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We consider convex series of molecules in Lipschitz-free spaces, i.e. elements of the 
form μ =

∑
n λn

δxn−δyn
d(xn,yn) such that ‖μ‖ =

∑
n |λn|. We characterise these elements 

in terms of geometric conditions on the points xn, yn of the underlying metric 
space, and determine when they are points of Gâteaux differentiability of the norm. 
In particular, we show that Gâteaux and Fréchet differentiability are equivalent 
for finitely supported elements of Lipschitz-free spaces over uniformly discrete and 
bounded metric spaces, and that their tensor products with Gâteaux (resp. Fréchet) 
differentiable elements of a Banach space are Gâteaux (resp. Fréchet) differentiable 
in the corresponding projective tensor product.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A pointed metric space is just a metric space M in which we distinguish an element, called 0. Given 
a pointed metric space M and a Banach space X, we write Lip(M, X) (Lip(M) when X = R) to denote 
the Banach space of all Lipschitz maps f : M −→ X which vanish at 0, endowed with the Lipschitz norm 
defined by

‖f‖L := sup
{
‖f(x) − f(y)‖

d(x, y) : x, y ∈ M, x �= y

}
.
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We denote by δ the canonical isometric embedding of M into Lip(M)∗, which is given by 〈f, δ(x)〉 = f(x)
for x ∈ M and f ∈ Lip(M). We denote by F(M) the norm-closed linear span of δ(M) in the dual space 
Lip(M)∗, which is usually called the Lipschitz-free space over M ; for background on this, see the survey [9]
and the book [22] (where it receives the name of “Arens-Eells space”). It is well known that F(M) is an 
isometric predual of the space Lip(M) [9, p. 91]. We will write δx := δ(x) for x ∈ M , and use the name 
molecule for those elements of F(M) of the form

mx,y := δx − δy
d(x, y)

for x, y ∈ M such that x �= y.
A fundamental result in the theory of Lipschitz-free spaces is that, roughly speaking, Lipschitz-free 

spaces linearise Lipschitz maps. In a more precise language, given a metric space M , a Banach space X and 
a Lipschitz map f : M −→ X such that f(0) = 0, there exists a bounded operator f̂ : F(M) −→ X such 
that ‖f̂‖ = ‖f‖L defined by

f̂(δm) := f(m) , m ∈ M.

Moreover, the mapping f �−→ f̂ is an onto linear isometry between Lip(M, X) and the space of bounded 
operators L(F(M), X). This linearisation property makes Lipschitz-free spaces a precious magnifying glass 
to study Lipschitz maps between metric spaces, and for example it relates some well-known open problems 
in the Banach space theory to some open problems about Lipschitz-free spaces (see [9]). Because of this 
reason, the isomorphic structure of those spaces has been intensively studied in the last 20 years (see e.g. 
[10,14,16]). In addition, the isometric structure of Lipschitz-free spaces has also been the subject of recent 
research (see [1,2,7,8,18]). Results about the geometry of Lipschitz-free spaces (to be more precise, about 
its extremal structure) have been applied to the study of norm-attainment of Lipschitz functions [5,9,13]
and composition operators between spaces of Lipschitz functions [12,19,22].

In this paper we focus on the analysis of points of Gâteaux and Fréchet differentiability in the unit ball 
of Lipschitz-free spaces. The first results in this line appeared in [4], where an example of a metric space M
is exhibited such that F(M) has a point of Fréchet differentiability and it is shown that this is only possible 
when M is bounded and uniformly discrete. This was extended in [18, Theorem 4.3] where it is proved that, 
for such M , a convex combination of the form 

∑n
i=1 λimxi,0 is a point of Fréchet differentiability if, and 

only if, it is a point of Gâteaux differentiability if, and only if, M is the union of the segments [0, xi].
Our goal in this paper is to extend this result to an arbitrary element μ ∈ SF(M) of finite support. One 

of the main difficulties lies in determining when a convex combination of molecules 
∑n

i=1 λimxi,yi
has norm 

1, which clearly implies that ‖mx1,y1 + . . .+mxn,yn
‖ = n. To do so, we draw inspiration from [18, Theorem 

3.1], where a metric characterisation of octahedrality in F(M), which in particular involves molecules at 
distance almost 2, is given in terms of a geometric condition on M . Motivated by that result, we prove in 
Theorem 2.4 a characterisation of those elements μ which are the limit of a convex series of molecules, i.e. 
μ =

∑
n λnmxn,yn

(finite or infinite sum) for which ‖μ‖ =
∑

n |λn|. As an easy corollary of Theorem 2.4, we 
rediscover the characterisation of sequences of molecules which are isometrically equivalent to the �1 basis 
given in [17].

In Section 3 we prove our desired result. Given a uniformly discrete and bounded metric space M , an 
element of finite support μ =

∑n
i=1 λimxi,yi

∈ SF(M) is a point of Fréchet differentiability if and only if 
it is a point of Gâteaux differentiability, and this is characterised by a certain geometric condition on the 
pairs of points (xi, yi) that implies, in particular, that M is contained in the union of the segments spanned 
by these points (see Theorem 3.5 for the formal statement). This extends [18, Theorem 4.3] to arbitrary 
finitely supported elements. Furthermore, we explore whether this result can be extended from elements of 
finite support to elements which are limit of a convex series of molecules. In this sense, we prove a similar 
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condition for an element μ =
∑∞

n=1 λnmxn,yn
to be a point of Gâteaux differentiability that implies that 

M must be almost contained in the union of finitely many segments spanned by the points xi and yi (cf. 
Theorem 3.1). We also provide examples, in the infinite setting, of points of Fréchet differentiability and 
points where the norm is Gâteaux but not Fréchet differentiable.

Finally, in Section 4, we show how to apply our techniques to obtain canonical examples of points of 
Gâteaux (resp. Fréchet) differentiability in projective tensor products F(M) ⊗̂π X, when X is a Banach 
space with points of Gâteaux (resp. Fréchet) differentiability and F(M) has finitely supported points of 
Fréchet differentiability (see Theorem 4.1). Let us recall that this is not true in general for projective tensor 
products (cf. Remark 4.2).

Notation: Given a metric space M and two points x, y ∈ M , the sets of the form

[x, y] = {z ∈ M : d(x, z) + d(y, z) = d(x, y)}

will be called (metric) segments. Also, given ε > 0, we will consider the sets

[x, y]ε := {z ∈ M : d(x, z) + d(y, z) < d(x, y) + ε}.

We say that M is uniformly discrete if inf{d(x, y) : x, y ∈ M, x �= y} > 0. If M is a bounded metric space, 
we will denote its diameter by diam(M).

We will consider only real Banach spaces, and denote by BX and SX the closed unit ball and the unit 
sphere of a Banach space (X, ‖·‖). Also, we will denote by X∗ the topological dual of X. We say that 
x ∈ X is a point of Gâteaux (resp. Fréchet) differentiability of X if the norm ‖·‖ is Gâteaux (resp. Fréchet) 
differentiable at x. By the convexity of ‖·‖, Gâteaux differentiability at x is equivalent to the existence of 
the limit

lim
t→0

‖x + th‖ − ‖x‖
t

for every h ∈ X, and Fréchet differentiability corresponds to the limit being uniform for h ∈ SX . By 
Šmulyan’s lemma [6, Theorem I.1.4], x ∈ SX is a point of Gâteaux differentiability of X if, and only if, 
there exists a unique f ∈ SX∗ such that f(x) = 1, and it is a point of Fréchet differentiability if, and only if

inf
α>0

diam({f ∈ SX∗ : f(x) > 1 − α}) = 0.

2. A metric characterisation of convex series of molecules

Let M be a metric space. In this section we will study the elements μ ∈ SF(M) which are limit in norm 
of a convex series; in other words, elements for which there exist a pair of sequences (xn), (yn) in M such 
that xn �= yn for every n ∈ N and a sequence (λn) of real numbers such that

μ =
∞∑

n=1
λnmxn,yn

where λn ≥ 0 and
∞∑

n=1
λn = 1. (1)

It is well known that any μ ∈ SF(M) may be expressed as a series of type (1) where 
∑∞

n=1 λn ≤ 1 + ε, for 
any ε > 0 (see e.g. [2, Lemma 2.1]), but ε = 0 is not always attainable (one such case will be described in 
Example 3.2). Let us also recall that any element of SF(M) with finite support can be expressed as a finite 
sum of type (1) with 

∑N
n=1 λn = 1, e.g. by [22, Proposition 3.16].

Remark 2.1. Elements of the form (1) appear naturally in certain problems about the geometry of F(M):



4 R.J. Aliaga, A. Rueda Zoca / J. Math. Anal. Appl. 489 (2020) 124171
(a) An open problem that goes back to the first edition of the book [22] in 1999 asks whether every extreme 
point of BF(M) is a molecule. The answer is positive for the limit of a convex series of molecules [3, 
Remark 3.4].

(b) Given a metric space M and a Banach space X, it is said that a Lipschitz function f : M −→ X strongly 
attains its norm if there exists a pair of different points x �= y ∈ M such that

‖f(mx,y)‖ = ‖f(x) − f(y)‖
d(x, y) = ‖f‖L.

Denote by SNA(M, X) the set of all the strongly norm attaining Lipschitz mappings and NA(F(M), X)
the set of those bounded operators from F(M) to X which attain their norm. It is known that 
SNA(M, X) ⊆ NA(F(M), X) and the inclusion may be strict in general (see [13]). However, if an 
element f ∈ NA(F(M), X) attains its norm at an element which is the limit of a convex series of 
molecules, then an easy convexity argument shows that f ∈ SNA(M, X).

The following general lemma will be central to our characterisation of sums of convex series in F(M). It 
will also be used in the next section to characterise points of Gâteaux differentiability:

Lemma 2.2. Let βjk, j, k ∈ N be real numbers such that βjj = 0 for every j ∈ N. Then there exist real 
numbers αj, j ∈ N such that

αk ≤ αj + βkj (2)

for j, k ∈ N if and only if for every finite sequence i1, . . . , im of natural numbers we have

βi1i2 + βi2i3 + . . . + βim−1im + βimi1 ≥ 0. (3)

Moreover, the αj are unique (up to an additive constant) if and only if for every pair of different numbers 
j, k ∈ N and every ε > 0 there is a finite sequence i1, . . . , im of natural numbers that contains both j and k
and such that

βi1i2 + βi2i3 + . . . + βim−1im + βimi1 ≤ ε. (4)

Proof. To see that (2) implies (3), just notice that

m−1∑
k=1

βikik+1 ≥
m−1∑
k=1

(αik − αik+1) = αi1 − αim ≥ −βimi1 .

Now suppose (3) holds, and define for j, k ∈ N

Bjk := inf
{
βi1i2 + βi2i3 + . . . + βim−1im : i1 = j, im = k

}
(5)

where the infimum runs over all finite sequences i1, . . . , im of natural numbers beginning with j and ending 
with k. If a sequence contains a repeated index ir = is, r < s then by (3)

βi1i2 + . . . + βim−1im ≥ βi1i2 + . . . + βir−1ir + βisis+1 + . . . + βim−1im

(we have removed the r-th to (s − 1)-th terms on the right hand side), so the infimum may be restricted to 
sequences with no repeated indexes. Also, condition (3) implies that the infimum exists and Bjk ≥ −βkj ; 
since Bjk ≤ βjk by definition, we get in particular Bjj = 0 for any j. Moreover we have
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Bjl + Blk ≥ Bjk (6)

for any j, k, l ∈ N: indeed, let ε > 0 and choose finite sums such that

βji2 + . . . + βim−1l < Bjl + ε

βli′2 + . . . + βi′
m′−1k

< Blk + ε

then we have

Bjk ≤ βji2 + . . . + βim−1l + βli′2 + . . . + βi′
m′−1k

< Bjl + Blk + 2ε

as this is one of the sums in the definition (5).
Let us now fix any q ∈ N and choose αj = Bjq for j ∈ N. Then for any j, k ∈ N we have

βkj + αj = βkj + Bjq ≥ Bkj + Bjq ≥ Bkq = αk

where we have used (6), and so (2) holds. This proves existence. Alternatively, if we take αj = −Bqj then

αj = −Bqj ≥ −Bqk −Bkj ≥ −Bqk − βkj = αk − βkj

so this choice also satisfies (2). Therefore, if the solution is unique up to adding a constant, then we must 
have Bjq −Bkq = −Bqj + Bqk for any j, k, q, and in particular Bjk + Bkj = 0 taking q = k. Conversely, let 
(αj) be a solution of (2), then for any j �= k and any finite sequence i1, . . . , im such that i1 = j, im = k we 
have

αj − αk =
m−1∑
r=1

(αir − αir+1) ≤ βi1i2 + . . . + βim−1im

and taking the infimum yields αj − αk ≤ Bjk. Interchanging the role of j and k we get αj − αk ≥ −Bkj . 
Therefore, if Bjk + Bkj = 0 then the value of αj − αk is really uniquely determined and equal to Bjk.

We have thus shown that the solution is unique if and only if Bjk + Bkj = 0 for any j, k ∈ N. Since we 
always have Bjk +Bkj ≥ 0 by (3), this condition is equivalent to Bjk +Bkj ≤ 0 which is clearly equivalent 
to (4). This ends the proof. �

If condition (4) does not hold then the solution (αn) is not unique. In fact, it is easy to check that any 
choice of values such that αj − αk ∈ [−Bkj , Bjk] is a valid solution, although we will not need this fact.

Lemma 2.2 is also valid in a finite setting and the existence condition remains unchanged in that case, 
but we can be a bit more explicit with the uniqueness condition:

Lemma 2.3. Let n ∈ N and let βjk, j, k ∈ {1, . . . , n} be real numbers such that βjj = 0 for every j ∈
{1, . . . , n}. Then there exist real numbers α1, . . . , αn, such that

αk ≤ αj + βkj

if and only if for every finite sequence i1, . . . , im ∈ {1, . . . , n} we have

βi1i2 + βi2i3 + . . . + βim−1im + βimi1 ≥ 0.
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Moreover, the αj are unique (up to an additive constant) if and only if for every pair of different numbers 
j, k ∈ {1, . . . , n} there is a finite sequence of different numbers i1, . . . , im ∈ {1, . . . , n} that contains both j
and k and such that

βi1i2 + βi2i3 + . . . + βim−1im + βimi1 = 0.

In that case we have αir = αir+1 + βirir+1 for r = 1, . . . , m − 1 and αim = αi1 + βimi1 .

Proof. The same argument is valid as in the infinite case, but there are now only finitely many sequences 
of different elements of {1, . . . , n}, so the infimum in (5) is attained and one may take ε = 0 in (4). Finally, 
notice that if Bjk = βji2 + . . . + βim−1k is any expression minimizing (5) then

0 = Bjk + Bkj = βji2 + . . . + βim−1k + Bkj

≥ Bji2 + . . . + Bim−1k + Bkj ≥ Bjj = 0

implies that βirir+1 = Birir+1 , and this proves the last statement. �
We can now state the promised geometric characterisation of sums of convex series of molecules in F(M):

Theorem 2.4. Let M be a pointed metric space and (xn, yn)n∈I be a finite or infinite sequence of pairs of 
distinct points in M . Then the following are equivalent:

(i) there is f ∈ SLip(M) such that f(mxn,yn
) = 1 for every n ∈ I,

(ii) ‖
∑

n λnmxn,yn
‖ = 1 for some choice of λn > 0 such that 

∑
n λn = 1,

(iii) ‖
∑

n λnmxn,yn
‖ = 1 for any choice of λn ≥ 0 such that 

∑
n λn = 1,

(iv) for every finite sequence i1, . . . , im of indices in I we have

d(xi1 , yi1) + d(xi2 , yi2) + . . . + d(xim , yim) ≤ d(xi1 , yi2) + d(xi2 , yi3) + . . . + d(xim , yi1). (7)

Notice that the equivalence of properties (i)-(iii) (which is obvious) already implies that they must be 
equivalent to some geometric condition on the pairs (xn, yn) that is independent of their amount. The 
resulting property, described in (iv), is known in optimal transport theory as cyclical monotonicity, see e.g. 
[21, Definition 5.1]; it may also be regarded as a generalized form of the long trapezoid property (LTP) 
introduced in [18].

Proof of Theorem 2.4. It is clear that (i)-(iii) are equivalent.
(i)⇒(iv): Suppose (i) holds. Let αi = f(yi) and βij = d(xi, yj) − d(xi, yi) for i, j ∈ I. By (i) we have 

f(xi) = αi + d(xi, yi), and

1 = ‖f‖L ≥ f(xi) − f(yj)
d(xi, yj)

= αi − αj + d(xi, yi)
d(xi, yj)

hence αi ≤ αj +βij . Apply Lemma 2.2 or Lemma 2.3 (depending on whether I is infinite or finite) to deduce 
inequality (3), which is the same as (7) after rearranging terms.

(iv)⇒(i): Again, let βij = d(xi, yj) − d(xi, yi) so that inequalities (7) and (3) are equivalent, and use 
Lemma 2.2 or Lemma 2.3 to obtain real numbers αn, n ∈ I such that αi ≤ αj + βij for i, j ∈ I. Now define 
a function f on the set {xi, yi : i ∈ I} by f(yi) = αi and f(xi) = αi + d(xi, yi).

Let us first check that f is well defined, i.e. that there are no conflicting assignments of values of f . We 
need to distinguish three cases:
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Case 1: Assume that yj = yk for some j �= k ∈ I. Then

βjk = d(xj , yk) − d(xj , yj) = d(xj , yj) − d(xj , yj) = 0,

hence αj ≤ αk + βjk = αk, and similarly αk ≤ αj . Thus αj = αk and there is no conflict.

Case 2: Assume that xj = xk for some j �= k ∈ I. In this case

βkj = d(xk, yj) − d(xk, yk) = −(d(xk, yk) − d(xk, yj))

= −(d(xj , yk) − d(xj , yj))

= −βjk.

Now αj ≤ αk + βjk ≤ αj + βkj + βjk = αj , so

αj = αk + βjk = αk + d(xj , yk) − d(xj , yj).

Therefore αj + d(xj , yj) = αk + d(xk, yk) and the definitions of f(xj) and f(xk) agree.

Case 3: Assume that yj = xk for j �= k ∈ I. On one hand, we have

αj ≤ αk + βjk = αk + d(xj , yk) − d(xj , yj) ≤ αk + d(yk, yj) = αk + d(xk, yk)

On the other hand

αj ≥ αk − βkj = αk − (d(xk, yj) − d(xk, yk)) = αk + d(xk, yk).

Therefore f(yj) = αj and f(xk) = αk + d(xk, yk) do not conflict with each other.

Next, let us check that ‖f‖L = 1. Indeed, for i, j ∈ N we have f(mxi,yi
) = 1 and

• f(xi) − f(yj) = αi − αj + d(xi, yi) ≤ βij + d(xi, yi) = d(xi, yj),
• f(yi) − f(xj) = αi − αj − d(xj , yj) ≤ βij − d(xj , yj) ≤ d(yi, xj),
• f(xi) − f(xj) = αi − αj + d(xi, yi) − d(xj , yj) ≤ d(xi, xj),
• f(yi) − f(yj) = αi − αj ≤ βij ≤ d(yi, yj)

as is straightforward to check. Now use McShane’s theorem (see e.g. [22, Theorem 1.33]) to extend f to a 
1-Lipschitz function on M and subtract a constant so that f(0) = 0. The resulting f ∈ SLip(M) still satisfies 
f(mxi,yi

) = 1 for every i ∈ I as required. �
Remark 2.5. Since any finitely supported element μ ∈ SF(M) can be written as a finite sum 

∑
n λnmxn,yn

where 
∑

n λn = 1 and xn, yn sweep over the support of μ, Theorem 2.4 implies that it is always possible to 
organize any given finite subset of points of M into pairs (xn, yn) in such a way that (7) holds.

As a first application of Theorem 2.4, we can obtain a precise description of those sequences of molecules 
that are isometrically equivalent to the �1 basis. To achieve that, we use the following standard lemma that 
we state without proof:

Lemma 2.6. Let X be a Banach space and let (xn) be a sequence in SX . The following assertions are 
equivalent:

(i) The sequence (xn) is isometrically equivalent to the �1 basis.
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(ii) For every sequence (σ(n)) in {−1, 1} we can find a functional f ∈ SX∗ such that f(xn) = σ(n) for 
every n ∈ N.

Combining this with Theorem 2.4, the following is immediate:

Corollary 2.7. Let M be a pointed metric space and (xn, yn) be a sequence of pairs of different points in M . 
The following are equivalent:

(i) The sequence (mxn,yn
) is isometrically equivalent to the �1 basis.

(ii) For every sequence (σ(n)) in {−1, 1} there exists f ∈ SLip(M) such that f(mxn,yn
) = σ(n) for every 

n ∈ N.
(iii) For every choice of {uk, vk : k ∈ N} such that {uk, vk} = {xk, yk} for every k ∈ N, and for every finite 

sequence of numbers i1, . . . , im in N, we have

d(ui1 , vi1) + d(ui2 , vi2) + . . . + d(uim , vim) ≤ d(ui1 , vi2) + d(ui2 , vi3) + . . . + d(uim , vi1).

The equivalence (i)⇔(iii) is exactly the same one that is given (using a different terminology) in Theorem 
2.1 of the recent preprint [17], which is in turn based on a result from [15]. Note that we only characterise �1
bases of molecules while the result in [17] is a bit more general, as it also says that whenever F(M) contains 
an isometric �1 basis, it must contain in particular one consisting only of molecules.

3. Points of Gâteaux and Fréchet differentiability

In this section we will study necessary and sufficient conditions for the limit of a convex series of molecules 
of the form (1) to be a point of Gâteaux (resp. Fréchet) differentiability of the norm of F(M). Consequently, 
throughout the section, when we write μ =

∑
n λnmxn,yn

we will assume that μ is the limit of a convex 
series of molecules, i.e. the previous series is norm convergent and ‖μ‖ =

∑
n λn. The amount of summands 

can be finite or infinite, but in any case we will assume without loss of generality that λn > 0 for all n. So, 
according to Theorem 2.4, the sequences of points (xn) and (yn) will satisfy (7). We will make use of the 
previous fact without any further reference.

With this notation in mind, let us begin by looking for a characterisation of the fact that μ is a point of 
Gâteaux differentiability in terms of a geometric condition on the sequences of points (xn), (yn). Note first 
that this happens if and only if there is a unique f ∈ SLip(M) such that f(μ) = 1. In view of the proof of 
Theorem 2.4, we will need to involve the condition of uniqueness appearing in Lemma 2.2. If that condition 
holds, then f will be uniquely defined in 

⋃
n[xn, yn]: indeed, if f(mxi,yi

) = 1 then f(mxi,z) = f(mz,yi
) = 1

for every element z ∈ [xi, yi] (see e.g. [13, Lemma 2.2]). Thus, if we require to M be contained in 
⋃

n[xn, yn], 
then the uniqueness of the Lipschitz function strongly attaining its norm simultaneously at every mxn,yn

should imply that μ is a point of Gâteaux differentiability.
The previous remarks suggest the main idea behind the following result.

Theorem 3.1. Let M be a pointed metric space, let μ ∈ SF(M) be of the form (1), and let f ∈ SLip(M) be 
such that f(μ) = 1. Then μ is a point of Gâteaux differentiability if and only if the following two conditions 
hold for every ε > 0:

(i) for every pair of different numbers j, k ∈ N there is a finite sequence i1, . . . , im in N that contains j
and k and such that

d(xi1 , yi1) + d(xi2 , yi2) + . . . + d(xim , yim) > d(xi1 , yi2) + d(xi2 , yi3) + . . . + d(xim , yi1) − ε,
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(ii) for every x ∈ M there are s, t ∈ {x1, y1, x2, y2, . . .} such that x ∈ [s, t]ε and f(t) − f(s) > d(t, s) − ε.

Proof. Denote N = {x1, y1, x2, y2, . . .}, αi = f(yi) and βij = d(xi, yj) − d(xi, yi). Recall that μ is a point of 
Gâteaux differentiability if and only if f is unique. So assume that f is unique, then condition (i) follows 
immediately from Lemma 2.2. To see condition (ii), let g1 and g2 be the largest and smallest 1-Lipschitz 
extensions of f�N to M , respectively, given by

g1(x) = inf
p∈N

(f(p) + d(p, x))

g2(x) = sup
p∈N

(f(p) − d(p, x))
(8)

for x ∈ M , and note that g1 = g2 by assumption. Now fix x ∈ M and let s, t ∈ N be such that g1(x) + ε
2 >

f(t) + d(t, x) and g2(x) − ε
2 < f(s) − d(s, x). Then

ε > f(t) + d(t, x) − g1(x) + g2(x) − f(s) + d(s, x)

= f(t) − f(s) + d(t, x) + d(s, x)

≥ d(t, x) + d(s, x) − d(t, s)

therefore x ∈ [s, t]ε, and f(s) − f(t) > d(t, x) + d(s, x) − ε ≥ d(s, t) − ε.
Now assume that conditions (i) and (ii) hold. Let x ∈ M , ε > 0, then by (ii) there are s, t ∈ N such that 

x ∈ [s, t]ε and f(t) − f(s) > d(t, s) − ε. Let g ∈ SLip(M) be such that g(μ) = 1. By (i) and Lemma 2.2 we 
have g�N = f�N and in particular g(s) = f(s) and g(t) = f(t). Therefore

1 ≥ d(x, s)
d(x, s) + d(x, t)g(ms,x) + d(x, t)

d(x, s) + d(x, t)g(mx,t)

= d(s, t)
d(x, s) + d(x, t)g(ms,t)

= d(s, t)
d(x, s) + d(x, t)f(ms,t) >

d(t, s) − ε

d(x, s) + d(x, t) > 1 − 2ε
d(s, t) + ε

and it follows by a standard convexity argument that g(ms,x), g(mx,t) are both larger than 1 − ε′, where

ε′ = d(x, s) + d(x, t)
min {d(x, s), d(x, t)} · 2ε

d(s, t) + ε
<

2ε
min {d(x, s), d(x, t)} .

From g(ms,x) > 1 − ε′ and g(s) = f(s) we get

f(s) − d(s, x) ≤ g(x) < f(s) − (1 − ε′)d(s, x) = f(s) − d(s, x) + ε′d(s, x)

and, since this also applies to the case g = f , we have |g(x) − f(x)| < ε′d(s, x). A similar argument shows 
that g(mx,t) > 1 − ε′ and g(t) = f(t) imply that |g(x) − f(x)| < ε′d(t, x). Taking the minimum of these two 
bounds yields

|g(x) − f(x)| < ε′ · min {d(x, s), d(x, t)} < 2ε.

Since x, ε and g were arbitrary, we conclude that f is unique and this ends the proof. �
We have thus characterised those points of Gâteaux differentiability that may be expressed in the form 

(1). The following example shows that not all points of Gâteaux differentiability may be written as the limit 
of a convex series of molecules:
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Example 3.2. Let M = [0, 1]. It is well known (see e.g. [9]) that there is an onto linear isometry Φ :
L1([0, 1]) −→ F(M) given by Φ(χ[0,x]) = δx for x ∈ M (where χ denotes a characteristic function), whose 
adjoint operator Φ∗ : Lip(M) −→ L∞([0, 1]) is given by Φ(f) = f ′. Let C be a nowhere dense closed subset 
of [0, 1] with positive Lebesgue measure, e.g. a “fat Cantor set” (see e.g. [22, Example 1.40] for one possible 
construction) and denote D = [0, 1] \ C. Define f = χC − χD ∈ SL1([0,1]) and let μ = Φ(f) ∈ SF(M). We 
claim that μ is a point of Gâteaux differentiability that cannot be written as the limit of a convex series of 
molecules. This will be proved in two steps:

Step 1: μ is a point of Gâteaux differentiability.

Since Φ is an onto isometry, it is enough to prove that f is a point of Gâteaux differentiability in L1([0, 1]). 
But notice that if g ∈ SL∞([0,1]) satisfies that 〈f, g〉 =

∫ 1
0 gf dm = 1 (where m is the Lebesgue measure) 

then g = 1 a.e. on C and g = −1 a.e. on D. So g = f is unique in SL∞([0,1]) and Šmulyan’s lemma yields 
the desired result.

Step 2: μ is not the limit of a convex series of molecules.

Assume for contradiction that μ =
∑∞

n=1 λnmxn,yn
where xn < yn, 

∑∞
n=1 |λn| = 1 and λn �= 0 (but they 

may be negative). Denote In = [xn, yn]. By the definition of Φ we have

f = Φ−1(μ) =
∞∑

n=1
λnΦ−1(mxn,yn

) =
∞∑

n=1
(−λn) χIn

d(xn, yn) .

Evaluating against g = f seen as an element of SL∞([0,1]), we get that

1 = 〈f, g〉 =
∞∑

n=1
(−λn) 1

d(xn, yn)

yn∫
xn

f dm =
∞∑

n=1
λn

m(In ∩D) −m(In ∩ C)
d(xn, yn) .

Taking into account that each term multiplying λn has absolute value less or equal to 1, we get that

m(In ∩D) −m(In ∩ C)
d(xn, yn) = sign(λn)

for all n. Notice that, since D is open and dense, m(In ∩D) > 0 for every n ∈ N. Therefore

sign(λn) · d(xn, yn) = m(In ∩D) −m(In ∩ C)

> −m(In ∩D) −m(In ∩ C) = −m(In) = −d(xn, yn)

and thus λn > 0 for every n ∈ N. But then

m(In ∩D) + m(In ∩ C) = m(In) = d(xn, yn) = m(In ∩D) −m(In ∩ C)

shows that m(In ∩C) = 0 for every n ∈ N. Now define h = χC ∈ L∞([0, 1]). Then 〈χIn , h〉 =
∫ yn

xn
χC dm =

m(In ∩ C) = 0, and so

0 =
〈 ∞∑

n=1
(−λn) χIn

d(xn, yn) , h
〉

= 〈f, h〉 = m(C),

a contradiction. Consequently, μ is not the limit of a convex series of molecules, as claimed.
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Remark 3.3. It is also possible to construct an example of point of Gâteaux differentiability in F([0, 1]) by 
making use of the theory of strong norm attainment (see Remark 2.1). To this end, pick a measurable set 
A ⊂ [0, 1] such that 0 < m(A ∩ I) < m(I) holds for every open interval I ⊂ [0, 1]. Let f = χA − χ[0,1]\A ∈
L1([0, 1]) and μ = Φ(f), using the notation of Example 3.2. Then the same argument shows that μ is 
a point of Gâteaux differentiability of F(M). However, μ is not the sum of a convex series of molecules, 
because otherwise Φ−1(f) would be a strongly norm-attaining Lipschitz function, contradicting the fact that 
d(f, SNA([0, 1], R)) = 1 as is proved in [9, p. 109]. We thank Miguel Martín for pointing out this example 
to us.

In view of [18, Theorem 4.3], we may ask whether, under the assumptions of Theorem 3.1, μ is actually a 
point of Fréchet differentiability. Let us recall that it is only possible for points of Fréchet differentiability to 
exist in F(M) when M is uniformly discrete and bounded [4, Theorem 2.4]. The following example reveals 
that even in that case the answer to our question is negative in general. This proves that an extension of 
[18, Theorem 4.3] to the infinitely supported setting would be false.

Example 3.4. Consider M := N ∪{0} with d(n, 0) = 1 and d(m, n) = 2 for every m �= n ∈ N. Then F(M) is 
isometrically isomorphic to �1, so the unit ball of F(M) does not have any point of Fréchet differentiability 
(cf. e.g. [6, Example I.1.6(c)]). However μ =

∑∞
n=1

δn
2n is a point of Gâteaux differentiability, as it is clear 

that if f(μ) = 1 and f ∈ SLip(M) then f(n) = 1 holds for every n ∈ N.

In spite of this example, it is possible to extend [18, Theorem 4.3] and show that Fréchet and Gâteaux 
differentiability are indeed equivalent in the finitely supported setting:

Theorem 3.5. Let M be a uniformly discrete, bounded pointed metric space and let μ ∈ SF(M) be finitely 
supported. Write μ as a finite sum of the form (1) and let f ∈ SLip(M) be such that f(μ) = 1. The following 
assertions are equivalent:

(i) μ is a point of Fréchet differentiability,
(ii) μ is a point of Gâteaux differentiability,
(iii) for every pair of different numbers j, k ∈ {1, . . . , n} there is a finite sequence of different numbers 

i1, . . . , im ∈ {1, . . . , n} that contains both j and k and such that

d(xi1 , yi1) + d(xi2 , yi2) + . . . + d(xim , yim) = d(xi1 , yi2) + d(xi2 , yi3) + . . . + d(xim , yi1), (9)

and for every x ∈ M there are s �= t in {x1, y1, . . . , xn, yn} such that f(t) −f(s) = d(t, s) and x ∈ [s, t].

Proof. Denote D = diam(M), θ = inf
x�=y∈M

d(x, y) > 0, N = {x1, y1, . . . , xn, yn}, αi = f(yi) and βij =

d(xi, yj) − d(xi, yi). It is clear that (i)⇒(ii). To prove that (ii)⇒(iii), notice first that (9) follows from 
Lemma 2.3. Now fix x ∈ M , then the argument used in the proof of Theorem 3.1 shows that for any ε > 0
there are s �= t ∈ N such that x ∈ [s, t]ε and f(t) − f(s) > d(t, s) − ε. Since there are only finitely many 
possible choices for the pair (s, t), one of them must be valid for arbitrarily small values of ε, and so (iii)
follows.

Finally, let us see that (iii)⇒(i). To this end, assume with no loss of generality that y1 = 0. Take 
g ∈ SLip(M) such that

g(μ) > 1 − ε

min
1≤i≤n

λi
,

which implies by a convexity argument that g(mxi,yi
) > 1 − ε, and hence
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0 ≤ d(xi, yi) − (g(xi) − g(yi)) < εd(xi, yi) ≤ Dε (10)

for every i ∈ {1, . . . , n}. Now pick k ∈ {2, . . . , n}. By assumption there exists a finite sequence of different 
numbers i1, . . . , im ∈ {1, . . . , n} containing both 1 and k such that (9) holds; assume i1 = 1 without loss of 
generality. Then we have

1 = ‖g‖L ≥ g(xim) − g(yi1)
d(xim , yi1)

=

m∑
t=1

(g(xit) − g(yit)) +
m−1∑
t=1

(
g(yit+1) − g(xit)

)
d(xim , yi1)

hence

d(xim , yi1) ≥
m∑
t=1

(g(xit) − g(yit)) +
m−1∑
t=1

(
g(yit+1) − g(xit)

)
> (1 − ε)

m∑
t=1

d(xti , yti) +
m−1∑
t=1

(
g(yit+1) − g(xit)

)
= −ε

m∑
t=1

d(xti , yti) +
m−1∑
t=1

(
d(xit , yit) − d(xit , yit+1)

)
+ d(xim , yim) +

m−1∑
t=1

(
d(xit , yit+1) − (g(xit) − g(yit+1))

)
.

Rearranging terms and applying (9) we get

m−1∑
t=1

(
d(xit , yit+1) − (g(xit) − g(yit+1))

)
< ε

m∑
t=1

d(xit , yit) < mDε.

Since d(xit , yit+1) − (g(xit) − g(yit+1)) ≥ 0 holds for every 1 ≤ t ≤ m − 1 we obtain

0 ≤ d(xit , yit+1) − (g(xit) − g(yit+1)) < mDε. (11)

Now notice that this reasoning is also valid for the function f in place of g, and therefore (10) and (11)
imply that

|(f − g)(xit) − (f − g)(yit)| < Dε∣∣(f − g)(xit) − (f − g)(yit+1)
∣∣ < mDε

for every t ≤ m − 1. But f(y1) = 0 = g(y1), so after at most m − 1 applications of these inequalities we get 
that

|f(u) − g(u)| < (m− 1)(m + 1)Dε < m2Dε ≤ n2Dε

for u ∈ {xk, yk}. Since k was arbitrary, the inequality holds for every u ∈ N .
Now pick x ∈ M . By assumption there exists a pair of different points s, t ∈ N such that f(ms,t) = 1

and x ∈ [s, t] and we get that

g(ms,t) = 1 − (f − g)(ms,t) > 1 − 2n2D
ε.
θ
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Let us take into account that x ∈ [s, t] implies that ms,t = λ1ms,x + λ2mx,t for some λ1, λ2 ≥ 0 with 
λ1 + λ2 = 1. Assume with no loss of generality that λ1 ≥ 1

2 , then we get that

g(ms,x) > 1 − 4n2D

θ
ε.

But |(f−g)(s)| < n2Dε and f(ms,x) = 1, so a convexity argument yields |(f−g)(x)| <
( 4
θ + 1

)
n2Dε. Since 

x ∈ M was arbitrary we deduce that

‖f − g‖∞ ≤
(

4
θ

+ 1
)
n2D · ε.

Finally, since M is uniformly discrete and bounded, ‖ · ‖L and ‖ · ‖∞ are equivalent norms on Lip(M), so 
there exists a constant K > 0 that depends only on M and n such that ‖f − g‖L < Kε.

Summarising: we have proved that, given any ε > 0, there exists δ > 0 such that if g ∈ SLip(M) satisfies 
that g(μ) > 1 − δ then ‖f − g‖L < ε. By Šmulyan’s lemma μ is a point of Fréchet differentiability and we 
are done. �

The previous theorem shows that, when dealing with finitely supported elements in Lipschitz free spaces 
over uniformly discrete and bounded metric spaces, Gâteaux and Fréchet differentiability are equivalent. 
Example 3.4 reveals that this is not the case when dealing with elements of infinite support. A closer look 
at this example shows that the metric space is still union of metric segments; the failure of the Fréchet 
differentiability comes now from the fact that there are infinitely many segments which are uniformly 
separated. This phenomenon will become clear with the following result.

Proposition 3.6. Let M be a uniformly discrete, bounded pointed metric space, and let μ ∈ SF(M) be of the 
form (1). Suppose that μ is a point of Fréchet differentiability. Then for every ε > 0 there is n ∈ N such 
that

M ⊂
⋃

s,t∈{x1,y1,...,xn,yn}
[s, t]ε. (12)

More precisely, one can restrict the union to those pairs s, t such that f(s) − f(t) > d(s, t) − ε, where 
f ∈ SLip(M) is the Fréchet derivative of the norm at μ.

Proof. Since the Lipschitz and supremum norms are equivalent in Lip(M), we may find δ > 0 such that 
‖f − g‖∞ < ε

2 whenever g ∈ SLip(M) satisfies g(μ) > 1 − 2δ. Choose n ∈ N such that 
∑

k>n λk < δ and 
denote N = {x1, y1, . . . , xn, yn}. Now let g1 and g2 be the largest and smallest 1-Lipschitz extensions of 
f�N to M , respectively, given by (8). Notice that

gi(μ) =
n∑

k=1

λkf(mxk,yk
) +

∑
k>n

λkgi(mxk,yk
)

= 1 +
∑
k>n

λk(gi − f)(mxk,yk
) ≥ 1 − 2

∑
k>n

λk > 1 − 2δ

for i = 1, 2, therefore ‖g1 − g2‖∞ < ε. Now fix x ∈ M and let s, t ∈ N be such that g1(x) = f(t) + d(t, x)
and g2(x) = f(s) − d(s, x). Then

ε > g1(x) − g2(x) = f(t) − f(s) + d(t, x) + d(s, x) ≥ d(t, x) + d(s, x) − d(t, s)

and therefore x ∈ [s, t]ε, and f(s) − f(t) > d(t, x) + d(s, x) − ε ≥ d(s, t) − ε. �
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We may wonder whether the conclusion of Proposition 3.6 holds in an uniform way, i.e. whether we can 
find n ∈ N such that the inclusion (12) holds for arbitrarily small ε. This is not possible in general: indeed, 
using the same argument as in the proof of (ii)⇒(iii) in Theorem 3.5, it is easy to see that this would imply 
that M can be covered by finitely many segments [s, t] such that s �= t ∈ {x1, y1, x2, y2, . . .} and f(ms,t) = 1.

We finish the section by exhibiting a point of Fréchet differentiability of infinite support. We will construct 
an element of the form μ =

∑∞
n=1 λnmxn,0. Our strategy will be to define the sequence (xn) in such a way 

that xn approaches the segment [0, x1] as n increases. Consequently, if g(μ) is large, then g(xn) should 
behave like d(xn, 0) for small n and it should be almost determined for large n because xn is then close to 
[0, x1]. For such behaviour, we consider in the following example the metric space defined in [1, Example 
4.3]:

Example 3.7. Let M := {0} ∪ {xn : n ∈ N} ⊆ c0 where x1 := 2e1 and xn := e1 + (1 + 1
2n )en for n ≥ 2, 

and define μ :=
∑∞

n=1
1
2nmxn,0. Notice that μ ∈ SF(M). Indeed, consider f(x) := d(x, 0), and note that 

f(μ) = 1. Let us prove that μ is a point of Fréchet differentiability. To do so pick an arbitrary n ≥ 3, define 
ε := 1

2n and assume that g ∈ SLip(M) satisfies that g(μ) =
∑∞

n=1
1
2n g(mxn,0) > 1 − ε2. Let

P := {k ∈ N : g(mxk,0) ≤ 1 − ε}.

Then 
∑

k∈P
1
2k < ε: indeed,

1 − ε2 <
∞∑
k=1

1
2k g(mxk,0) =

∑
k∈P

1
2k g(mxk,0) +

∑
k/∈P

1
2k g(mxk,0)

≤ (1 − ε)
∑
k∈P

1
2k +

∑
k/∈P

1
2k

=
∞∑
k=1

1
2k − ε

∑
k∈P

1
2k

= 1 − ε
∑
k∈P

1
2k ,

as desired. Let us estimate ‖f − g‖∞ from the above inequality. On the one hand, if k /∈ P , we get that 
f(mxk,0) = 1 and g(mxk,0) > 1 − ε, from where |(f − g)(mxk,0)| < ε, so

|(f − g)(xk)| ≤ εd(xk, 0) ≤ 2ε.

On the other hand, if k ∈ P notice that k > n because 
∑

k∈P
1
2k < ε = 1

2n . In particular 1 /∈ P and so we 
have

1 − ε <
g(x1) − g(0)

d(x1, 0) = g(x1) − g(xk) + g(xk) − g(0)
2

≤ d(x1, xk) + g(xk)
2

=
1 + 1

2k + g(xk)
2 ,

and we get

g(xk) > 1 − 2ε− 1
2k = 1 − 1

2n−1 − 1
2k .

Since f(xk) = 1 + 1
k , we get that
2
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|(f − g)(xk)| <
1

2n−1 + 2
2k ≤ 1

2n−2 .

To sum up, we have proved that, for every n ≥ 3, if g ∈ SLip(M) satisfies that g(μ) > 1 − 1
22n then 

‖f − g‖∞ < 1
2n−2 . Now Šmulyan’s lemma, together with the fact that the ‖·‖L and ‖·‖∞ norms in Lip(M)

are equivalent, implies that μ is a point of Fréchet differentiability.

4. Remarks and open questions

As we pointed out in the Introduction, we will apply the techniques of Theorem 3.5 to obtain a result of 
differentiability in a projective tensor product. In order to do so, let us introduce a bit of notation. Given 
two Banach spaces X and Y , recall that the projective tensor product of X and Y , denoted by X ⊗̂π Y , is 
the completion of X ⊗ Y under the norm given by

‖u‖ := inf
{

n∑
i=1

‖xi‖‖yi‖ : u =
n∑

i=1
xi ⊗ yi

}
.

It is well known that, given two Banach spaces X and Y , then (X ⊗̂π Y )∗ = L(X, Y ∗) (see [20] for back-
ground).

Let M be a uniformly discrete and bounded metric space and Z be a Banach space. In this context, 
notice that (F(M) ⊗̂π Z)∗ = L(F(M), Z∗) = Lip(M, Z∗). Let μ =

∑n
i=1 λimxi,yi

∈ SF(M) where λi > 0
and 

∑n
i=1 λi = 1, and take z ∈ SZ . Assume that both μ and z are points of Fréchet differentiability, 

with respective derivatives f ∈ SLip(M) and z∗ ∈ SZ∗ . We claim that μ ⊗ z is then a point of Fréchet 
differentiability in F(M) ⊗̂π Z and that its derivative is f⊗z∗ ∈ Lip(M, Z∗). To prove it, pick ε > 0 assume 
that g ∈ SLip(M,Z∗) satisfies that

g(mxi,yi
)(z) ≥ 1 − ε

holds for every i ∈ {1, . . . , n}. Following the proof of (iii)⇒(i) in Theorem 3.5 we can replace equation (10)
with

0 ≤ d(xi, yi) − (g(xi) − g(yi))(z) < Dε. (10*)

In a similar way, we can replace equation (11) with

0 ≤ d(xit , yit+1) − (g(xit) − g(yit+1))(z) < mDε. (11*)

Notice now that, since z is a point of Fréchet differentiability, by Šmulyan’s lemma we get the existence of 
a function δ : R+ −→ R+ with lim

ε→0
δ(ε) = 0 and such that the following condition holds

v∗ ∈ SZ∗

v∗(z) ≥ 1 − ε

}
⇒ ‖z∗ − v∗‖ ≤ δ(ε).

The previous condition together with (10*) and (11*) implies that

‖d(xi, yi)z∗ − (g(xi) − g(yi))‖ ≤ δ(Dε)
‖d(xit , yit+1)z∗ − (g(xit) − g(yit+1))‖ ≤ δ(mDε)

Continuing the proof in the same way we obtain that ‖g−f⊗z∗‖∞ < η(ε) for some function η : R+ −→ R+

that only depends on M and n and such that lim
ε→0

η(ε) = 0. From here, we easily deduce by Šmulyan’s lemma 

that f ⊗ z∗ is the Fréchet derivative of μ ⊗ z.
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Finally, if we suppose instead that z is a point of Gâteaux differentiability and fix ε = 0 and δ ≡ 0 in the 
above argument, we deduce in a similar way that f ⊗ z∗ is the Gâteaux derivative of μ ⊗ z. The following 
statement sums up our findings:

Theorem 4.1. Let M be a uniformly discrete and bounded metric space and let μ ∈ SF(M) be a point of 
Fréchet differentiability with finite support. Let X be a Banach space and x ∈ SX . Then:

(a) If x is a point of Gâteaux differentiability of X, then μ ⊗ x is a point of Gâteaux differentiability of 
F(M) ⊗̂π X.

(b) If x is a point of Fréchet differentiability of X, then μ ⊗ x is a point of Fréchet differentiability of 
F(M) ⊗̂π X.

Remark 4.2. Let X and Y be two Banach spaces. Notice that, in general, it is not true that if x ∈ SX

and y ∈ SY are points of Fréchet (resp. Gâteaux) differentiability then x ⊗ y is a point of Fréchet (resp. 
Gâteaux) differentiability of X ⊗̂π Y .

(1) Given 1 < p ≤ q < ∞ it follows from [11, Example VI.4.1] and [20, Theorem 5.33] that �p ⊗̂π �q∗ is a 
non-reflexive L-summand in its bidual, where 1

q + 1
q∗ = 1 (see [11, Chapters I and IV] for background), 

and so it does not contain any point of Fréchet differentiability [11, p. 168, (b)].
(2) If X = Y = �2 and x ∈ SX then x ⊗x attains its norm at the functionals T, S ∈ (X ⊗̂π X)∗ = L(X, X∗)

defined by

T (u⊗ v) = 〈u, v〉 ,
S(u⊗ v) = 〈x, u〉 〈x, v〉 .

This shows that x ⊗ x is not a point of Gâteaux differentiability in spite of the fact that x is a point of 
Gâteaux differentiability. The authors are grateful to Ginés López-Pérez for pointing out this example 
to them.

Let us finish this section with two open questions. First, we have obtained in Theorem 3.1 a metric 
characterisation of those limits of convex series of molecules which are points of Gâteaux differentiability. 
However, in the case of Fréchet differentiability we have only characterised elements of finite support.

Question 1. Is there any metric characterisation of limits of convex series with infinite support that are 
points of Fréchet differentiability?

Second, all our work on points of Fréchet differentiability has focused on limits of convex series of 
molecules, as this allows us to consider a fixed set of points in the metric space M . However, the following 
question makes sense.

Question 2. Let M be a uniformly discrete and bounded metric space. Is there any point of Fréchet differ-
entiability μ ∈ F(M) that is not the limit of a convex series of molecules?
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