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1. INTRODUCTION

The impulsive differential-difference equations describe processes with
after-effect and state changing by jumps. These equations are an adequate
mathematical apparatus for simulation in physics, chemistry, biology, popu-
lation dynamics, biotechnologies, control theory, industrial robotics, etc.

In spite of the great possibilities for application, the theory of the
� �impulsive differential-difference equations is developing rather slowly 2 .

In the present paper, by means of piecewise continuous auxiliary func-
tions which are analogues of the classical Lyapunov’s functions, sufficient
conditions are obtained for the existence of integral manifolds for impul-
sive differential-difference equations with variable impulsive perturbations.
The investigations are carried out by using minimal subsets of a suitable
space of piecewise continuous functions, by the elements of which the

� �derivatives of Lyapunov’s functions are estimated 3 .
Results related to the study of the existence of integral manifolds for

� �impulsive differential equations without delay have been obtained 1, 4�6 .
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2. STATEMENT OF THE PROBLEM: PRELIMINARY NOTES

n � �Let R be the n-dimensional Euclidean space with norm x �
Ž n 2 .1�2 n ��Ý x , let � be a domain in R , � � �, h � 0, t � R, � � C tk�1 k 0 0 0

� � � .� h, t , � , R � 0, � .0 �
Consider the initial value problem

x t � f t , x t , x t � h , t � t , t � � x t , 1Ž . Ž . Ž . Ž . Ž .Ž . Ž .0 k

� �x t � � t , t � t � h , t , 2Ž . Ž . Ž .0 0 0

� x t � I x t , t � � x t , t � t , k � 1, 2, . . . , 3Ž . Ž . Ž . Ž .Ž . Ž .k k 0

Ž . n Ž . nwhere f : t , � � � � � � R , � : � � t , � , I : � � R , k � 1, 2,0 k 0 k
Ž . Ž . Ž .. . . , � x t � x t � 0 � x t � 0 .
Ž .Let � x � t for x � �.0 0

Introduce the notations

�G � t , x � t , � � � : � x � t � � x , k � 1, 2, . . .� 4Ž . Ž . Ž ..k 0 k�1 k

�� � t , x � t , � � � : t � � x ;� 4Ž . Ž ..k 0 k

Ž Ž ..i.e., � , k � 1, 2, . . . , are hypersurfaces with equations t � � x t , C �k k 0
�� � �C t � h, t , � , and K is the class of all continuous and strictly increas-0 0

Ž . Ž . Ž .ing functions a: R � R such that a 0 � 0. By x t � x t; t , � we� � 0 0
Ž . Ž . Ž . �Ž .denote the solution of the problem 1 , 2 , 3 ; J t , � is the maximal0 0

� . Ž .interval of the type t , 	 in which the solution x t; t , � is defined, and0 0 0
Ž Ž .. Ž .by 
 t , � t denote the integral orbit of the solution x t; t , � for� 0 0 0 0

�Ž .t � J t , � .0 0
Ž . Ž .We shall make a description of the solution x t � x t; t , � of the0 0

Ž . Ž . Ž .problem 1 , 2 , 3 :

Ž .1. For t � h 	 t 	 t to the solution x t coincides with the func-0 0
tion � � C .0 0

Ž .2. Let t , t , . . . t � t � t � ��� be the moments at which the1 2 0 1 2
Ž Ž .. Ž . Ž . Ž .integral curve t, x t of problem 1 , 2 , 3 meets the hypersurfaces

� 4�� ; i.e., each of the points t , t , . . . is a solution of one of thek k�1 1 2
Ž Ž .. hequations t � � x t , k � 1, 2, . . . . Let t � t � h, l � 0, 1, 2, . . . .k l l

� 4�We form the sequence � observing the following rules:i i�0

Ž . � 4� � 4� � h4�a � � t 
 t .i i�0 k k�0 l l�0

Ž .b � � t .0 0

Ž . � 4�c The sequence � is monotone increasing.i i�0

We shall note that in general it is possible that
�� h� 4t � t � �.� 4k lk�1 l�0
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Ž . Ž . Ž .2.1. For � � t 	 � the solution of the problem 1 , 2 , 3 coin-0 1
Ž . Ž .cides with the solution of the problem 1 , 2 .

2.2. For � � t 	 � , i � 1, 2, . . . , one of the following three casesi i�1
may occur:

Ž . � 4� � h4�a If � � t � t , � � t , and j is the number of thei k k�1 l l�0 i k k
Ž Ž ..hypersurface met by the integral curve t, x t at the moment t , then thek

Ž .solution x t coincides with the solution of the problem

y t � f t , y t , x t � h , 4Ž . Ž . Ž . Ž .Ž .˙
y t � x t � I x t . 5Ž . Ž . Ž . Ž .Ž .k k j kk

Ž . � h4� � 4� Ž . Ž .b If � � t � t , then the solution x t of problem 1 ,i l l�0 k k�1
Ž . Ž .2 , 3 coincides with the solution of the problem

y t � f t , y t , x t � h � 0 , 6Ž . Ž . Ž . Ž .Ž .˙
y � � x � . 7Ž . Ž . Ž .i i

Ž . � 4� � h4� Ž .c If � � t � t , � � t , then the solution x t of thei k k�1 l l�0 i k
Ž . Ž . Ž . Ž . Ž .problem 1 , 2 , 3 coincides with the solution of problem 5 , 6 .

Ž . Ž Ž .. Ž .3. If the point x t � I x t � �, then the solution x t is notk j kk

defined for t � t .k

Ž . �Ž .4. The function x t is piecewise continuous on J t , � , continu-0 0
�Ž . Ž . Ž .ous from the left at the points t , t , . . . of J t , � and x t � 0 � x t1 2 0 0 k k

Ž Ž ..� I x t , k � 1, 2, . . . .j kk

DEFINITION 1. We call an arbitrary manifold M in the extended phase
� . Ž . Ž . Ž . Ž Ž ..space t � h, � � � of 1 , 2 , 3 an integral manifold if from t, � t0 0

� � Ž Ž ..� M for t � t � h, t it follows that 
 t , � t 
 M.0 0 � 0 0

In what follows we shall use the class V of piecewise continuousM
� .auxiliary functions V: t , � � � � R which are analogues of Lyapunov’s0 �

� �functions 1 .

� .DEFINITION 2. We shall say that the function V: t , � � � � R0 �
belongs to the class V which kernel is the manifold M in the extendedM

Ž . Ž . Ž .phase space of 1 , 2 , 3 if the following conditions hold:

1. The function V is continuous in G and locally Lipschitz continu-
ous with respect to its second argument x in each of the sets G ,k
k � 1, 2, . . . .

Ž . Ž . Ž . Ž .2. V t, x � 0 for t, x � M, t � t , and V t, x � 0 for t, x �0
� .t , � � �� M.0
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Ž 	 	 .3. For each k � 1, 2, . . . and t , x � � there exist the finite0 0 k
limits

V t	 � 0, x	 � lim V t , x ,Ž . Ž .k 0 	 	Ž . Ž .t , x � t , x0 0
Ž .t , x �Gk

V t	 � 0, x	 � lim V t , xŽ . Ž .0 0 	 	Ž . Ž .t , x � t , x0 0
Ž .t , x �Gk�1

Ž 	 	 . Ž 	 	 .and the equality V � � 0, x � V � , x is valid.0 0 0 0

Introduce the following conditions:

�Ž . n �H1. f � C t , � � � � �, R .0

H2. The function f is Lipschitz continuous with respect to its second
Ž . Ž .and third arguments in t , � � � � � uniformly on t � t , � .0 0

H3. The functions I are Lipschitz continuous in �.k

Ž .H4. The functions I � I : � � �, k � 1, 2, . . . , where I is thek
identity in �.

� Ž .�H5. � � C �, t , � , k � 1, 2, . . . .k 0

Ž . Ž .H6. t � � x � � x � ��� , x � �.0 1 2

Ž .H7. � x � � as k � � uniformly on x � �.k

H8. j � j � ��� � j � ��� , where j is the number of thek k�1 k�p k

Ž Ž .. Ž . Ž . Ž .hypersurface met by the integral curve t, x t of the problem 1 , 2 , 3
at the moment t ; k, j , p � 1, 2, . . . .k k

We shall note that for the impulsive differential equations with variable
impulsive perturbations the so called ‘‘beating’’ of the solution may occur,

Ž Ž ..i.e., a phenomenon for which the integral curve t, x t meets several of
infinitely many times one and the same hypersurface. In the present paper

Ž . Ž . Ž .we shall consider problems of the form 1 , 2 , 3 for which ‘‘beating’’ of
the solutions is absent.

Introduce the following condition:

Ž . Ž . Ž .H9. The integral curve of the solution of the problem 1 , 2 , 3
meets each of the hypersurfaces � at most once.k

Condition H9 is satisfied in the case when � � t , k � 1, 2, . . . , x � �,k k
i.e., when the impulses take place at fixed moments.
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Introduce the following classes of functions:

PC t , � , � � x : t , � � � , x is piecewise continuous with�. .0 0

points of discontinuity of the first kind belonging to the interval

t , � at which it is continuous from the left ,4Ž .0

�� � x � PC t , � , � : V s, x s 	 V t , x t ,Ž . Ž .Ž . Ž .� .1 0

t � h 	 s 	 t , t � t , V � V .40 M

Introduce the function

�1D V t , x t � lim inf � V t � � , x t � � f t , x t , x t � hŽ . Ž . Ž . Ž .Ž . Ž .Ž .� ���0

�V t , x t .Ž .Ž .

3. MAIN RESULTS

LEMMA 1. Let the conditions H1�H9 hold. Then

1. t � �.k
�Ž . � .2. J � , � � � , � .0 0 0

Proof of Assertion 1. From condition H8 we derive the inequalities

j � j � ��� .1 2

From the above inequalities, since j are positive integers, we concludek
that j � � as k � �. Then by condition H7 we get to the equalitiesk

lim t � lim � x � �,Ž .k j kkk�� j ��k

Ž .where x � x t ; t , � .k k 0 0

Proof of Assertion 2. Since by the conditions H1, H2, and H4 the
Ž . Ž . Ž . Ž .solution x t; t , � of the problem 1 , 2 , 3 is defined on each of the0 0

Ž �intervals t , t , k � 1, 2, . . . , then from Assertion 1 we conclude that itk k 
1

is continuable for each t � t .0

Introduce the following condition:

Ž Ž .. Ž .H10. The integral curve t, x t of the solution of the problem 1 ,
Ž . Ž .2 , 3 meets for t � t successively each one of the hypersurfaces � , �0 1 2
exactly once.
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LEMMA 2. Let the following conditions hold:

1. Conditions H1�H10 are met.
�� . � Ž . � .2. g � PC t , � � R , R and g t, 0 � 0 for t � t , � .0 � 0

� � Ž .3. B � C R , R and B 0 , k � 1, 2, . . . .k � � k

4. t � t � t � ��� are the moments at which the integral cur�e0 1 2
Ž Ž .. Ž . Ž . Ž . � 4�t, x t of the problem 1 , 2 , 3 meets the hypersurfaces � .k k�1

Ž .5. The maximal solution r t; t , u of the problem0 0

u � g t , u , t � t , t � t , k � 1, 2, . . . ,Ž .˙ 0 k

u t � 0 � u � 0,Ž .0 0 8Ž .

�u t � B u t , k � 1, 2, . . .Ž . Ž .Ž .k k k

� .is defined in the inter�al t , � .0

Ž . Ž .6. The functions 
 : R � R , 
 u � u � B u , k � 1, 2, . . . , arek � � k k
nondecreasing with respect to u.

7. The functions V � V is such thatM

V t , � t 	 uŽ .Ž .0 0 0 0

and the inequalities

D V t , x t 	 g t , V t , x t ,Ž . Ž .Ž . Ž .Ž .�

t � � x t , k � 1, 2, . . . ,Ž .Ž .k
9Ž .

V t � 0, x t � I x t 	 
 V t , x t ,Ž . Ž . Ž .Ž . Ž .Ž .Ž .k k

t � � x t , k � 1, 2, . . .Ž .Ž .k

are �alid for each t � t and x � � .0 1

Then

�V t , x t ; t , � 	 r t ; t , u , for t � t , � . 10Ž . Ž . Ž .Ž . .0 0 0 0 0

�Ž . � .Proof. From Lemma 1 it follows that J t , � � t , � and from0 0 0
� . Ž Ž ..condition H10 it follows that for t � t , � , t, x t meets successively the0

Ž �hypersurfaces � , � , . . . . Since in the interval t , t , k � 0, 1, 2, . . . ,1 2 k k�1

Ž . Ž . Ž . Ž .x t coincides with the solution of the problem 1 , 5 j � k , we con-k
Ž .clude that for t � t 	 t the function x t satisfies the integral equa-k k�1

tion

t
x t � x t � I x t � f � , x � , x � � h d� .Ž . Ž . Ž . Ž . Ž .Ž .Ž . Hk k k

tk
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Ž . Ž .On the other hand, the maximal solution r t; t , u of the problem 8 is0 0
defined by the equality

� �r � ; � , u , � � � � � ,Ž .0 0 0 0 1
�r t ; t , u , t � t 	 t ,� Ž .1 1 1 1 2r t ; t , u �Ž .0 0 . . . . . . . . . . . . . . . . . . . . . . . . .
��r t ; t , u , t � t 	 t ,Ž .k k k k k�1. . . . . . . . . . . . . . . . . . . . . . . . .

Ž �.where r t; t , u is the maximal solution of the equation without im-k k k
Ž . Ž �pulses u � g t, u in the interval t , t , k � 0, 1, 2, . . . , for which˙ k k�1

� Ž Ž � .. �u � 
 r t ; t , u , k � 1, 2, . . . and u � u .k k k�1 k k�1 k�1 0 0
Ž �Let t � t , t . Then from the corresponding comparison lemma for the0 1

� �continuous case 3 we obtain that

V t , x t ; t , � 	 r t ; t , u .Ž . Ž .Ž .0 0 0 0

Ž . Ž � Ž .Suppose that 10 is satisfied for t � t , t , k � 1. Then, using 9k�1 k
and the fact that the function 
 is nondecreasing, we obtaink

V t � 0, x t � 0; t , � 	 
 V t , x t ; t , �Ž . Ž .Ž . Ž .Ž .k k 0 0 k k k 0 0

	 
 r t ; t , uŽ .Ž .k k 0 0

� 
 r t ; t , u� � u� .Ž .Ž .k�1 k k k�1 k�1 k

� �We apply again the corresponding comparison lemma 3 and obtain

V t , x t ; t , � 	 r t ; t , u� � r t ; t , u ;Ž . Ž .Ž .Ž .0 0 k k k 0 0

Ž . Ž �i.e., the inequality 10 is valid for t � t , t .k k�1
The proof is completed by induction.

COROLLARY 1. Let the following conditions hold:

1. Conditions II1�II10 are met.
2. The function V � V is such that the inequalitiesM

D V t , x t 	 0, t � � x t , k � 1, 2, . . . ,Ž . Ž .Ž . Ž .� k

V t � 0, x t � I x t 	 V t , x t , t � � x t , k � 1, 2, . . .Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .k k

are �alid for each t � t and x � � .0 1

Then

�V t , x t ; t , u 	 V t , � t , t � t , � .Ž . Ž .Ž . Ž . .0 0 0 0 0 0
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THEOREM 1. Assume that:

1. Conditions H1�H10 are met.
Ž . Ž . Ž .2. For the problem 1 , 2 , 3 there exists a function V � V withM

kernel the manifold M, so that the following relations are satisfied:

D V t , x t 	 0, t � � x t , k � 1, 2, . . . , t � t , x � � ,Ž . Ž .Ž . Ž .� k 0 1

11Ž .

V t � 0, x t � I x t 	 V t , x t ,Ž . Ž . Ž .Ž . Ž .Ž .k

t � � x t , k � 1, 2, . . . . 12Ž . Ž .Ž .k

Ž . Ž . Ž .Then M is an integral manifold for 1 , 2 , 3 .

Proof. Suppose that M is not an integral manifold. Therefore there
� � Ž Ž .. � � Ž Žexists t , t � t such that, if t, � t � M for t � t � h, t , t, x t; t ,0 0 0 0 0

.. � Ž Ž .. � Ž � �.� � M for t � t 	 t , and t, x t; t , � � M for t � t , V t , x � 0,0 0 0 0
� Ž � . Ž . � �Ž . n �where x � x t ; t , � . Moreover x t � PC J t , � , R .0 0 0 0

We denote that for t� the following two cases are possible:

Ž . � Ž Ž .. Ž � Ž �a If t � � x t , k � j, j � 1, . . . , j � 1, then t � 0, x t � 0;k
.. Ž � Ž � . Ž �.. Ž � Ž � ..t , � � t � 0, x t ; t , � � I x , t � , x t � 0; t , � � M and0 0 0 0 k 0 0

Ž � Ž � ..from Definition 2 it follows that V t � 0, x t � 0; t , � � 0. Conse-0 0
Ž � �. Ž � Ž � ..quently 0 � V t , x � V t � 0, x t � 0; t , � which is contradiction by0 0

Ž .11 .
Ž . � Ž Ž .. � �b If t � � x t , k � j, j � 1, . . . , j � 1, there exists t � t suchk
Ž � Ž � .. Ž . Ž .that t , x t ; t , � � M. From 11 and 12 it follows that the function0 0

Ž Ž .. � .V t, x t is not increasing in t , � and from Definition 20

V t� , x t� ; t , � � 0. 13Ž . Ž .Ž .0 0

Since the conditions of Corollary 1 are met, then

V t , x t ; t , � 	 V t� , x t� ; t , � ,Ž . Ž .Ž . Ž .0 0 0 0

� � .for t � t , � and we obtain that

V t� , x t� ; t , � 	 V t� , x t� ; t , � � 0,Ž . Ž .Ž . Ž .0 0 0 0

Ž .which is contradicts 13 .

The proof of Theorem 1 is complete.
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