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Simple upper and lower bounds are obtained for the integral 
∫ x

0 e−γttνIν(t) dt, x >
0, ν > − 1

2 , 0 < γ < 1. Most of our bounds for this integral are tight as x → ∞. We 
apply one of our inequalities to bound some expressions involving this integral. Two 
of these expressions appear in Stein’s method for variance-gamma approximation, 
and our bounds will allow for a technical advancement to be made to the method.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation through Stein’s method for variance-gamma approximation

Stein’s method [40] is a powerful probabilistic technique for deriving bounds for distributional approxima-
tions with respect to a probability metric. It has found applications throughout the mathematical sciences 
in areas as diverse as queuing theory [12], number theory [23] and branching processes [35]. The method 
is particularly well developed for normal and Poisson approximation (see the books [5,13,33]), and there is 
active research into extensions to other distributional limits; see the survey [37].

Recently, Stein’s method has been extended to variance-gamma (VG) approximation [15,16,21]. Appli-
cations have included VG approximation for a special case of the D2 statistic from alignment-free sequence 
comparison [11,28]; quantitative six moment theorems for the VG approximation of double Wiener-Itô in-
tegrals; and Laplace approximation of a random sum of independent mean zero random variables (see [36]
for related results). The VG distribution is commonly used in financial mathematics [29,30], and has a rich 
distributional theory, with special or limiting cases including the normal, gamma and Laplace distributions, 
and the product of two zero mean normals and difference of two gammas (see [16] and Chapter 4 of the 
book [27], in which the distribution is called the generalized Laplace distribution). The VG distribution has 
also recently appeared in several other papers in the probability literature as a limiting distribution [1–4]. 
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Extending Stein’s method to the VG distribution is of interest because it puts some of the Stein’s method 
literature into a more general framework and widens the scope of the method to treat new distributional 
limits.

Fundamental to Stein’s method for VG approximation is the function fh : R → R defined by

fh(x) = −e−βxKν(|x|)
|x|ν

x∫
0

eβt|t|νIν(|t|)h(t) dt− e−βxIν(|x|)
|x|ν

∞∫
x

eβt|t|νKν(|t|)h(t) dt, (1.1)

where x ∈ R, ν > −1
2 , −1 < β < 1, and h : R → R satisfies μ(h) = 0, for μ the VG probability measure. 

Here, Iν(x) and Kν(x) are modified Bessel functions of the first and second kind; basic properties of these 
functions that are needed in this paper are collected in Appendix A. In order to apply Stein’s method 
for VG approximation, one must obtain uniform bounds, in terms of the supremum norms of h and its 
derivatives, for fh and certain lower order derivatives. New inequalities were obtained for the integrals given 
in (1.1) by [17,19] and applied in [16,14] to obtain uniform bounds for derivatives of fh of arbitrary order, 
given sufficiently regular h. These bounds allow for VG approximations to be obtained by Stein’s method 
in certain weak test function metrics, which imply convergence in distribution.

In order to obtain distributional approximations in the stronger and more widely used Kolmogorov and 
Wasserstein metrics, different types of bounds for fh and its derivatives are required than those given by 
[16,14]. This was recently achieved by [21] for a special case of the VG distribution, the symmetric VG 
distribution, that corresponds to setting β = 0 in (1.1). The work of [21] relied on new bounds of [19] for 
integrals of a similar form to those in (1.1), as well as uniform bounds for some expressions involving these 
integrals. Uniform bounds were also obtained by [19] for a number of other expressions involving integrals 
of modified Bessel functions that correspond to the general −1 < β < 1 case for VG approximation. In 
particular, the following uniform bounds were established. Suppose that −1 < β < 0 and ν ≥ 1

2 . Then, for 
all x ≥ 0,

e−βxKν+1(x)
xν−1

x∫
0

eβttνIν(t) dt < ν + 1
(2ν + 1)(1 + β) , (1.2)

e−βxKν(x)
xν−1

x∫
0

eβttνIν(t) dt < ν + 1
(2ν + 1)(1 + β) . (1.3)

Uniform bounds for the case 0 ≤ β < 1 and ν > −1
2 are easier to obtain and were also derived by [19]. 

However, the case −1 < β < 0, −1
2 < ν < 1

2 proved more challenging and [19] was unable to obtain uniform 
bounds in this parameter regime. This was left as an open problem, which, once solved, would allow for the 
uniform bounds of [21] for fh to be extended from the β = 0 case to the general −1 < β < 1 case. This would 
constitute a technical advancement that would mean that Stein’s method for VG approximation could now 
be used to obtain Kolomogorov and Wasserstein distance bounds for the whole class of VG distributions.

In this paper, we are able to solve the open problem and establish the desired uniform bounds for (1.2)
and (1.3) in the remaining parameter regime of −1 < β < 0, −1

2 < ν < 1
2 . Our results will be used in 

the forthcoming paper [22] that will make the aforementioned technical advances to Stein’s method for VG 
approximation that will allow explicit error bounds for VG approximations to be derived in the Kolmogorov 
and Wasserstein metrics.

1.2. Summary of the paper

Our approach to bounding the expressions (1.2) and (1.3) is to first obtain suitable bounds for the integral 
present in these terms,
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x∫
0

e−γttνIν(t) dt, x > 0, ν > −1
2 , 0 < γ < 1. (1.4)

Here γ = −β. A closed-form formula in terms of the modified Bessel function Iν(x) and the modified Struve 
function Lν(x) does in fact exist in the case γ = 0 [34, formula 10.43.2]

∫
xνIν(x) dx =

√
π2ν−1Γ(ν + 1

2 )x
(
Iν(x)Lν−1(x) − Iν−1(x)Lν(x)

)
, (1.5)

and another closed-form formula is available for the case γ = 1; see formula (A.48) in Appendix A. However, 
there are no closed-form formulas involving modified Bessel and modified Struve functions for 0 < γ < 1. 
Moreover, the right-hand side of (1.5) takes a fairly complicated form that is not suitable for bounding the 
expressions (1.2) and (1.3). This provides our motivation for establishing simple bounds, in terms of the 
modified Bessel function Iν(x), for the integral (1.4).

Some simple bounds for the integral (1.4), involving the modified Bessel function of the first kind, have 
been obtained in the recent papers [17,19]. In Section 2, we establish a new upper bound for (1.4) that holds 
in the restricted region x ≥ x∗, for x∗ > 1

1−γ , but is crucially of the correct asymptotic order as x → ∞, 
and is valid for all ν > −1

2 , 0 < γ < 1 (the bounds of [17,19] are only valid for ν ≥ 1
2 , 0 < γ < 1). These 

features of the bound are precisely what we need in order to bound the expressions (1.2) and (1.3). We also 
obtain two other upper bounds for (1.4), inequalities (2.12) and (2.13), which are the first upper bounds in 
the literature that are valid for all x > 0, ν > −1

2 , 0 < γ < 1. We shall complement our upper bounds with 
several lower bounds for the integral. All of our lower bounds are tight as x → ∞, and one of our lower 
bounds improves on the only other lower bound in the literature for (1.4) (due to [19]). Our upper bound 
(2.6) will have an immediate application to Stein’s method for VG approximation. Due to the combination 
of the simple form and accuracy of our bounds, they may also prove useful in other problems involving 
modified Bessel functions; see, for example, [9,10] which uses inequalities for the modified Bessel function 
Iν(x) to derive tight bounds for the generalized Marcum Q-function, which arises in radar signal processing.

In Section 3, we apply our upper bound (2.6) for (1.4), together with known inequalities for products 
of modified Bessel functions, to obtain uniform upper bounds for the expressions (1.2) and (1.3) in the 
parameter regime ν > −1

2 , −1 < β < 0. We also obtain a uniform upper bound for a related expression, 
which allows us, as a consequence, to prove our upper bound (2.12) for the integral (1.4), which is valid for 
all x > 0, ν > −1

2 , 0 < γ < 1. We complement our upper bounds with lower bounds for the supremum over 
all x ≥ 0 for these expressions, which give useful insight into the accuracy of our upper bounds.

2. Bounds for the integral

In the following Theorems 2.1 and 2.2, we obtain new inequalities for the integral (1.4). These inequalities 
complement the inequalities of Theorem 2.1 of [17] and Theorem 2.3 of [19] for this integral, together with 
the inequalities of [20] for the related integral 

∫ x

0 e−γtt−νIν(t) dt.

Theorem 2.1. Let 0 < γ < 1. Fix x∗ > 1
1−γ . Then, for x ≥ x∗,

x∫
0

e−γttνIν(t) dt < Mν,γ(x∗)e−γxxνIν+1(x), ν > −1
2 , (2.6)

where

Mν,γ(x∗) = max
{

2(ν + 1 + x∗)
,

x∗
}
. (2.7)
2ν + 1 (1 − γ)x∗ − 1



4 R.E. Gaunt / J. Math. Anal. Appl. 502 (2021) 125216
Also, for x > 0,

x∫
0

e−γttνIν(t) dt > 1
1 − γ

{
e−γxxν

(
Iν(x) − xν

Γ(ν + 1)2ν

)
− γ(2ν + 1, γx)

Γ(ν + 1)2νγ2ν

}
, (2.8)

− 1
2 < ν ≤ 0,

x∫
0

e−γttνIν(t) dt > 1
1 − γ

(
1 − 4ν2

(2ν − 1)(1 − γ)
1
x

)
e−γxxνIν(x), ν ≥ 3

2 , (2.9)

x∫
0

e−γttνIν(t) dt > e−γxxν
∞∑
k=0

γkIν+k+1(x), ν > −1
2 , (2.10)

x∫
0

e−γtI0(t) dt > 1
1 − γ

e−γx(I0(x) − 1). (2.11)

Inequalities (2.8)–(2.11) are tight as x → ∞. In inequality (2.8), γ(a, x) =
∫ x

0 ta−1e−t dt is the lower 
incomplete gamma function.

The following inequalities can be proved as a consequence of some of the upper bounds in Theorem 3.2
given in Section 3. We therefore defer the proof of Theorem 2.2 until Section 3.

Theorem 2.2. Let 0 < γ < 1. Then, for x > 0,

x∫
0

e−γttνIν(t) dt < 2(2ν + 7)
(2ν + 1)(1 − γ)e−γxxνIν+1(x), ν > −1

2 , (2.12)

x∫
0

e−γttνIν(t) dt < 2ν + 7
(2ν + 1)(1 − γ)e−γxxνIν(x), ν > −1

2 , (2.13)

x∫
0

e−γttνIν(t) dt > 1
1 − γ

{
1 − 4ν(2ν + 5)

(2ν − 1)(1 − γ)
1
x

}
e−γxxνIν(x), ν > 1

2 . (2.14)

Inequality (2.14) is tight as x → ∞.

Proof of Theorem 2.1. (i) Fix x∗ > 1
1−γ . Consider the function

u(x) = Mν,γ(x∗)e−γxxνIν+1(x) −
x∫

0

e−γttνIν(t) dt.

We shall argue that u(x) > 0 for all x ≥ x∗, which will prove inequality (2.6).
Let us first prove that u(x∗) > 0. Consider now the function

v(x) = eγx

xνIν+1(x)

x∫
0

e−γttνIν(t) dt.

We shall show that v(x∗) < Mν,γ(x∗), which will prove that u(x∗) > 0. We have that
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∂v(x)
∂γ

= eγx

xνIν+1(x)

x∫
0

(x− t)e−γttνIν(t) dt > 0,

and therefore

v(x) < ex

xνIν+1(x)

x∫
0

e−ttνIν(t) dt = x

2ν + 1

(
Iν(x)

Iν+1(x) + 1
)
,

where we evaluated the integral using (A.48). We bound the ratio of modified Bessel functions of the first 
kind using the inequality

Iμ+1(x)
Iμ(x) >

x

2(μ + 1) + x
, x > 0, μ > −1,

which is the simplest lower bound in a sequence of rational bounds given in [32]. Applying this inequality 
gives us the desired bound

v(x∗) <
x∗

2ν + 1

(
2(ν + 1) + x∗

x∗
+ 1

)
= 2(ν + 1 + x∗)

2ν + 1 ≤ Mν,γ(x∗).

We now prove that u′(x) > 0 for x > x∗, which will complete the proof. A simple calculation using the 
differentiation formula (A.46) gives that

u′(x) = Mν,γ(x∗)
d
dx

(
e−γxx−1 · xν+1Iν+1(x)

)
− e−γxxνIν(x)

= Mν,γ(x∗)e−γxxν
(
Iν(x) − x−1Iν+1(x) − γIν+1(x)

)
− e−γxxνIν(x).

Using inequality (A.53) now gives us the inequality

u′(x) > Mν,γ(x∗)e−γxxν
(
1 − γ − x−1)Iν(x) − e−γxxνIν(x)

≥
(

1 − γ − x−1

1 − γ − x−1
∗

− 1
)

e−γxxνIν(x) > 0,

for x > x∗, as required.
(ii) Now let x > 0 and suppose −1

2 < ν ≤ 0. Then, by integration by parts and the differentiation formula 
(A.46), we have

x∫
0

e−γt

(
tνIν(t) −

t2ν

Γ(ν + 1)2ν

)
dt = − 1

γ
e−γx

(
xνIν(x) − x2ν

Γ(ν + 1)2ν

)

+ 1
γ

x∫
0

e−γt

(
tνIν−1(t) −

2νt2ν−1

Γ(ν + 1)2ν

)
dt,

where the integrals can be seen to exist for ν > −1
2 by (A.49) and the standard identity Γ(x + 1) = xΓ(x). 

We also used (A.49) to compute the limit limx↓0
(
xνIν(x) − x2ν

Γ(ν+1)2ν

)
= 0. We can rearrange to get

x∫
e−γt

(
tνIν−1(t) −

2νt2ν−1

Γ(ν + 1)2ν

)
dt− γ

x∫
e−γt

(
tνIν(t) −

t2ν

Γ(ν + 1)2ν

)
dt
0 0
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= e−γx

(
xνIν(x) − x2ν

Γ(ν + 1)2ν

)
,

and then using the identity (A.45) gives that

x∫
0

e−γttνIν+1(t) dt + 2ν
x∫

0

e−γt

(
tν−1Iν(t) −

t2ν−1

Γ(ν + 1)2ν

)
dt− γ

x∫
0

e−γttνIν(t) dt

= e−γx

(
xνIν(x) − x2ν

Γ(ν + 1)2ν

)
− γ

x∫
0

e−γt t2ν

Γ(ν + 1)2ν dt. (2.15)

We now note that, by (A.44),

tν−1Iν(t) −
t2ν−1

Γ(ν + 1)2ν =
∞∑
k=1

(1
2 t)

ν+2k−1

Γ(ν + k + 1)k! > 0, t > 0. (2.16)

Therefore, by using inequality (2.16) and that −1
2 < ν ≤ 0 to bound the second integral and inequality 

(A.53) to bound the first integral, we obtain

x∫
0

e−γttνIν(t) dt > 1
1 − γ

{
e−γx

(
xνIν(x) − x2ν

Γ(ν + 1)2ν

)
− γ

x∫
0

e−γt t2ν

Γ(ν + 1)2ν dt
}
,

and we finally arrive at inequality (2.8) by using a change of variable to evaluate the integral 
∫ x

0 e−γtt2ν dt =
1

γ2ν+1 γ(2ν + 1, γx).
(iii) An application of integration by parts gives that

x∫
0

e−γttνIν(t) dt = − 1
γ

e−γxxνIν(x) + 1
γ

x∫
0

e−γttνIν−1(t) dt, (2.17)

where we used that limx↓0 x
νIν(x) = 0 for ν ≥ 3

2 (see (A.49)) and the differentiation formula (A.46). 
Rearranging (2.17) and using the identity (A.45) gives that

x∫
0

e−γttνIν+1(t) dt− γ

x∫
0

e−γttνIν(t) dt = e−γxxνIν(x) − 2ν
x∫

0

e−γttν−1Iν(t) dt. (2.18)

Using (A.53) to bound the first integral in (2.18), followed by a rearrangement and then another application 
of inequality (A.53) gives the inequality

x∫
0

e−γttνIν(t) dt > 1
1 − γ

{
e−γxxνIν(x) − 2ν

x∫
0

e−γttν−1Iν(t) dt
}

>
1

1 − γ

{
e−γxxνIν(x) − 2ν

x∫
0

e−γttν−1Iν−1(t) dt
}
. (2.19)

We now recall an inequality that is immediate from inequality (2.19) of [19]: for x > 0,
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x∫
0

e−γttμIμ(t) dt < 2(μ + 1)
(2μ + 1)(1 − γ)e−γxxμIμ+1(x), μ ≥ 1

2 , 0 < γ < 1. (2.20)

Applying this inequality to (2.19) yields inequality (2.9), as required.
(iv) Let ν > −1

2 , which will ensure that all integrals that appear in this proof of inequality (2.10) exist. 
We begin with a similar integration by parts to part (iii):

x∫
0

e−γttν+1Iν+1(t) dt = − 1
γ

e−γxxν+1Iν+1(x) + 1
γ

x∫
0

e−γttν+1Iν(t) dt, (2.21)

where we used that limx↓0 xν+1Iν+1(x) = 0 for ν > −1
2 (see (A.49)) and the differentiation formula (A.46). 

Rearranging (2.21) gives

x∫
0

e−γttν+1Iν(t) dt = e−γxxν+1Iν+1(x) + γ

x∫
0

e−γttν+1Iν+1(t) dt. (2.22)

We now note that, for x > 0, 
∫ x

0 e−γttν+1Iν(t) dt < x 
∫ x

0 e−γttνIν(t) dt, which holds because Iν(x) > 0 for 
x > 0, ν > −1

2 . Applying this inequality to (2.22) yields

x∫
0

e−γttνIν(t) dt > e−γxxνIν+1(x) + γ

x

x∫
0

e−γttν+1Iν+1(t) dt. (2.23)

From (2.23) we get another inequality

x∫
0

e−γttνIν(t) dt > e−γxxνIν+1(x) + γ

x

(
e−γxxν+1Iν+2(x) + γ

x

x∫
0

e−γttν+2Iν+2(t) dt
)

= e−γxxνIν+1(x) + γe−γxxνIν+2(x) + γ2

x2

x∫
0

e−γttν+2Iν+2(t) dt.

Iterating this procedure then yields inequality (2.10). In applying this iteration, it should be noted that the 
series 

∑∞
k=0 γ

kIν+k+1(x) is absolutely convergent. To see this, we can repeatedly use inequality (A.53) (as 
ν > −1

2 ) to obtain that, for all x > 0,

∞∑
k=0

γkIν+k+1(x) < Iν+1(x)
∞∑
k=0

γk = Iν+1(x)
1 − γ

,

and the geometric series converges because 0 < γ < 1.
(v) By integration by parts, we have

x∫
0

e−γtI0(t) dt = − 1
γ

e−γx
(
I0(x) − 1

)
+ 1

γ

x∫
0

e−γtI1(t) dt

< − 1
γ

e−γx
(
I0(x) − 1

)
+ 1

γ

x∫
0

e−γtI0(t) dt, (2.24)
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where in the first step we used that I0(0) = 1 (this is readily seen from (A.44)) and the differentiation formula 
(A.47), and we used inequality (A.53) to obtain the inequality. Rearranging (2.24) yields inequality (2.11).

(vi) Finally, we prove that inequalities (2.8)–(2.11) are tight as x → ∞. We start by noting that a 
straightforward asymptotic analysis using the limiting form (A.50) gives that, for ν > −1

2 and 0 < γ < 1,

x∫
0

e−γttνIν(t) dt ∼ 1√
2π(1 − γ)

xν−1/2e(1−γ)x, x → ∞, (2.25)

and we also have, for n ∈ R,

e−γxxνIν+n(x) ∼ 1√
2π

xν−1/2e(1−γ)x, x → ∞. (2.26)

That inequalities (2.8), (2.9) and (2.11) are tight as x → ∞ follows directly from (2.25) and (2.26). As an 
example, for inequality (2.11), we have, as x → ∞,

x∫
0

e−γtI0(t) dt ∼ e(1−γ)x

(1 − γ)
√

2πx
and 1

1 − γ
e−γx(I0(x) − 1) ∼ e(1−γ)x

(1 − γ)
√

2πx
,

and the tightness of inequalities (2.8) and (2.9) is established similarly. For the tightness of inequality (2.10)
we just need to additionally note that 

∑∞
k=0 γ

k = 1
1−γ , as 0 < γ < 1. �

Remark 2.3. Let 0 < γ < 1. Then the following inequalities hold. For x > 0,

x∫
0

e−γttνIν+1(t) dt > 1
1 − γ

{
e−γxxν

(
Iν(x) − xν

Γ(ν + 1)2ν

)
− γ(2ν + 1, γx)

Γ(ν + 1)2νγ2ν

}
,

− 1
2 < ν ≤ 0, (2.27)

x∫
0

e−γttνIν+1(t) dt > 1
1 − γ

(
1 − 4ν2

(2ν − 1)(1 − γ)
1
x

)
e−γxxνIν(x), ν ≥ 3

2 , (2.28)

x∫
0

e−γttνIν+1(t) dt > 1
1 − γ

(
1 − 4ν(2ν + 5)

(2ν − 1)(1 − γ)
1
x

)
e−γxxνIν(x), ν > 1

2 . (2.29)

These inequalities are stronger than inequalities (2.8), (2.9) and (2.14), because Iν+1(x) < Iν(x), x > 0, 
ν > −1

2 (see (A.53)). Inequality (2.27) follows by in part (ii) of the proof of Theorem 2.1 applying inequality 
(A.53) to bound the third integral in (2.15), rather than the first integral. Inequality (2.28) follows from 
in part (iii) of the proof applying inequality (A.53) to the second integral in (2.18), rather than the first 
integral. Examining the proof of inequality (2.14) below, it can be seen that this modification that allows 
us to obtain inequality (2.28) rather than inequality (2.9) also allows us to obtain inequality (2.29).

We note that setting ν = 0 in inequality (2.27) yields the neat inequality

x∫
0

e−γtI1(t) dt > 1
1 − γ

(e−γxI0(x) − 1), x > 0, 0 < γ < 1.

Remark 2.4. Unlike the other bounds presented in this section, inequality (2.6) is only valid for x ≥ x∗, 
where x∗ > 1 . Crucially, the bound is valid for all ν > −1 , 0 < γ < 1, though. That the bound holds 
1−γ 2
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only in the region x ≥ x∗ is sufficient for our goal of deriving uniform bounds for the expressions (1.2) and 
(1.3) (and a related expression) in Section 3. Interestingly, it is through these uniform bounds derived in 
Section 3 that we obtain inequalities (2.12) and (2.13), which hold for all ν > −1

2 , 0 < γ < 1 and all x > 0.

Remark 2.5. The inequalities of Theorems 2.1 and 2.2 for the integral (1.4) complement those of Theorem 
2.1 of [17] and Theorem 2.3 of [19]. We provide a discussion here. Throughout this remark 0 < γ < 1.

The only other lower bound in the literature is the following one of [19]: 
∫ x

0 e−γttνIν(t) dt >

e−γxxνIν+1(x), x > 0, ν > −1
2 . As Iν(x) > 0 for x > 0, ν ≥ −1, it follows that inequality (2.10) im-

proves on this inequality.
Inequality (2.19) of [19] states that, for x > 0,

x∫
0

e−γttνIν(t) dt < e−γxxν

(2ν + 1)(1 − γ)

(
2(ν + 1)Iν+1(x) − Iν+3(x)

)
, ν ≥ 1

2 , (2.30)

<
2(ν + 1)

(2ν + 1)(1 − γ)e−γxxνIν+1(x), ν ≥ 1
2 , (2.31)

with the same inequalities being valid for all ν > −1
2 in the case γ = 0 (see inequalities (2.17) and (2.18) of 

[19]). Also, combining inequalities (2.3) and (2.5) of [17] yields the following upper bound: for x > 0,

x∫
0

e−γttνIν(t) dt < 1
1 − γ

e−γxxνIν(x), ν ≥ 1
2 . (2.32)

Inequalities (2.12) and (2.13) extend the range of validity of inequalities (2.31) and (2.32) from ν ≥ 1
2

to ν > −1
2 at the expense of larger multiplicative constants. Unlike inequalities (2.30) and (2.32), our 

inequalities (2.12) and (2.13) are not tight in the limit x → ∞, although they are of the correct asymptotic 
order O(xν−1/2e(1−γ)x) as x → ∞. The multiplicative constant of (2.13) is half that of (2.12), although 
(2.12) has the advantage of also having the correct asymptotic order O(x2ν+1) as x ↓ 0, whereas (2.13) is 
O(x2ν) as x ↓ 0.

The inequalities derived in this paper together with those presented in this remark allow for a number 
of two-sided inequalities to be stated for the integral (1.4). A neat example is that, for x > 0,

e−γxxν
∞∑
k=0

γkIν+k+1(x) <
x∫

0

e−γttνIν(t) dt < 1
1 − γ

e−γxxνIν(x), ν ≥ 1
2 . (2.33)

We used Mathematica to compute the relative error in approximating the integral Fν,γ(x) =
∫ x

0 e−γttνIν(t) dt
by the upper bound in (2.33), which we denote by Uν,γ(x), and the lower bound in (2.33) truncated at the 
fifth term in the sum, Lν,γ(x) = e−γxxν

∑4
k=0 γ

kIν+k+1(x). The results are reported in Tables 1 and 2. We 
observe that, for given x and ν, the relative error in approximating Fν,γ(x) by either Lν,γ(x) or Uν,γ(x)
increases as γ increases. We see that, for given x and γ, the relative error in approximating Fν,γ(x) by 
Lν,γ(x) decreases as ν increases, whilst the relative error in approximating Fν,γ(x) by Uν,γ(x) increases as ν
increases. For given ν and γ, the relative error in approximating Fν,γ(x) by Uν,γ(x) decreases as x increases. 
This error will approach 0 as x → ∞, because the bound is tight in this limit. However, the bound performs 
poorly for ‘small’ x. Indeed, a simple asymptotic analysis using (A.49) shows that Uν,γ(x)

Fν,γ(x) ∼ 2ν+1
(1−γ)x , as x ↓ 0, 

meaning that the relative error blows up in this limit. The lower bound performs better for ‘small’ x, which 
can be seen because limx↓0

(
1 − Lν,γ(x)

Fν,γ(x)
)

= 1
2(ν+1) . As a result of truncating the lower bound in (2.33) at the 

fifth term, we lose some accuracy for larger values of x, particularly for larger γ. For example, in the case 
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Table 1
Relative error in approximating Fν,γ(x) by Lν,γ(x).

(ν, γ)
x 0.5 5 10 15 25 50 100

(1, 0.25) 0.2563 0.2141 0.1423 0.1028 0.0656 0.0346 0.0182
(2.5, 0.25) 0.1459 0.1403 0.1100 0.0864 0.0591 0.0329 0.0177
(5, 0.25) 0.0846 0.0872 0.0780 0.0670 0.0503 0.0302 0.0169
(10, 0.25) 0.0459 0.0481 0.0473 0.0445 0.0378 0.0257 0.0155

(1, 0.5) 0.2644 0.2848 0.2294 0.1846 0.1341 0.0869 0.0602
(2.5, 0.5) 0.1494 0.1756 0.1625 0.1428 0.1133 0.0791 0.0570
(5, 0.5) 0.0860 0.1025 0.1052 0.1005 0.0881 0.0680 0.0522
(10, 0.5) 0.0464 0.0533 0.0577 0.0591 0.0580 0.0515 0.0440

(1, 0.75) 0.2726 0.3756 0.3829 0.3683 0.3371 0.2953 0.2683
(2.5, 0.75) 0.1530 0.2211 0.2504 0.2604 0.2640 0.2581 0.2500
(5, 0.75) 0.0874 0.1214 0.1470 0.1639 0.1850 0.2084 0.2226
(10, 0.75) 0.0468 0.0592 0.0717 0.0829 0.1028 0.1400 0.1774

Table 2
Relative error in approximating Fν,γ(x) by Uν,γ(x).

(ν, γ)
x 0.5 5 10 15 25 50 100

(1, 0.25) 6.8497 0.2472 0.0864 0.0520 0.0292 0.0139 0.0068
(2.5, 0.25) 15.7858 0.8889 0.3548 0.2155 0.1197 0.0565 0.0274
(5, 0.25) 28.0748 2.0493 0.8480 0.5129 0.2806 0.1300 0.0625
(10, 0.25) 54.7097 4.5473 1.9626 1.1871 0.6377 0.2868 0.1351

(1, 0.5) 10.4043 0.4345 0.1459 0.0834 0.0452 0.0212 0.0103
(2.5, 0.5) 22.2524 1.3875 0.5574 0.3359 0.1842 0.0858 0.0414
(5, 0.5) 42.1550 3.1131 1.2980 0.7858 0.4286 0.1972 0.0943
(10, 0.5) 82.0875 6.8444 2.9641 1.7968 0.9663 0.4339 0.2037

(1, 0.75) 22.0780 1.0751 0.3851 0.2089 0.1019 0.0444 0.0210
(2.5, 0.75) 44.6563 2.9211 1.2068 0.7284 0.3933 0.1783 0.0845
(5, 0.75) 84.3964 6.3211 2.6722 1.6281 0.8891 0.4056 0.1918
(10, 0.75) 164.2213 13.7414 5.9790 3.6381 1.9647 0.8827 0.4126

γ = 0.75, 
∑∞

k=0 0.75k = 4 and 
∑4

k=0 0.75k = 3.0508. Using this and the limiting forms (2.25) and (A.50)
we have that limx→∞

(
1 − Lν,0.75(x)

Fν,0.75(x)
)

= 0.2373, for all ν > −1
2 , whereas the relative error in this limit in 

approximating Fν,0.75(x) using the lower bound in (2.33) is in fact 0. For the cases ν = 1 and ν = 2.5 we 
see the relative error decreases down to this limit as x gets larger (after initially increasing for smaller x), 
whilst for the ν = 5 and ν = 10 cases, the relative error is still increasing from the initial value of 1

2(ν+1)
and does not reach the value of 0.2373 for x ≤ 100.

3. Uniform bounds for some expressions involving the integral

In this section, we apply the upper bound (2.6) to obtain uniform bounds for expressions (1.2) and (1.3). 
Our upper uniform bounds will lead to technical advances in Stein’s method for VG approximation [22]. 
In addition, we obtain uniform bounds for a related expression; the upper bound will enable us to prove 
inequality (2.12). Before doing so, we collect some inequalities for products of modified Bessel functions. 
Inequality (3.34) is given in the proof of Theorem 5 of [18], and is a simple consequence of Theorem 4.1 of 
[24]. Inequality (3.35) is proved in Lemma 3 of [18]. Other results and inequalities for the product Iν(x)Kν(x)
are given in [6,8].

For x ≥ 0,

0 ≤ xKν(x)Iν(x) < 1
2 , ν > 1

2 , (3.34)

and
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1
2 < xKν+1(x)Iν(x) ≤ 1, ν ≥ −1

2 . (3.35)

We will also need the following lemma.

Lemma 3.1. For x > 0,

1
2 < xKν+2(x)Iν(x) < 1 + 2ν + 3

x
, ν ≥ −1

2 . (3.36)

Proof. The lower bound follows from the lower bound of (3.35) by inequality (A.54). To prove the upper 
bound, we note the following inequality of [38]: for x > 0,

Kμ(x)
Kμ−1(x) <

μ− 1
2 +

√
(μ− 1

2 )2 + x2

x
< 1 + 2μ− 1

x
, μ > 1

2 .

Using this inequality and the upper bound of (3.35) we obtain, for x > 0,

xKν+2(x)Iν(x) = Kν+2(x)
Kν+1(x) · xKν+1(x)Iν(x) < 1 + 2ν + 3

x
,

as required. �
With inequalities (3.34)–(3.36) and the upper bound (2.6) at hand, we are now in a position to prove the 

following theorem.

Theorem 3.2. Suppose that −1 < β < 0 and ν ≥ 1
2 . Then, for x ≥ 0,

e−βxKν+2(x)
xν−1

x∫
0

eβttνIν(t) dt < 2(ν + 1)
(2ν + 1)(1 + β) . (3.37)

Suppose now that ν > −1
2 . Then

max
{

1
2(1 + β) ,

2(ν + 1)
2ν + 1

}
≤ sup

x≥0

{
e−βxKν+2(x)

xν−1

x∫
0

eβttνIν(t) dt
}

<
2ν + 7

(2ν + 1)(1 + β) , (3.38)

and

1
2(1 + β) ≤ sup

x≥0

{
e−βxKν+1(x)

xν−1

x∫
0

eβttνIν(t) dt
}

<
2ν + 7

2(2ν + 1)(1 + β) , (3.39)

1
2(1 + β) ≤ sup

x≥0

{
e−βxKν(x)

xν−1

x∫
0

eβttνIν(t) dt
}

<
2ν + 7

2(2ν + 1)(1 + β) . (3.40)

Proof. (i) By the integral inequality (2.31), we have that

e−βxKν+2(x)
xν−1

x∫
0

eβttνIν(t) dt < e−βxKν+2(x)
xν−1 · 2(ν + 1)

(2ν + 1)(1 + β)e
βxxνIν+1(x)

= 2(ν + 1)
(2ν + 1)(1 + β)xKν+2(x)Iν+1(x) ≤ 2(ν + 1)

(2ν + 1)(1 + β) ,
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where we used the upper bound in inequality (3.35) in the final step.
(ii) We now prove the lower bounds in (3.38)–(3.40). Recall from (2.25) that, for −1 < β < 0 and ν > −1

2 ,

x∫
0

eβttνIν(t) dt ∼ 1√
2π(1 + β)

xν−1/2e(1+β)x, x → ∞.

Combining this limiting form with the limiting form (A.52) then gives that, as x → ∞,

e−βxKν+n(x)
xν−1

x∫
0

eβttνIν(t) dt ∼
√

π

2x
1/2−νe−(1+β)x · 1√

2π(1 + β)
xν−1/2e(1+β)x

= 1
2(1 + β) ,

where n ∈ R. This gives us the lower bounds in (3.39) and (3.40), and one of two possible lower bounds 
in (3.38). To obtain one of the other possible lower bounds in (3.38), we examine the behaviour as x ↓ 0. 
Using the limiting forms (A.49) and (A.51), we have that, as x ↓ 0,

e−βxKν+2(x)
xν−1

x∫
0

eβttνIν(t) dt ∼ 2ν+1Γ(ν + 2)
x2ν+1

x∫
0

t2ν

Γ(ν + 1)2ν dt = 2(ν + 1)
2ν + 1 .

On the other hand, the expressions in (3.39) and (3.40) can be seen from (A.51) to be o(1) as x ↓ 0.
(iii) We now prove the upper bound in (3.38). We already have an upper bound that is valid for ν ≥ 1

2
in (3.37), so we can restrict our attention to the case −1

2 < ν < 1
2 . We obtain our bound by bounding the 

expression

e−βxKν+2(x)
xν−1

x∫
0

eβttνIν(t) dt

for x ∈ [0, x∗) and x ∈ [x∗, ∞), where x∗ = 2
1+β (note that x∗ > 1

1+β ). Let us first obtain a bound for 
x ∈ [0, x∗). Note that

∂

∂β

(
e−βxKν+2(x)

xν−1

x∫
0

eβttνIν(t) dt
)

= e−βxKν+2(x)
xν−1

x∫
0

(t− x)eβttνIν(t) dt < 0.

As −1 < β < 0, we therefore have that, for 0 ≤ x < x∗,

e−βxKν+2(x)
xν−1

x∫
0

eβttνIν(t) dt < exKν+2(x)
xν−1

x∫
0

e−ttνIν(t) dt

= 1
2ν + 1x

2Kν+2(x)
(
Iν(x) + Iν+1(x)

)
≤ 2x∗ + 2ν + 3

2ν + 1 = 1
2ν + 1

(
2ν + 3 + 4

1 + β

)
,

where we used (A.48) to evaluate the integral and the upper bounds in inequalities (3.35) and (3.36) to 
obtain the second inequality.
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Suppose now that x ≥ x∗. Let Mν,−β(x∗) be defined as in (2.7) (with γ = −β). Then, by inequality (2.6),

e−βxKν+2(x)
xν−1

x∫
0

eβttνIν(t) dt < e−βxKν+2(x)
xν−1 ·Mν,−β(x∗)eβxxνIν+1(x)

= Mν,−β(x∗)xKν+2(x)Iν+1(x)

≤ Mν,−β(x∗)

= max
{

2
2ν + 1

(
ν + 1 + 2

1 + β

)
,

2
1 + β

}

= 2
2ν + 1

(
ν + 1 + 2

1 + β

)
,

where we used inequality (3.35) to obtain the second inequality, and that −1
2 < ν < 1

2 in the last step. 
Combining our bounds, we have that, for x ≥ 0 and −1

2 < ν < 1
2 ,

e−βxKν+2(x)
xν−1

x∫
0

eβttνIν(t) dt

< max
{

1
2ν + 1

(
2ν + 3 + 4

1 + β

)
,

2
2ν + 1

(
ν + 1 + 2

1 + β

)}

= 1
2ν + 1

(
2ν + 3 + 4

1 + β

)
<

2ν + 7
(2ν + 1)(1 + β) . (3.41)

Combining inequalities (3.37) and (3.41) (and noting that the upper bound in (3.41) is greater than the 
upper bound in (3.37)) yields inequality (3.38).

(iv) The proof of the upper bound in (3.39) is similar to the proof of the upper bound in (3.38). Let 
x∗ = 2

1+β . Recall that we already have an upper bound for the case ν ≥ 1
2 in inequality (1.2). We therefore 

also restrict our attention here to the case −1
2 < ν < 1

2 . Arguing similarly to before, we have that, for 
0 ≤ x < x∗,

e−βxKν+1(x)
xν−1

x∫
0

eβttνIν(t) dt < 1
2ν + 1x

2Kν+1(x)
(
Iν(x) + Iν+1(x)

)

<
x∗

2ν + 1

(
1 + 1

2

)
= 3

(2ν + 1)(1 + β) , (3.42)

where we used inequalities (3.34) and (3.35) to obtain the second inequality. Suppose now that x ≥ x∗. 
Then, by inequality (2.6),

e−βxKν+1(x)
xν−1

x∫
0

eβttνIν(t) dt < Mν,−β(x∗)xKν+1(x)Iν+1(x) < 1
2Mν,−β(x∗)

= 1
2ν + 1

(
ν + 1 + 2

1 + β

)
<

ν + 3
(2ν + 1)(1 + β) , (3.43)

where we used inequality (3.34) to obtain the second inequality, and, as in the proof of the upper bound in 
(3.38), we used that −1

2 < ν < 1
2 . Finally, we note that the upper bounds (1.2), (3.42) and (3.43) are all 

bounded above by 2ν+7 for ν > −1 , and this gives us our upper bound in (3.39).
2(2ν+1)(1+β) 2
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(v) We obtain the upper bound in (3.40) as a direct consequence of the upper bound in (3.39) from an 
application of inequality (A.54). �
Remark 3.3. Examining the proof of the upper bound in (3.38), we see that we could improve the bound 
by choosing x∗ > 1

1+β to be such that

2x∗ + 2ν + 3
2ν + 1 = x∗

(1 + β)x∗ − 1 .

This equation reduces to a quadratic equation for x∗, for which the solution takes a more complicated form 
than our choice of x∗ = 2

1+β , leading to more a complex upper bound than (3.38). For given values of ν
and γ, it would also be possible to optimise the choice of x∗ in the derivation of the upper bound in (3.39). 
However, our choice of x∗ = 2

1+β has the advantage of allowing us to obtain simple upper bounds that hold 
for all ν > −1

2 and −1 < β < 0.

We end this section by using some of the upper bounds of Theorem 3.2 to give a short proof of Theo-
rem 2.2.

Proof of Theorem 2.2. (i) From the upper bound in (3.38) (with β = −γ) we obtain the following inequality: 
for x > 0, ν > −1

2 , 0 < γ < 1,

x∫
0

e−γttνIν(t) dt < 2ν + 7
(2ν + 1)(1 + β)

e−γxxν−1

Kν+2(x) ,

and using the inequality 1
Kν+2(x) < 2xIν+1(x), which is a rearrangement of the lower bound in (3.35), yields 

inequality (2.12).
(ii) The proof is the same as part (i), but we use the upper bound in (3.39), rather than the upper bound 

in (3.38), and then apply the inequality 1
Kν+1(x) < 2xIν(x).

(iii) The proof is very similar to the proof of that of inequality (2.9), with the only difference being that 
we use inequality (2.12) to bound the integral on the right-hand side of (2.19), rather than inequality (2.20). 
In addition to giving the alternative bound (2.14), this extends the range of validity of the bound to ν > 1

2 . 
That inequality (2.14) is tight as x → ∞ can be proved by the same argument as the one used in part (vi) 
of the proof of Theorem 2.1. �
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Appendix A. Elementary properties of modified Bessel functions

Here we list standard properties of modified Bessel functions that are used throughout this paper. All 
formulas can be found in [34], except for the inequalities.

The modified Bessel functions of the first kind Iν(x) and second kind Kν(x) are defined, for ν ∈ R and 
x > 0, by

Iν(x) =
∞∑
k=0

(1
2x)ν+2k

Γ(ν + k + 1)k! , (A.44)

and
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Kν(x) =
∞∫
0

e−x cosh(t) cosh(νt) dt.

The modified Bessel functions Iν(x) and Kν(x) are both regular functions of x ∈ R. For x > 0, the functions 
Iν(x) and Kν(x) are positive for ν ≥ −1 and all ν ∈ R, respectively. The modified Bessel function of the 
first kind Iν(x) satisfies the following identities and differentiation formulas:

I−n(x) = In(x), n ∈ Z,

Iν+1(x) = Iν−1(x) − 2ν
x
Iν(x), (A.45)

d
dx (xνIν(x)) = xνIν−1(x), (A.46)

d
dx (I0(x)) = I1(x), (A.47)

and the integration formula

x∫
0

e−ttνIν(t) dt = e−xxν+1

2ν + 1
(
Iν(x) + Iν+1(x)

)
, x > 0, ν > −1

2 . (A.48)

The modified Bessel functions have the following asymptotic behaviour:

Iν(x) ∼
(1
2x)ν

Γ(ν + 1)

(
1 + x2

4(ν + 1)

)
, x ↓ 0, ν /∈ {−1,−2,−3, . . .}, (A.49)

Iν(x) ∼ ex√
2πx

, x → ∞, ν ∈ R, (A.50)

Kν(x) ∼
{

2|ν|−1Γ(|ν|)x−|ν|, x ↓ 0, ν 
= 0,
− log x, x ↓ 0, ν = 0,

(A.51)

Kν(x) ∼
√

π

2xe−x, x → ∞, ν ∈ R. (A.52)

Let x > 0. Then the following inequalities hold:

Iν+1(x) < Iν(x), ν ≥ −1
2 , (A.53)

Kν+1(x) > Kν(x), ν > −1
2 . (A.54)

Inequality (A.54) is given in [25]. Inequality (A.53) can be found in [26] and [31], which extends a result 
of [39]. A survey of related inequalities for modified Bessel functions are given by [7], and refinements of 
inequalities (A.53) and (A.54) are given in [38] and references therein.
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