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Abstract
In this paper, we are concerned with the following third-order ordinary differential equation:
@)+ f(rx(0), %" @), x"(1))=0, O0<r<1,
with the nonlinear boundary conditions
x(0)=0, g(x'(0,x"(0)=A4, h(x'(1,x"(1)=B,

whereA, B € R, f:[0,1] x R3 > Ris continuousg, i : R? — R are continuous. The existence
result is given by using a priori estimate, Nagumo condition, upper and lower solutions and Leray—
Schauder degree, and we give an example to demonstrate our result.
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1. Introduction

This paper deals with the existence of solutions for the nonlinear boundary value prob-
lem
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() + f(tx(@®),x'(1),x"#)) =0, 0<r<1, (1.1)
x(0)=0, g(x'(0.x"(0)=4, h(x'(1),x"(1)=B, (1.2)

whereA, B € R, f:[0,1] x R3 — R is continuousg, h: R — R are continuous.

Third-order boundary value problems (BVPs) were discussed in many papers in recent
years, for instance, see [2—7,9] and refeetherein. However, the boundary conditions
in the above-mentioned references are all linear and race works are done for nonlinear
boundary conditions. Recently, Rovderova [8] established existence results for the bound-
ary value problem

y/// — f(t, y, y/’ y//)’ O<t < 1’ (13)
yO) =4, YO0 =0c(y(0), YT =1(y1), (1.4)

where f, af/dy, af /dy’, anddf/dy” are continuous functions o, 1] x R3, o (v) €
CY(R,R), 7(v) € C(R, R).

Motivated by the work of the above papers, the purpose of this article is to study the
existence of solutions for boundary valueoblem (1.1)—(1.2) under the condition that
f(t,x,y,z) is continuous orf0, 1] x R® and increasing in, which is weaker than the
restriction imposed orf by Rovderova [8]. We also extend the result of Grossinho and
Minhds [4], who studied third-order boundary value problems with linear separated bound-
ary conditions. The tools we mainly used are the method of upper and lower solutions and
Leray—Schauder degree theory [1].

2. Preliminary

In this section, we present some definitions and a lemma that are important to our main
result.

Definition 1. Functionsx(z), B(¢) € C3[0, 1] are called lower and upper solutions of BVP
(1.1)—(1.2), respectively, if

")+ f(t (), (1), " (1)) >0, (2.1)

B (1) + f(1. B@), B'(), B"(1)) <O, (2.2)
and

a(0) =B(0)=0, (2.3)

g(e'(0),a"(0)) <A< g(B'(0),"0), (2.4)

h(a' (D), ") < B <h(B'(1), B"(D)). (2.5)

Definition 2. Let D be a subset df0, 1] x R3, we say thatf (¢, x, y, z) satisfies Nagumo
condition in D, if f is continuous and given any> 0, there exists a positive function
@ :[0, c0) — [a, +00) such that

|f(tx,y,2)| < P(lz]) (2.6)
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for arbitrary(z, x, y, z) € D and such that
+00

s
/ o0) ds = 4o0. (2.7)

0

Lemmal (see [4]).Let f(¢,x,y,2):[0,1] x R® — R be a continuous function that satis-
fies Nagumo condition in

D={(t,x,y,2¢el0,1] x R® I'(1) <x < Ia(0), y1(t) <y <y2(n)},

where I'y, I, y1, y2:[0, 1] — R are continuous functions such thay(z) < I'>(zr) and
y1(t) < y2(¢) for everyt € [0, 1]. Then there exists a constant- 0 (depending only on
y1, y2 and @) such that every solution(r) of Eq.(1.1), verifying

N <x@) <), y@) <x'@)<y), te€[0,1],
then satisfiegx”||oc < 7.

3. Existenceresult
Theorem 1. Assume that

(i) There exist lower and upper solutions of BYR1)—(1.2) «(z), B(t), respectively,
such that

o (1)< p'(r), tel01] (3.1)

(i) f(t,x,y,z)is continuous ofi0, 1] x R3 and increasing irx;
(i) f(t,x,y,z) satisfies Nagumo condition in

Dy={(t,x,y.2€[0, 1] x R® a(t) <x < B(1), ' () <y < B (D}

(iv) g(v.z), h(y,z) are continuous orR?, g(y, z) is decreasing in; and i (y, z) is in-
creasing inz.

Then BVR1.1)—(1.2)has at least one solutian(r) € C3[0, 1] such that
a(t) <x@) < B@), o) <x'()<p'@), tel01]

Proof. Letwvs, vy, v3 € R, such thatb, < vz, define

vy if v > v3,
o(v1,v2,v3) = v2 if v1<v2< g,
vy if v < vy
For X € [0, 1], we consider the auxiliary equation

x"(@) + 1 f (1, o(a(0), x(1), B(@)), (' (1), X' (1), B' (1)), X" (1))

= 1= x"(0) +A[x'@) —w(d (1), x' @), ') ]2 (]x" ®)]). (3.2)
where® is decided by Nagumo conditi, with the boundary conditions
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x(0) =0, (3.3)

x'(0) = A[A — g(w(a/(0), x(0), B'(0)), x"(0)) + w(c/(0), x(0), B'(0))]., (3.4)

x'(D)=1[B - h(w(a'(1),x'D), /D). x"(1) + (1), x'(D), g/(D)].  (3.5)
Then we can seled1 > 0, such that for every e [0, 1],

—M1<d' (1) <B'(t) < My, (3.6)
—f(t.a@),d' (1),0) — [M1+a'(1)]@(0) <O, (3.7)
—f (2. ). B'(1).0) + [M1— B'(1)|®(0) > O, (3.8)
|A —g(B'(0),0) + B'(0)] < M1, |A—g(/(0),0) +a/(0)| < My, (3.9)
|B—h(B'(1),0)+B'(D)| < M, |B —h(c'(1),0) + ' (1] < Ma. (3.10)

In the following, we shall complete the proof by four steps.

Step 1. Every solutionx (7) of (3.2)—(3.5) satisfies
|x()| <M1, |x'®)] <M1, t€]0,1],
and independently of.

We suppose that the estimaié(z)| < M1 is not true. Then there exists [0, 1], such
thatx'(r) > M1, orx’'(r) < —M1. Suppose that the first case holds. Define

max x'(¢) := x"(tg) (= M1 > 0).
t€[0,1]

(1) If 1o € (0, 1), thenx” (t9) = 0 andx"’(tg) < 0. Forx € (0, 1], by condition (ii) and
(3.8), we get the following contradiction:
0> x"(t0) = =1 f (to, w(a(t0), x (t0), B(t0)), (¢! (t0), x' (10), B (t0) ), x" (0))
+ (1= 1)x'(10) + A[x(10) — w (e (t0), X' (t0), B' (1)) | @ (|x" (10) |)
= —Af (to, w(a(t0), x(t0), B(10)), B (10), 0)
+ (1= W)x'(10) 4+ A[x'(t0) — B (10) | P (0)
—f (to, B(t0), B'(10), 0) + (1 — 2)x'(10) + A[M1 — B/ (10)]®(0)
A[— £ (10, B(t0), B'(t0), 0) + (M1 — B'(10))]@(0) > O,

and fori =0, we have Q@ x"(19) = x’(t9) > M1 > 0. Thustg & (0, 1).
(2) If o =0, then

r?é")f] X' :=x'(0) (=M1>0) and x”(0")=x") <0.
1€|0,

Therefore, from condition (iv), (3.4) and (3.9), the following contradiction is obtained:
My < x'(0) = A[A — g(o((0), x'(0), 8/(0)), x"(0)) + (e (0), x'(0), 8'(0)) ]
=1[A - ¢(B'(0),x"(0) + (0]
<A[A—¢(B'(0).0) + B'(0)] < My,

2
2

thusrg # 0.
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(3) If 0 =1, then we get mayo,1;x'(#) := x'(1) (= M1 > 0), andx”(17) = x"(1)
> 0, from condition (iv), (3.5) and (3.10), we obtain the following contradiction:

M1 <x' (D)= k[B - h(w(o/(l), x'(1), ﬂ/(l)), x/'(l)) + w(o/(l), x'(), ﬂ'(l))]
=A[B—h(B'D),x" (D) + B D]
< A[B - h(ﬂ’(l), 0) + ,3’(1)] < M,
thuszg # 1. So we show that'(r) < M1 for everyr € [0, 1]. Similar to the above argument,
we can prove that’(r) > — M3 for everyr € [0, 1]. Thereforex'(¢)| < My for ¢ € [0, 1].
Sincex (0) = 0, the estimatéx(1)| < M1 is easily shown by integration.
Step 2. There existdWz > 0, such that every solution(z) of (3.2)—(3.5) satisfies
|x"(t)] < M2 fort €0, 1],

independently of. € [0, 1].
If x(¢) is a solution of BVP (3.2)—(3.5), then

x"(@) + 1 f (1, o(a(r), x(1), B(1)), (' (1), X' (1), B' (1)), X" (1))
— A =x'(0) = A[X (1) — (o' (@), X' (1), /(1) ]@(|x"(®)]) = 0.

Let
Dy, ={(t,x,y,2) €[0,1] x R =M1 <x <M1, —M1<y< Ma}.

Define the function¥y : Dy, — R as follows:

Fu(t,x,y,2) = Af (t.o(at), x, B1D)), 0(a (), y, B' (1)), 2)
— (@ =1y —i[y =o' @), y, 8'®)]®(zl).

In the following, we show thaf) satisfies Nagumo condition ify,, independently of
A €0, 1]. In fact, sincef satisfies Nagumo condition Dy, , then

|Fa(t.x,y.2)| < |f(to(a@), x, B@). o' (1), y, B'(1)). 2)]
+ Iyl + |y — (@), y, /@) |®(Iz])
@ (|z) + M1+ (Iy| + (e’ (@), y. B/®))|) 2 (Iz])
M1+ (14 2M)®(|z) == @*(2).

Furthermore, we obtain

<
<

+00 +00

+00
/ il ds = / 5 ds > / 5 ds
/ D*(s) / M1+ (1+2M1)D(s) / (14 2M1 + M1/a)P(s)

+00
1

S
= d :+OO,
(1+ 2M1 + M1/a) / o) "
0
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thus, F,, satisfies Nagumo condition iBy,,, independently of € [0, 1]. Let
@) =yi@t)=—-M1, I2)=y20t) =M1, 1€][0,1].

In view of Step 1 and applying Lemma 1, then there exigts> 0, such thatx” (¢)| < M2
for r € [0, 1]. SinceM1 and® do not depend oR, we get that the estimate” (r)| < M2
is also independently of.

Step 3. Fora =1, BVP (3.2)—(3.5) has at least one solutiarz).

Define the operators
L:C?[0,11ndomL — C[0, 1] x R®
by
Lx = (x"",x(0), x'(0), x'(D)),
and
Ny :C?[0,1] — C[0,1] x R®
by
Nox = (=Af (1, 0(a®), x(0), BD)), (& (1), x'(1), B'(1)), x" (1))
+ @ = +A[x =o' @), X' @), B/ ®))]@(1x"1). 0, A;., B,)
with
Ay :=AA - g(w(a(0),x'(0), 8'(0)). x"(0)) + (e (0), x'(0), B'(0)) ]
By, :=1[B — h(w(a'(D),x'(1), B'(D),x" (D) + (1), x'(1), B'(D)].
As L1 is compact, we can define the completely continuous operator
T:.: (C?[0,1], R) — (C?[0, 1], R)
by
Tp.(x) = LNy (x).
Consider the set
Q=|xe C2[0,1]: [Ixloo < M1, [1X/llo < M1, [Ix"]loo < Ma}.

By Steps 1 and 2, the degree deg- T), £2, 0) is well defined for every. € [0, 1] and by
homotopy invariance, we get

deql — To, 2,0) =deq — T1, 2, 0).
As the equationr = Tp(x) has only the trivial solution, by degree theory,
degTo, £2,0) = 1.

Hence, the equatian= 71 (x) has at least one solution. That is, the problem
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X"+ f(to(a@), x@0), BD)), o(a ), x' (1), /1)), x" (1))
=[x'() — (' (1), x' (), B/ )] P (|x" 1)), (3.11)

with the boundary conditions

x(0) =0, (3.12)
x'(0) = A — g(w('(0), x'(0), B'(0)), x"(0)) + (' (0), x'(0), B'(0)), (3.13)
x'(D) =B —h(w(a'1),x' 1), /D), x" (D) + ('@, x"1), B'(D), (3.14)

has at least one solution (¢) in £2.
Step 4. Thex1(¢) is a solution of BVP (1.1)—(1.2).

In fact, the above solution; () of BVP (3.11)—(3.14) will be a solution of the BVP
(1.1)—(2.2), too, since it satisfies in [0, 1],
a(r) < x1(r) < B), o (1) <xp() < B(@).
If the assertion is not true, then there exists[0, 1], such that (1) > '(r), we define

max[x1(6) = B'(] := x1(12) — B'(12) > 0.

If 11 €(0, 1), then
x{(n)=pB"(t1) and x{'(t1) <p”(t0).

By condition (ii), we get the following contradiction:

0> x{"(11) — " (11)

> — f (11, w(a (1), x1(11), B(11)), (&' (11), x1(11), B (1)), x7 (11))
+ [x1(11) — (e (11), x1(12). B (11)) | @ (|1 (11 |)
+ f(t. B, B (1), B" (1)

= — f(11, w(a(r1), x1(12), B(t1)), B (t1), B" (11))
+ [x'(1) = ') @ (|x1 (t0)]) + £ (1, B, B/ (1), B” (1))

> —f(t1. B(10), B'(11), B" (1)) + f (11, B(t1), B (11), B" (1)) = O,

thusry & (0, 1).
If 1 =0, then

max[xi(0) ~ f'(0)] = x;(0) ~ §/(0) > 0

and
x’1’(0+) —p"(0") = x7(0) — B"(0) <0,

therefore, from condition (iv), (3.13) and (2.4), the following contradiction is obtained:
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B'(0) < x1(0) = A — g(w(c(0), x1(0), B'(0)), x{(0)) + w(a’(0), x1(0), B'(0))
=A—g(p'(0),x{(0) + B (0)
<A—g(B'(0),8"(0)+B'(0) < p(0),

thusty # 0.

If 7 =1, similar to the above argument, we can deduce#hgt 1. So we show that
xj(t) < p'(r) for everyr € [0, 1]. Similarly, we can prove that'(r) < x/(r) for every
t €0, 1]. Therefore,

o (1) <xp(0) < B'(1), 1€[0,1].
Sincex(0) = B(0) = 0, by integrating the above inequalities @) 7], we obtain
a(t) <xi() <B@), te€[01].
Thusx1(z) is a solution of BVP (1.1)—(1.2). 0
Remark 1. In Theorem 1, the condition that is decreasing i for (z, x, y, z) € [0, 1] x

R3 can be relaxed ag is increasing inx for (¢, y, z) € [0, 1] x RZ anda (1) < x(r) < B(1).
Since the condition is only used in Step 1 to prove the inequality

—f (0, @(a(t0), x(10), B(t0)), B’ (10), 0) = —1f (10, B(10), B/ (10), 0),
and Step 4 to prove the inequality
— (11, o(a(r2), x1(12), B(12)), B'(11), B" (1)) = — f (1. B(10), B'(12), B” (12)).

4. Example

Example. We consider the following third-order boundary value problem:
X" = (t—x)2 =144 x' — (")?sin(x") =0, O0<r<1, (4.1)
x(0) =0,5(x'(0))* — %x”(O) =5 (XO)’+("®)’=1 (4.2)
let
ft,x,y,2)=—(t —x)*>—t(4+ 1%y — y?sing,
g(y,z)=5y2—%z, h(y.2)=y*+2>.
It is easily to prove tha& () = —¢, B(¢t) =t are lower and upper solutions of BVP (4.1)—
(4.2), respectivelyf is continuous ofi0, 1] x R® and increasing in whena (1) < x1(r) <

B(1),t €0, 1]. g, h are continuous o®?, g(y, z) is decreasing in, h(y, z) is increasing
in z. Furthermore, we obtaip satisfies Nagumo condition in

D={(t,x,y,2) €0, 11 x R® —r <x<r, —1<x' <1}

Therefore, by Theorem 1, there exists at least one solutionfor BVP (4.1)—(4.2) such
that

—t<x()<t, -1<x'(®)<1, te][01].
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Remark 2. We extend the result in Ref. [4] since our boundary conditions are more gener-
alized. Obviously the result given in [4] is not available to our example.
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