down by a factor of i/ε, and then shifted to the right 
by (n − i)t units.) We claim that 〈gi : 0 ≤ i ≤ n〉 is the required ε-chain from 0 to g. It is clear that g0 = 0
and that gn = g. For each i ≤ n, we have

Tgi = i
i+1 gi+1.

Furthermore, ‖T−1
s g‖ = ‖g‖ for all s ∈ R+ (because v(x) is constant), and it follows that

‖gi‖ = ‖ i
nT

−(n−i)g‖ = i
n‖T−(n−i)g‖ = i

n‖g‖

for every i. Hence

‖Tgi − gi+1‖ = ‖ i gi+1 − gi+1‖ = 1 ‖gi+1‖ = 1 i+1‖g‖ = 1 ‖g‖ < ε.
i+1 i+1 i+1 n n
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Thus 〈gi : 0 ≤ i ≤ n〉 is an ε-chain from 0 to g, as claimed. Next note that for any f ∈ X and any ε > 0, there 
is an ε-chain from f to 0. The easiest way to see this is to observe that limt→∞‖Ttf‖ = 0 by Theorem 3.2, 
so there is some n ∈ N such that ‖Tnf‖ < ε, in which case

〈f, Tf, T 2f, . . . , Tn−1f, 0〉

is an ε-chain from f to 0. Finally, if f, g ∈ X and ε > 0, then we may obtain an ε-chain from f to g by 
concatenating an ε-chain from f to 0 with an ε-chain from 0 to g. Hence T is chain transitive, as claimed.

Example 4.3. Suppose v(x) = cx for some c > 1. Then we claim that no T ∈ T \ {T0} is chain transitive 
for X = Lp

v(R+). (We leave it to the reader to show that a similar argument proves the same thing for 
X = C0,v(R+).) Fix T = Tt with t > 0. To prove T is not chain transitive, first observe that for any h ∈ X,

‖Th‖p =
∞∫
0

|h(x + t)|pcx dx

= c−t

∞∫
0

|h(x + t)|pcx+t dx

= c−t

∞∫
t

|h(x)|pcx dx

= c−t‖h‖p.

Thus, for any f, g ∈ X,

‖Tf − Tg‖ = ‖T (f − g)‖ = c−
t/p‖f − g‖.

(This shows that T is a contraction mapping.) Let f ∈ X\{0}. We claim that for all sufficiently small ε > 0, 
there is no ε-chain from 0 to f . Let 0 < ε < (1

2 − 1
2c

−t/p)‖f‖. (Note that 0 < c−t/p < 1, because t and p are 
both positive.) If ‖g‖ < 1

2‖f‖, then

‖Tg‖ = c−t/p‖g‖ < 1
2c

−t/p‖f‖ < 1
2‖f‖ − ε.

This implies that if 〈gi : 0 ≤ i ≤ n〉 is an ε-chain, then for any i < n,

‖gi‖ < 1
2‖f‖ implies ‖gi+1‖ < 1

2‖f‖.

Thus any ε-chain beginning in the open set B(0, 12‖f‖) must remain in that open set. In particular, there 
is no ε-chain from 0 to f .
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