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Abstract

In this paper, we are concerned with the following third-order ordinary differential equation:

x′′′(t) + f
(
t, x(t), x′(t), x′′(t)

) = 0, 0 < t < 1,

with the nonlinear boundary conditions

x(0) = 0, g
(
x′(0), x′′(0)

) = A, h
(
x′(1), x′′(1)

) = B,

whereA,B ∈ R, f : [0,1] × R3 → R is continuous,g,h : R2 → R are continuous. The existenc
result is given by using a priori estimate, Nagumo condition, upper and lower solutions and L
Schauder degree, and we give an example to demonstrate our result.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with the existence of solutions for the nonlinear boundary value
lem
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x ′′′(t) + f
(
t, x(t), x ′(t), x ′′(t)

) = 0, 0 < t < 1, (1.1)

x(0) = 0, g
(
x ′(0), x ′′(0)

) = A, h
(
x ′(1), x ′′(1)

) = B, (1.2)

whereA,B ∈ R, f : [0,1] × R3 → R is continuous,g,h :R2 → R are continuous.
Third-order boundary value problems (BVPs) were discussed in many papers in

years, for instance, see [2–7,9] and references therein. However, the boundary conditio
in the above-mentioned references are all linear and race works are done for no
boundary conditions. Recently, Rovderová [8] established existence results for the
ary value problem

y ′′′ = f (t, y, y ′, y ′′), 0 < t < 1, (1.3)

y(0) = A, y ′′(0) = σ
(
y ′(0)

)
, y ′(T ) = τ

(
y(τ)

)
, (1.4)

wheref , ∂f /∂y, ∂f /∂y ′, and∂f /∂y ′′ are continuous functions on[0,1] × R3, σ(v) ∈
C1(R,R), τ (v) ∈ C(R,R).

Motivated by the work of the above papers, the purpose of this article is to stud
existence of solutions for boundary value problem (1.1)–(1.2) under the condition th
f (t, x, y, z) is continuous on[0,1] × R3 and increasing inx, which is weaker than th
restriction imposed onf by Rovderová [8]. We also extend the result of Grossinho
Minhós [4], who studied third-order boundary value problems with linear separated b
ary conditions. The tools we mainly used are the method of upper and lower solutio
Leray–Schauder degree theory [1].

2. Preliminary

In this section, we present some definitions and a lemma that are important to ou
result.

Definition 1. Functionsα(t), β(t) ∈ C3[0,1] are called lower and upper solutions of BV
(1.1)–(1.2), respectively, if

α′′′(t) + f
(
t, α(t), α′(t), α′′(t)

)
� 0, (2.1)

β ′′′(t) + f
(
t, β(t), β ′(t), β ′′(t)

)
� 0, (2.2)

and

α(0) = β(0) = 0, (2.3)

g
(
α′(0), α′′(0)

)
� A � g

(
β ′(0), β ′′(0)

)
, (2.4)

h
(
α′(1), α′′(1)

)
� B � h

(
β ′(1), β ′′(1)

)
. (2.5)

Definition 2. Let D be a subset of[0,1] × R3, we say thatf (t, x, y, z) satisfies Nagumo
condition inD, if f is continuous and given anya > 0, there exists a positive functio
Φ : [0,∞) → [a,+∞) such that∣∣f (t, x, y, z)

∣∣ � Φ
(|z|) (2.6)
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for arbitrary(t, x, y, z) ∈ D and such that
+∞∫
0

s

Φ(s)
ds = +∞. (2.7)

Lemma 1 (see [4]).Letf (t, x, y, z) : [0,1]× R3 → R be a continuous function that sati
fies Nagumo condition in

D = {
(t, x, y, z) ∈ [0,1] × R3: Γ1(t) � x � Γ2(t), γ1(t) � y � γ2(t)

}
,

whereΓ1,Γ2, γ1, γ2 : [0,1] → R are continuous functions such thatΓ1(t) � Γ2(t) and
γ1(t) � γ2(t) for everyt ∈ [0,1]. Then there exists a constantr > 0 (depending only on
γ1, γ2 andΦ) such that every solutionx(t) of Eq.(1.1), verifying

Γ1(t) � x(t) � Γ2(t), γ1(t) � x ′(t) � γ2(t), t ∈ [0,1],
then satisfies‖x ′′‖∞ � r.

3. Existence result

Theorem 1. Assume that

(i) There exist lower and upper solutions of BVP(1.1)–(1.2), α(t), β(t), respectively,
such that

α′(t) � β ′(t), t ∈ [0,1]; (3.1)

(ii) f (t, x, y, z) is continuous on[0,1] × R3 and increasing inx;
(iii) f (t, x, y, z) satisfies Nagumo condition in

D∗ = {
(t, x, y, z) ∈ [0,1] × R3: α(t) � x � β(t), α′(t) � y � β ′(t)

};
(iv) g(y, z), h(y, z) are continuous onR2, g(y, z) is decreasing inz and h(y, z) is in-

creasing inz.

Then BVP(1.1)–(1.2)has at least one solutionx(t) ∈ C3[0,1] such that

α(t) � x(t) � β(t), α′(t) � x ′(t) � β ′(t), t ∈ [0,1].

Proof. Let v1, v2, v3 ∈ R, such thatv1 � v3, define

ω(v1, v2, v3) =
{

v3 if v2 > v3,

v2 if v1 � v2 � v3,

v1 if v2 < v1.

Forλ ∈ [0,1], we consider the auxiliary equation

x ′′′(t) + λf
(
t,ω

(
α(t), x(t), β(t)

)
,ω

(
α′(t), x ′(t), β ′(t)

)
, x ′′(t)

)
= (1− λ)x ′(t) + λ

[
x ′(t) − ω

(
α′(t), x ′(t), β ′(t)

)]
Φ

(∣∣x ′′(t)
∣∣), (3.2)

whereΦ is decided by Nagumo condition, with the boundary conditions
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:

x(0) = 0, (3.3)

x ′(0) = λ
[
A − g

(
ω

(
α′(0), x ′(0), β ′(0)

)
, x ′′(0)

) + ω
(
α′(0), x ′(0), β ′(0)

)]
, (3.4)

x ′(1) = λ
[
B − h

(
ω

(
α′(1), x ′(1), β ′(1)

)
, x ′′(1)

) + ω
(
α′(1), x ′(1), β ′(1)

)]
. (3.5)

Then we can selectM1 > 0, such that for everyt ∈ [0,1],
−M1 < α′(t) � β ′(t) < M1, (3.6)

−f
(
t, α(t), α′(t),0

) − [
M1 + α′(t)

]
Φ(0) < 0, (3.7)

−f
(
t, β(t), β ′(t),0

) + [
M1 − β ′(t)

]
Φ(0) > 0, (3.8)∣∣A − g

(
β ′(0),0

) + β ′(0)
∣∣ < M1,

∣∣A − g
(
α′(0),0

) + α′(0)
∣∣ < M1, (3.9)∣∣B − h

(
β ′(1),0

) + β ′(1)
∣∣ < M1,

∣∣B − h
(
α′(1),0

) + α′(1)
∣∣ < M1. (3.10)

In the following, we shall complete the proof by four steps.

Step 1. Every solutionx(t) of (3.2)–(3.5) satisfies∣∣x(t)
∣∣ < M1,

∣∣x ′(t)
∣∣ < M1, t ∈ [0,1],

and independently ofλ.

We suppose that the estimate|x ′(t)| < M1 is not true. Then there existst ∈ [0,1], such
thatx ′(t) � M1, or x ′(t) � −M1. Suppose that the first case holds. Define

max
t∈[0,1]x

′(t) := x ′(t0) (� M1 > 0).

(1) If t0 ∈ (0,1), thenx ′′(t0) = 0 andx ′′′(t0) � 0. Forλ ∈ (0,1], by condition (ii) and
(3.8), we get the following contradiction:

0 � x ′′′(t0) = −λf
(
t0,ω

(
α(t0), x(t0), β(t0)

)
,ω

(
α′(t0), x ′(t0), β ′(t0)

)
, x ′′(t0)

)
+ (1− λ)x ′(t0) + λ

[
x ′(t0) − ω

(
α′(t0), x ′(t0), β ′(t0)

)]
Φ

(∣∣x ′′(t0)
∣∣)

= −λf
(
t0,ω

(
α(t0), x(t0), β(t0)

)
, β ′(t0),0

)
+ (1− λ)x ′(t0) + λ

[
x ′(t0) − β ′(t0)

]
Φ(0)

� −λf
(
t0, β(t0), β

′(t0),0
) + (1− λ)x ′(t0) + λ

[
M1 − β ′(t0)

]
Φ(0)

� λ
[−f

(
t0, β(t0), β

′(t0),0
) + (

M1 − β ′(t0)
)]

Φ(0) > 0,

and forλ = 0, we have 0� x ′′′(t0) = x ′(t0) � M1 > 0. Thust0 �∈ (0,1).
(2) If t0 = 0, then

max
t∈[0,1]

x ′(t) := x ′(0) (� M1 > 0) and x ′′(0+) = x ′′(0) � 0.

Therefore, from condition (iv), (3.4) and (3.9), the following contradiction is obtained

M1 � x ′(0) = λ
[
A − g

(
ω

(
α′(0), x ′(0), β ′(0)

)
, x ′′(0)

) + ω
(
α′(0), x ′(0), β ′(0)

)]
= λ

[
A − g

(
β ′(0), x ′′(0)

) + β ′(0)
]

� λ
[
A − g

(
β ′(0),0

) + β ′(0)
]
< M1,

thust0 �= 0.



108 Z. Du et al. / J. Math. Anal. Appl. 294 (2004) 104–112

t,

f

(3) If t0 = 1, then we get maxt∈[0,1] x ′(t) := x ′(1) (� M1 > 0), andx ′′(1−) = x ′′(1)

� 0, from condition (iv), (3.5) and (3.10), we obtain the following contradiction:

M1 � x ′(1) = λ
[
B − h

(
ω

(
α′(1), x ′(1), β ′(1)

)
, x ′′(1)

) + ω
(
α′(1), x ′(1), β ′(1)

)]
= λ

[
B − h

(
β ′(1), x ′′(1)

) + β ′(1)
]

� λ
[
B − h

(
β ′(1),0

) + β ′(1)
]
< M1,

thust0 �= 1. So we show thatx ′(t) < M1 for everyt ∈ [0,1]. Similar to the above argumen
we can prove thatx ′(t) > −M1 for everyt ∈ [0,1]. Therefore,|x ′(t)| < M1 for t ∈ [0,1].
Sincex(0) = 0, the estimate|x(t)| < M1 is easily shown by integration.

Step 2. There existsM2 > 0, such that every solutionx(t) of (3.2)–(3.5) satisfies∣∣x ′′(t)
∣∣ < M2 for t ∈ [0,1],

independently ofλ ∈ [0,1].

If x(t) is a solution of BVP (3.2)–(3.5), then

x ′′′(t) + λf
(
t,ω

(
α(t), x(t), β(t)

)
,ω

(
α′(t), x ′(t), β ′(t)

)
, x ′′(t)

)
− (1− λ)x ′(t) − λ

[
x ′(t) − ω

(
α′(t), x ′(t), β ′(t)

)]
Φ

(∣∣x ′′(t)
∣∣) = 0.

Let

DM1 = {
(t, x, y, z) ∈ [0,1] × R3: −M1 � x � M1, −M1 � y � M1

}
.

Define the functionFλ :DM1 → R as follows:

Fλ(t, x, y, z) := λf
(
t,ω

(
α(t), x,β(t)

)
,ω

(
α′(t), y,β ′(t)

)
, z

)
− (1− λ)y − λ

[
y − ω

(
α′(t), y,β ′(t)

)]
Φ

(|z|).
In the following, we show thatFλ satisfies Nagumo condition inDM1, independently o
λ ∈ [0,1]. In fact, sincef satisfies Nagumo condition inDM1, then∣∣Fλ(t, x, y, z)

∣∣ �
∣∣f (

t,ω
(
α(t), x,β(t)

)
,ω

(
α′(t), y,β ′(t)

)
, z

)∣∣
+ |y| + ∣∣y − ω

(
α′(t), y,β ′(t)

)∣∣Φ(|z|)
� Φ

(|z|) + M1 + (|y| + ∣∣ω(
α′(t), y,β ′(t)

)∣∣)Φ(|z|)
� M1 + (1+ 2M1)Φ

(|z|) := Φ∗(z).

Furthermore, we obtain

+∞∫
0

s

Φ∗(s)
ds =

+∞∫
0

s

M1 + (1+ 2M1)Φ(s)
ds �

+∞∫
0

s

(1+ 2M1 + M1/a)Φ(s)
ds

= 1

(1+ 2M1 + M1/a)

+∞∫
s

Φ(s)
ds = +∞,
0
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thus,Fλ satisfies Nagumo condition inDM1, independently ofλ ∈ [0,1]. Let

Γ1(t) = γ1(t) = −M1, Γ2(t) = γ2(t) = M1, t ∈ [0,1].
In view of Step 1 and applying Lemma 1, then there existsM2 > 0, such that|x ′′(t)| < M2
for t ∈ [0,1]. SinceM1 andΦ do not depend onλ, we get that the estimate|x ′′(t)| < M2
is also independently ofλ.

Step 3. Forλ = 1, BVP (3.2)–(3.5) has at least one solutionx1(t).

Define the operators

L :C2[0,1] ∩ domL → C[0,1] × R3

by

Lx = (
x ′′′, x(0), x ′(0), x ′(1)

)
,

and

Nλ :C2[0,1] → C[0,1] × R3

by

Nλx = (−λf
(
t,ω

(
α(t), x(t), β(t)

)
,ω

(
α′(t), x ′(t), β ′(t)

)
, x ′′(t)

)
+ (1− λ)x ′ + λ

[
x ′ − ω

(
α′(t), x ′(t), β ′(t)

)]
Φ

(|x ′′|),0,Aλ,Bλ

)
with

Aλ := λ
[
A − g

(
ω

(
α′(0), x ′(0), β ′(0)

)
, x ′′(0)

) + ω
(
α′(0), x ′(0), β ′(0)

)]
,

Bλ := λ
[
B − h

(
ω

(
α′(1), x ′(1), β ′(1)

)
, x ′′(1)

) + ω
(
α′(1), x ′(1), β ′(1)

)]
.

As L−1 is compact, we can define the completely continuous operator

Tλ :
(
C2[0,1],R) → (

C2[0,1],R)
by

Tλ(x) = L−1Nλ(x).

Consider the set

Ω = {
x ∈ C2[0,1]: ‖x‖∞ < M1, ‖x ′‖∞ < M1, ‖x ′′‖∞ < M2

}
.

By Steps 1 and 2, the degree deg(I − Tλ,Ω,0) is well defined for everyλ ∈ [0,1] and by
homotopy invariance, we get

deg(I − T0,Ω,0) = deg(I − T1,Ω,0).

As the equationx = T0(x) has only the trivial solution, by degree theory,

deg(T0,Ω,0) = 1.

Hence, the equationx = T1(x) has at least one solution. That is, the problem
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P

:

x ′′′(t) + f
(
t,ω

(
α(t), x(t), β(t)

)
,ω

(
α′(t), x ′(t), β ′(t)

)
, x ′′(t)

)
= [

x ′(t) − ω
(
α′(t), x ′(t), β ′(t)

)]
Φ

(∣∣x ′′(t)
∣∣), (3.11)

with the boundary conditions

x(0) = 0, (3.12)

x ′(0) = A − g
(
ω

(
α′(0), x ′(0), β ′(0)

)
, x ′′(0)

) + ω
(
α′(0), x ′(0), β ′(0)

)
, (3.13)

x ′(1) = B − h
(
ω

(
α′(1), x ′(1), β ′(1)

)
, x ′′(1)

) + ω
(
α′(1), x ′(1), β ′(1)

)
, (3.14)

has at least one solutionx1(t) in Ω .

Step 4. Thex1(t) is a solution of BVP (1.1)–(1.2).

In fact, the above solutionx1(t) of BVP (3.11)–(3.14) will be a solution of the BV
(1.1)–(1.2), too, since it satisfies in [0, 1],

α(t) � x1(t) � β(t), α′(t) � x ′
1(t) � β ′(t).

If the assertion is not true, then there existst ∈ [0,1], such thatx ′
1(t) > β ′(t), we define

max
t∈[0,1]

[
x ′

1(t) − β ′(t)
] := x ′

1(t1) − β ′(t1) > 0.

If t1 ∈ (0,1), then

x ′′
1(t1) = β ′′(t1) and x ′′′

1 (t1) � β ′′′(t1).

By condition (ii), we get the following contradiction:

0 � x ′′′
1 (t1) − β ′′′(t1)

� −f
(
t1,ω

(
α(t1), x1(t1), β(t1)

)
,ω

(
α′(t1), x ′

1(t1), β
′(t1)

)
, x ′′

1(t1)
)

+ [
x ′

1(t1) − ω
(
α′(t1), x ′

1(t1), β
′(t1)

)]
Φ

(∣∣x ′′
1(t1)

∣∣)
+ f

(
t, β(t1), β

′(t1), β ′′(t1)
)

= −f
(
t1,ω

(
α(t1), x1(t1), β(t1)

)
, β ′(t1), β ′′(t1)

)
+ [

x ′(t1) − β ′(t1)
]
Φ

(∣∣x ′′
1(t1)

∣∣) + f
(
t, β(t1), β

′(t1), β ′′(t1)
)

> −f
(
t1, β(t1), β

′(t1), β ′′(t1)
) + f

(
t1, β(t1), β

′(t1), β ′′(t1)
) = 0,

thust1 �∈ (0,1).
If t1 = 0, then

max
t∈[0,1]

[
x ′

1(t) − β ′(t)
] := x ′

1(0) − β ′(0) > 0

and

x ′′
1(0+) − β ′′(0+) = x ′′

1(0) − β ′′(0) � 0,

therefore, from condition (iv), (3.13) and (2.4), the following contradiction is obtained
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t

)–
β ′(0) � x ′
1(0) = A − g

(
ω

(
α′(0), x ′

1(0), β ′(0)
)
, x ′′

1(0)
) + ω

(
α′(0), x ′

1(0), β ′(0)
)

= A − g
(
β ′(0), x ′′

1(0)
) + β ′(0)

� A − g
(
β ′(0), β ′′(0)

) + β ′(0) < β ′(0),

thust1 �= 0.
If t1 = 1, similar to the above argument, we can deduce thatt1 �= 1. So we show tha

x ′
1(t) � β ′(t) for every t ∈ [0,1]. Similarly, we can prove thatα′(t) � x ′

1(t) for every
t ∈ [0,1]. Therefore,

α′(t) � x ′
1(t) � β ′(t), t ∈ [0,1].

Sinceα(0) = β(0) = 0, by integrating the above inequalities on[0, t], we obtain

α(t) � x1(t) � β(t), t ∈ [0,1].
Thusx1(t) is a solution of BVP (1.1)–(1.2).�
Remark 1. In Theorem 1, the condition thatf is decreasing inx for (t, x, y, z) ∈ [0,1] ×
R3 can be relaxed asf is increasing inx for (t, y, z) ∈ [0,1]×R2 andα(t) � x(t) � β(t).
Since the condition is only used in Step 1 to prove the inequality

−λf
(
t0,ω

(
α(t0), x(t0), β(t0)

)
, β ′(t0),0

)
� −λf

(
t0, β(t0), β

′(t0),0
)
,

and Step 4 to prove the inequality

−f
(
t1,ω

(
α(t1), x1(t1), β(t1)

)
, β ′(t1), β ′′(t1)

)
� −f

(
t1, β(t1), β

′(t1), β ′′(t1)
)
.

4. Example

Example. We consider the following third-order boundary value problem:

x ′′′ − (t − x)2 − t (4+ t2)x ′ − (x ′)2 sin(x ′′) = 0, 0 < t < 1, (4.1)

x(0) = 0,5
(
x ′(0)

)2 − 1

2
x ′′(0) = 5,

(
x ′(1)

)2 + (
x ′′(1)

)3 = 1, (4.2)

let

f (t, x, y, z) = −(t − x)2 − t (4+ t2)y − y2 sinz,

g(y, z) = 5y2 − 1

2
z, h(y, z) = y2 + z3.

It is easily to prove thatα(t) = −t , β(t) = t are lower and upper solutions of BVP (4.1
(4.2), respectively.f is continuous on[0,1]×R3 and increasing inx whenα(t) � x1(t) �
β(t), t ∈ [0, 1]. g,h are continuous onR2, g(y, z) is decreasing inz, h(y, z) is increasing
in z. Furthermore, we obtainf satisfies Nagumo condition in

D = {
(t, x, y, z) ∈ [0,1] × R3: −t � x � t, −1� x ′ � 1

}
.

Therefore, by Theorem 1, there exists at least one solutionx(t) for BVP (4.1)–(4.2) such
that

−t � x(t) � t, −1� x ′(t) � 1, t ∈ [0,1].
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Remark 2. We extend the result in Ref. [4] since our boundary conditions are more g
alized. Obviously the result given in [4] is not available to our example.
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