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Abstract

We first establish a series of Strichartz estimates for a general class of linear dispersive equa-
tions by applying the theory of oscillatory integrals established by Kenig, Ponce and Vega. Next
we use such estimates to study solvability of the Cauchy problem of the Kawahara equation
dru + audyu + Bd3u 4+ yd2u =0 in the clasC (R, H (R)). Local existence is proved for> 1/4
and global existence is proved foe 2.
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1. Introduction
In this paper we shall first establish a series of Strichartz estimates for the dispersive
equation

oju —iP(—idy)u= f(x,t), x,t€R, (1.1)
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where P(—id,) is a linear differential operator whose symhp{¢) is a real polynomial
of degree> 3. We shall next use such estimates to establish local and global existence of
solutions for the initial value problem of the Kawahara equation:

du —I—auaxu—i—ﬁafu—l—yafuzo in R?, 1.2)
u(x,0) =ug(x) forxeR, (1.3)

wherea, B, y are real constanta(y # 0), andug is a given function.

Strichartz estimate is a very interesting topic in the field of dispersive-type (including
hyperbolic-type) partial differential equations. It has wide applications in many other top-
ics, such as well-posedness of initial value problems, regularity of solutions, large-time
behavior of solutions, and so on. Due to this reason, this topic has drawn much attention
since its first occurrence in 1970’s. In this paper, we shall use the theory of oscillatory in-
tegrals developed by Kenig et al. [16,17] to establish a series of Strichartz estimates for the
general linear dispersive equation (1.1) in one space variable. These estimates are general-
izations of similar estimates established by Kenig et al. in [16—19] for the Airy equation

du+33u = f(x,1)

to the general dispersive equation (1.1). Note that if the opeRatei d,) is homogeneous

then such generalization is immediate. However, for inhomogengdu$o, ), which is

the main objective of this work, there are many new difficulties for us to overcome. It
is because of this fact that, unlike [16—19] where most estimates are global in the time
variable, the Strichartz estimates established in this paper are local in the time variable.

Equation (1.2) was first proposed by Kawahara in 1972 [15], as a model equation de-
scribing solitary-wave propagation in media in which the first-order dispersion coefficient
B is anomalously small (see also [1,9,14]). More specific physical background of this equa-
tion was introduced by Hunter and Scheurle in [12], where they used this equation to
describe the evolution of solitary waves in fluids in which the Bond number is less than
but close to 13 and the Froude number is close to 1. In the literature this equation is also
referred as fifth-order KdV equation or singularly perturbed KdV equation [8,10]. There
has been much work on the solitary-wave solutions of this equation [1,2,8-10,12-15,22,23,
27]. An interesting property of its solitary-wave solutions is that their trails are oscillatory.
However, well-posedness of its Cauchy problem (1.2)—(1.3) has not been well treated. As
an application of the Strichartz estimates established in this paper, we shall prove that the
problem (1.2)—(1.3) is locally well-posed k* (R) for s > 1/4. This local result combined
with the second and the third conservation laws of the Kawahara equation immediately im-
plies that the problem (1.2)—(1.3) is globally well-posed#if\ R) for s > 2. The condition
s > 1/4 for local well-posedness is perhaps not the weakest, and it might be weakened by
following Bourgain’'s approach (see [5-7,20,21]). However, the method used here (which
comes from Kenig et al. [16—19]) enables us to get more delicate messages on regularity
of the solution, so that it cannot be covered by Bourgain’s approach.

We emphasize that in addition to the application shown here, Strichartz estimates estab-
lished in this paper have also many other applications. For instance, they can be used to
study well-posedness of Cauchy problems of other equations with more general nonlinear
terms than “bilinear” forms like:d, u treated here, such as those studied in [22,24], for
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which Bourgain’s approach usually does not apply (see [21]). Such applications will be
shown in our future work.
2. Strichartz estimates

Let P(¢) be a real polynomial in one variabde of degreen > 3. Consider the linear
dispersive equation

du—iP(—idy)u=f(x,1) for(x,t)eR? (2.1)
imposed with initial condition
u(x,0) =ug(x) forxeR, 2.2)

where f andug are given functions. The fundamental solution of the problem (2.1)—(2.2)
is given by the oscillatory integral (far#£ 0)
o
Gx,1)=c / e TP E)+xE) dé,

—00

where ¢ = (27)~1. The integral on the right-hand side is understood as the limit
lima N> oo fi”N, which is convergent by the stationary phase argument (cf. [11, pp. 215—-
240] or [25, pp. 331-334]). This argument also shows ¢hié continuous ink x (R \ {0})

and lim_oG(x,t) = §(x). In fact, for anya € C satisfying —1 < Rea < m — 1,
D¢ G (x,1) is continuous iR x (R \ {0}), and

o0
DEG(x,1) =c / [ PO g
—00

whereD¢ represents theth order absolute derivative in the space variable, D8 (x) =
FL(g1¢(&)). Similarly as before, the integral on the right-hand side of the above equa-
tion (regarded as a similar limit) is meaningful by a similar argument.

For everyr € R, t # 0, let W(r) be the operator defined by

whenever the right-hand side makes sense, an@ [@¢ = ¢. Then the unigue solution
of the problem (2.1)—(2.2) (for suitablé anduo) is given by

t
u(',t)=W(t)uo+/W(t—r)f(~,t)dt (t eR).
0

SinceP (&) is real, it is obvious that for any e R, {W(¢)},cg forms an one-parameter
unitary group on the Sobolev spagk (R). Thus for any € H*(R) andr € R we have

Iw®el, ,=llels.2. (2.3)

where|| - |52 represents the norm afi* (R). The aim of this section is to establish other
estimates foW (¢) than this trivial one.
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Lemma 2.1. Leta € C and —1 < Rea < (m — 2)/2. Then for anys > 0 there exists a
constantC > 0 depending only 04, Rex and P such that for any < |¢]| < 8,

Sup| DXG (x, 1) < C(L+ [ Ima])?|¢|~n ReetD (2.4)

X€ER

Proof. We denoteu = Rew, v =Ima andv’ = v/(m — 2). For a sufficiently large positive
numberMg to be specified later, we write

DYG(x,1) = c( / + / )|s|“e“”’@>+xf> dg
EI<Mo@lt D7 1§13 Mol Y
=hI(x,t)+ D(x,1).
Clearly,
Mol ~H)
|Lh(x,0)] <c / |§|Mdg<C|t|—“T“, Vx € R, Vt € R (t #0).
— Mo(Sle Yy
To estimatel,(x, 1) we first takeM( sufficiently large such that
|P"(&)] = Clg"% for €] > Mo,

and for everyM > Mg we define

Ml

Iy =c f PO pre) 7y ) g,
Mol
— Mol

Lyx.n)=c / PO pre) 2y ) g,
— M@l

whereyr (§) = |§|“+i“|P”(s)|*%*"”/. By [17, Corollary 2.9] we have
M@l
+ / |1/f’(f‘3)|d§}-

1
Mo(8|r|~1ym

2 tx 0] < C(1+ |v|)lt|_%{|1/f(M(6|r|‘1)%)

It is evident that the first term in the braces is dominated by

Cli|~n#="2"), (2.5)

whereC is independent oM/ andv. To show that the second term is also dominated by
(2.5) we writeyr (&§) = ¥1(§) 5" (), where

V© = 6 PO e = el PI©)|
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Clearly,

) , VA
[v/ ©)] < |v1® ] + Pl 50|

We now takeM further large such that bot] (&) andy5(&)/v2(£) do not change sign
on the intervalg Mg, 00), (—oo, Mp). Then for any O< |¢| < § we have

M@l M7 Ml /
, / Y5(8)
[y (&)|d& < VAGIE AN [Y1(8)|| 2| d&
Y2(§)
Mol D) Mol L) Mol D)
C(L+vl) =7 =72,
whereC is independent oM andv. Hence
1y D S CA+ )% for 0< |t < 5. (2.6)
Similarly, we have also
|15 D S CL+ )25 for 0< |t < 5. 2.7)

Summing up (2.6), (2.7) and letting — oo, we find that
L )] < C(A+ )2~ for0 < 1] <.

Hence, the estimate (2.4) holdso

Remark. In the case & o < (m — 2)/2 the inequality (2.4) is obtained by Ben-Artzi and
Saut [3] with a different method.

Using Lemma 2.1 and Young’s inequality we immediately get the following result.

Lemma 2.2. Leta € C and —1 < Rea < (m — 2)/2. Then for anys > 0 there exists
a constantC > 0 depending only o, Rea and P such that for any € L1(R) and
O<lrl <39,

|D*W)e|, < C(1+[Imal)?e|”
where|| - ||, (1< p < oo) represents the norm on the spacé(R).

(2.8)

The next result follows easily from (2.3) (taking= 0) and (2.8) by applying the Stein
interpolation theorem [26, Theorem 4.1, pp. 205-209] to the analytic family of operators
T,=D%W({) (ze C,0<Rez <1),where O< || <6, 0< a < (m — 2)/2, and they are
regarded as fixed.

Lemma 2.3. Assume that-1 < a < (m — 2)/2 and0 < 6 < 1. Then for anys > 0 there
exists a constant > 0 depending only od, 6 and P such that for anyy € L%+ (R)
andO0 < |7] <4,

[ D*W )¢ 5)_g, < <Cl™ % Igllz/are)- (2.9)
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As in [16-21] we introduce notatiofp - ||L;L§, Il - ||L§?L‘§ (1< p, g < 00) as follows:
For finite p andgq,
T %) q 1
14 q
||f||L;L§=(/< / |f(x,[)|de> dt) ,
-T —00
00 T P 1
q P
||f||L§L;=( / ( /|f(x,t)|‘1dt> dx) :
oo \7

for infinite p or ¢ or both the left-hand sides are respectively defined as limits of the right-
hand sides. The spaote!}L,’Z consists of measurable functions &nx [—T, T'] such that
||f||L‘;L§ < o0; the spaceLfL‘} is defined similarly. The notatiop’ (respectivelyg’)
denotes the dual number pf(respectivelyy).

We now use Tomas argument [28] to derivéq?a\Lfc7 estimate from (2.9).

Theorem 2.4. Assume that-1 <a < (m — 2)/2and0 < 6 < 1. Then for any > 0O there
exists a constanf’ > 0 depending only 04, «, 0 and P such that for anyo < T' < § and
¢ € L*(R),

|DE W0l 0,0 <Cliglz, (2.10)

wherep =2/(1—6) andg =2m/6(x + 1).

Proof. From (2.9) it follows that forp = 2/(1 — 0) we have

T
/DG“W(t—r)f(-,r)dr
-T L7LY
T, T g 1
g( /( / HDQ“W(t—r)f(~,r)dt”pdr) dz)
-T -7

T T

_ 0@+ q
<C(/</|z—r| 7 Hf(.,-,;)“p/dt> dt) |
_T °r

Since 0< O(x + 1)/m < 1/2 and

1 0 1 1 2

—+ (a+):1+— forqg = e ,

q m q 0(a+ 1)
using the Hardy-Littlewood—Sobolev inequality for Riesz potentials [11, Theorem 4.5.3]
we obtain

T

/DQ“W(t—r)f(-,r)dr

-T

Q|

< C”f”Lg-,Lf/
LiL?




S. Cui, S. Tao / J. Math. Anal. Appl. 304 (2005) 683-702 689

Hence
T 2
/D%“W(t)f(-,t)dz
7 2
00 T T
=/< /D"T“W(r)f(-,z)dr)( /D‘%“W(r)f(-,r)dz) dx
—o0 \_T T
oco T T
=//f(x,t)< fDG"W(t—r)f(-,r)dr>drdx
—00 —-T -T
T
<l | [ DWa-nTCDa  <ciri,,,.
o -r L7LY e
so that
T
[ pEworscna <cifiy,,.
“r 2 o
Since
T oo [e'e) T
//D%W(t)(p-f(x,t)dxdt=/gﬁ(x)( /D%W(—t)f(gt)dt)dx,
~T —oc0 —0 -7

by a dual argument we get the desired estimate (2.10).
In particular, by takingp = ¢ we obtain

Corollary 2.5. Assume that-1/2 < s < (m — 2)/6. Then for anys > 0 there exists a
constantC > 0 depending only o, s and P such that for any € L2(R) and0 < T < 8,

|D*W el bk, < Cllell2. (2.12)
wherep =2(m +1)/(2s +1) and Ry = R x [—T, T]. In particular,
W e 2 gy < Cliglla, (2.12)
m—2
|D7E WD 6k, < Cllwllz: (2.13)

Next we consideLf L. estimates.

Theorem 2.6. For any§ > O there exists a constaidt > 0 depending only od and P such
that for anyg € L%(R) and0 < T < 8,

m—1

D77 Wn)e| 012 < Cligllz. (2.14)
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m=1

Proof. First we assume thate C5°(R). Denotingy (x) = D, 2 ¢(x), we see that

m—1
D.* W(n)e(x) =Wy (x).

For M > 0 to be specified later we write

W(t)lp(x)zc( / + f )g"“”@)“f)&(g)dgEli(x,t)+1§(x,r).
lEl<M  1EI>M

Clearly, for any O< T < § we have
T 1 M

2
Sup(/|li<x»t)|2dr) <@c/ 7 (§)| dg < Cligllz= Cligll2.

X€ER
-T -M

We now takeM > 0 sufficiently large such that
|P'®)|>cClgmt for|g| > M.
Then by [17, Theorem 4.1] we have
oo

T 1 1

2 2

Sup</|lé(x,t)|2dt> gsup( / |Ié(x,t)|2dt>
XeR “r XER e

1
2 2
< c( / |v7<s>|2|P’<s>|1ds> < c( / \@(s)izds) < Cligllz.
=M |E|=M
Thus forg € C3°(R) the estimate (2.14) holds. For a genepie L2(R) this estimate
follows from the denseness 6E°(R) in L2(R). O

Theorem 2.7. For any§ > O there exists a constaiit > 0 depending only od and P such
that for anyg € H%(R) and0 < T <3,

[WOe a0 < Cliells 2. (2.15)

Proof. TakeM > 0 sufficiently large such that
[P"®)]>Clgl"? for|g| > M.

Then we have

P'(§)

P"(§)

We write

<C(L+€l) for gl > M. (2.16)

W<r>¢<x>=c< / + / )e"“”@“%@dsslf<x,t>+lé’(x,r).
EI<M  EI>M
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By (2.16) and [17, Theorem 2.5] we have

o0 i
(/sup}lé’(x,t)|4dX> <C< / !@(E)|2
s teR

1&1>M

P'(e) |2
P’ (&)

2
dé) <Cligly o

To estimatel;'(x, 1) we denote

K(x,t)=c / ¢ UPE+E) gg
[E1<M
and letA = maxg < m | P'(§)]. Since for|x| > 28A, |t] < T < é and|§| < M there holds

1
[tP'(&) + x| > x| —8A > Shl,

using the stationary phase argument we easily get

sup |K (x, )| < Clx|™t for |x| > 25A.
<T

Since clearlyk (x, 1) is bounded folx, 1) € R?, we have

sup |[K(x,n)| < C(1+ |x|)_1 for x € R.
[H<T

Therefore, using the Minkowski inequality we get

? i % o0 4 1
(fsup|lf(x,t>|4dx) =< f sup fK(x—y,t)w(y)dy dx)
[1I<T |1|<T
0 e .
00 00 4 %
<C< /( /(1+|x—yl)_l\¢(y)\dy) dx)
—00 *—00
H 3
_4
<C< /(1+|x|) 3dx> lellz2=Cliel2.

Hence (2.15) holds. O

Theorem 2.8. For any$ > 0 ands > m/4 there exists a constait > 0 depending only on
8, s and P such that for any € H*(R) and0 < T < 4,

[Wne 2100 < Cllgls2. (2.17)
Proof. Let M > 0 be a sufficiently large constant such that for &> M,
C1lE" < |fPE)| < C2lE1™ %, k=0.1,....m. (2.18)

Let ko be an integer such that2! > M. Let {yo} U {t/fk},‘ziko be an inhomogeneous
Littlewood—Paley decomposition of the unit in the following sense:
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(i) ¥oe CS(R), Yo even, supmo C (£ € R: |£] < 2}, and 0< o < 1.
(i) For k > ko, Y € CS°(R), Y even, supgh C {& € Rt 201 < jg] < 261, 0<
Y <1, and|d/ gyl < C;27 7k for j=1,2,....
(i) Yo(§) + D252, vi(§) =1for e R.

For eachk, we denote byj (D) the pseudo-differential operator with symhfl, and by
Ji(x, 1) the kernel of the smoothing operatg (D)W (¢), namely,

00 2k+l _2k 1

B = [ STOHOy e de —c( [+ ) POy, &) dg
—00 k=1 _ok+1
=J )+ I (x,0).
We assert that for any > kg andx € R there holds

sup|Ji(x, )| < Chy(x), (2.19)
[t]<8

where

221x|7Y/2, for |x| < Co2" VX,
hiC) =1 _ o 2 ~1k
27%|x|72, for|x| > Cg2m—D
(Co=2"6C>, cf. (2.18)). Clearly, to prove this estimate we only need to prove that both
J,:’(x, 1) andJ, (x, 1) satisfy a similar estimate. In the sequel we only consiqbfx, 1);
the argument fou,” (x, ¢) is similar.
First we assume thak| < Co2"~Dk, By making change of integral variables=
P(&),0r§ = P~H(n) = Q(1), we get
by
o =e [ Ty (0a) 0/t .

ak
wherea, = P(2-1), by = P(2¢*1). By (2.18) we have
P"(Q(n)) —m— 1 —m—
W) o-@m-Dk ") = — =~ 9—(m=Dk
(P'(Qm))3 CO=50m
for n € (ax, by). Thus by using the Van der Corput Lemma [25, 332—-334] we obtain

Q"(n) =~

suRp|Jk+(x,t)| < (2~ @Dk |x])72 f ‘— vk (Qm) Q' (m}| dn
te

b

< c(2-<2m—1>k|x|)‘% /(lw,i(Q<n>)||Q’<n>|2+ [y ()| Q" (n)]) dn

Ak

< C(Z—(Zm—l)klxl)_% . (ka . 2—(2m—1)k) — CZ% |x|—%
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Next we assume that| > Co2" Dk = 2m5C,2m Dk Sincelt| < § and on the integral
interval there holds
|P'(&)] < Calg "t < 2n 2 DR,
we see that

1
[tP'(&) + x| = x| — |t]|P'(&)| > Skl (2.20)

Therefore, the operatdr = (1 P'(£) + x) 0 is well defined. Since clearly?e’ (P ()+x8)
=/ (PE+xE) py integration by parts we get

2k+1

G = [ PORO L2y e de

k-1

for |x| > Co2"~* and|z| < 5, where’ L represents the transposelofUsing this relation
together with the estimates (2.18), (2.20) and the fact|tifat; (£)| < C;27/%, we get

|7 0] < c27% x| 72,

for |x| > Co2"~Dk and|r| < 8. Hence the estimate (2.19) holds.
Consequently, by the Minkowski inequality we get, for any kg and O< T < 4,

T
/ V(D)W — 1) f (-, 1) dt
T

L2Ly

T oo
f/fk(x—y,t—nf(y,r)dydr
—T —0o0

L2L%°

<C

mk
<C2% | fl2pn
2

T
hk*/|f(.,r)|dr
-T

Using the Tomas argument we then deduce that, forkanyo,

2

T
/l/fk(D)W(l‘)f(wf)dt
-T 2

<D 103

T
/ V(D)W —1)f(, 1)dT
-T

L2L%°

mk 2

mk mk
SCIfllpzr - C22 N fllp2pp = C22 1172
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The inequality||1/fk(D)f||L2L1T < C||f||L2L% follows from the fact that| vy |l1 < C (for
everyk > ko), wherey, stands for the inverse Fourier transformationsef Therefore,

mk
SC2% | fllipzpy (k=koko+1,...),
2

T
/Wk(D)W(f)f(wt)dt
-T

and, by dual,
mk
[V DIW@)¢] 12, <C2% Nigllz (k=ko.ko+1...). (2.21)
Next, it is immediate to see that

sup(1+ IxI?)[Jo(x, | < C,
l11<8

so that
[¥o(DYW D¢ 2, < Clipl2: (2.22)

Now, since

2
Ve DIWDp = Y Y (DIW O Yir;(D)p, k> ko
j==2

(where we defing/ ;(D) =0 for k 4+ j < 0), we have

W) =Yo(D)W()p + Y Yx(DIW ()¢
k=ko

2 [e'e)
=YoDIWDe+ Y > V(D)W () Yiy; (D).

j=—2k=ko
Hence, using (2.21) and (2.22) we deduce that, forsanyn /4,

2 00

Wl 20 < [VoDIW D] 210+ D7 D7 DIV @iy (DI 2,0
Jj=—2k=ko

2 00

<Clellz+C 3 3 2% |yusj (Do

Jj=—2k=ko

0 !
<Clglz+C Y 2% |y (Dyg],
k'=kg

o } A\
<C||¢||z+0<222“ﬂ’<) ( 2%k l}wwypuz) <Cllglls.2.

k'=ko k'=ko
This proves (2.17). O
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SinceW (¢) is unitary onL2(R), we have
1
[W®0] 1212 <5202, (2.23)

for any ¢ € L2(R) and O< T < §. Besides, sinc@fan < ||f||L;L§ for ¢ < p, from
(2.10) we easily deduce thatferl <a < (m — 2)/2 andm/(m + « + 1) <6 < 1 there
holds

[DEW O]9 < Cliglz, (2.24)

wherep =2/(1 —60) and 2< g < 2m/6(x + 1). Now let £2 be the quadrilateral in
(1/p, 1/q)-plane with apice® (0, 0), A1(1/2,0), A2(1/2,1/2) andA3(0, 1/2), compris-

ing the two edgesi1 Az, A2A3 and the right half of the edg® A;. From the estimates
(2.14), (2.15), (2.17), (2.23) and (2.24) we can use the interpolation theory [4] to get, for
every(1/p,1/q) € £2, an estimate of the form

” DaW(l‘)QD ”LfL? < llells,2,

for suitablex ands (depending orp andg). We omit this tedious work here.

3. Solvability of the problem (1.2)—(1.3)

In this section we use the results obtained in the previous section to study solvability of
the problem (1.2)—(1.3).

Taking P(¢§) = —y£2+ BE3, we letW (¢) be the operator defined in the previous section.
Then the problem (1.1)—(1.2) is equivalent to the following integral equation:

t
u(-,t) =W(tuo+ / Wt — o) (uou)(-, v)dr. (3.1)
0

Using the estimates (2.3), (2.10), (2.14), (2.15) and (2.17) to the present particular op-
eratorW (¢) we respectively get

W, ,=llgls2 (s €R), 3.2)
[DFW @l 41 < Cliola. (33)
[92W ] 012 < Cliglz, (3.4)
[W©el oz < Clol 35)
and
5
[W®e 210 < Cliglls.2 (s > Z)' (3.6)

Indeed, (3.2) and (3.5) are respectively duplications of (2.3) and (2.15); (3.3) is obtained
from (2.10) by applying it to the special cage=5,a« =3/2,0 =1, p = co andqg = 4;
(3.4) and (3.6) follow respectively from (2.14) and (2.17), by taking: 5. We now prove
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Lemma 3.1. Let P(¢) and W (¢) be as above. Then for ady> 0 there exists a constant
C > 0 depending only o8, 8 andy, such that for any € L2(R) and0 < T < 6,

[0:W®¢] a2 < Cligllz. 3.7)

Proof. Consider the analytic family of operatdfs (z € C, 0 < Rez < 1) defined by
(T.9)(x, 1) = DZEW () (x).

SinceD'?” (v € R) is unitary onL?(R), we get from (2.14) and (2.23) that
IT2+ivellper2 < ClID¢ll2=Clig|2.
ITivell 212 < ClID®¢ll2=Cllgl2

(v € R). It follows from the Stein interpolation theorem that
[D*W®e a2 = 1Tyl 82 < Cligla.

Let H be the Hilbert transformation. Then = —D}H. SinceH is unitary onL2(R), the
desired estimate follows immediatelyc

To prove the existence and uniqueness of a local solution for Eq. (3.1) we introduce a
function spacex;. (for givens > 1/4 andT > 0) as follows:

5
Xy =u e C(I-T. T H*(R)): llulls,r = Y [uljr < oo},
j=1

where

[ul1,s,7 = sup ”“( ’)Hs,z’
[tI<T

T
[z = [ula.r = |19sul 14 o0 = ( / [ 8xuc. r>|};‘odr> ,
=T

1
T 2

[u]3,x,T = ”DH_ZL‘”LOOLZ = sup / |D‘;+2u(x, t)|2dt s
T XER

00 T 2 7
2
[u]4,x,r=||DSaxu||L§L;=< /</|Dsaxu<x,r>| dr) dx) ,
— 00 T

%0 :
4
[uls.s,7 = [uls, = llull La00 = sup [u(x, )] dx ) .
l1I<T
—00



S. Cui, S. Tao / J. Math. Anal. Appl. 304 (2005) 683-702 697

Clearly, (X%, |l - ls.7) is a Banach space. For a givepe H*(R), let S be the mapping
u — Su defined by

t
(Su)(~,t):W(t)uo+/W(t—r)(ué)xu)(-,t)dr, Yu € X3.
0

In the sequel we shall prove théiis well defined and it mapX’?, into itself.

Lemma 3.2. Assume that > 1/4 and T > 0. Givenug € H*(R) andv € LY([-T, T,
H*(R)), let

t
w(, 1) = W(t)uo+/ W(t — 1)v(, 7)dt
0

(It| < T). Thenw € X3.. Moreover, there exists a constai} > 0 depending only om, ,
y and T such that

T

llwlls,r < Crlluolls,2 + Cr / lo¢, o), pdr. (3.8)
-T
If 0< T <6 forsomes > 0thenCr < Cs.

Proof. By (3.2) itis clear thaww € C([-T, T], H*(R)), and

T
[wlisr = sup w0 o < lluolls2+ / lo¢, 0], ,ar. (3.9)
s
-T

To estimatdw]z, 7 we write
t

dw (1) = —D%W(t)HD%uo—/D%W(z — )HD?v(-, 7)dx.

0
By (3.3) we have, for &< T < 4,
T t 4 %
lcwl 4,0 < CIIHD3uol2 + (f(/ |Diw —r)HD%u(.,r)Hoodz> dt)
0 0

0

0 4 %
+< f(/||D%W(t—r)HD%v(-,r)Hoodr) dt)
-T t

T

< Clluolls,2+/(

; 3 1 4 4
|D3W(t — 1)HD3v(., t)||oodt> dr
0 T
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0

; 3 1 4 4
+/ f||D4W(t—r)HD4v(-,r)||oodt dr.

-T *-T

To estimate the second term we make change of variabtes$ + 7, and get

T T %
/(/||D%W(t—r)HD%v(-,r)Hiodt) dt
0

T
T T %1
§ / l 4 /
gf(/”mwa )HD4v(~,t)||Oodt) dt
0 0

T T
<c/||HD%v(.,T)||2dr</||v<.,t)||&2dt.
0 -T

The third term can be estimated in the same way. It follows that

T
[wlo.r = 185wl 4 ;oo < Clluolls.2 + C/ lve 0 pdr. (3.10)
-T

To estimate{w]s ;.7 We note that sincé$*2 = —32D?, by using the estimate (3.4) and
treating the integral term with a similar argument as above we get

2 \3

dt)

[wlas.r = 1D 2wl 2
T
< 82w (1) D uo| 2 + sup /

* 7T xeR T

t
/afwa —1)D*v(-, 1) dt
0

T
< CIIDSM0||2+C/ |D*v(. 7)) yd

-T

T
< Cllugls 2+ C / o0, pdr. (3.11)
1

To estimatdw]a s, 7 We use the estimate (3.7) and treat the integral term similarly as above.
Then we get
[wlas,r =l D3, w| 1412
t 2 %
dt)

/axW(t —1)D%v(-, 1) dT
0

< oW D o] 02 +

4

(]
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< C||Dsu0||2+c/ |DSv(-, 1), dT
-T

<Cluollz+€ [ oo par (3.12)
-7
Finally, using the estimate (3.5) we obtain

[wls,r = |lw ”L;‘L‘;o

||W(t)uo||L4Loo+ sup /W(t—r)v( T)dt
4
SClluollx,er/ | sup (Wi o] ax
I'|<T
-T
<Clluolls,z+Cf [ve, ] Hdr. (3.13)

-T
Summing up (3.9)—(3.13), we get the desired resutt.

Lemma 3.3. Assume that > 1/4 and T > 0. Then for anyu € X} we haveud.u €
L?([-T,T], H*(R)), and

T 1
2
2
( f | udsu) (-, r>||s,2dt) < Crllull? ;. (3.14)
-T
If 0< T <6 forsomes > 0thenCr < Cs.

Proof. Sincel| - [ls.2~ |l - ll2+ ID*(-)|l2, we only need to prove that
ludsill 2o < Crilullzz, [ D @dsw)| 2,2 < Crllull? .
In fact, it is clear that
[0y MlleLz llll Lo 219 MlleLoc (ulys,T - T2[M]2T TZIIIMIIIYT,
and, by [19, Theorem A.8],
| D o] 122 = | D @) | 1,2
< IIMDsaxMIILsz + IIDsuaxulleLz +C||M||L4LooI|Dsaxu||L4L2
SCllullparse | D* 3xu||L4L2 +C|D* u||L°°L2||axu||L2 Lo
S Cllullpagge | D* 0y MIIL4L2 + Clulis,T - T2[u]2 TS C(T)IIIMIII

Hence the desired assertion followsa
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SinceL2([—T,T), H*(R)) C LY([-T, T], H*(R)) and

T T %
/||v(~,t)”s,2dt<T%< / ||v(~,t)”$2‘,2dt> , (3.15)
-T -T

by Lemmas 3.2 and 3.3 it follows that the mappi$igs well defined and it mapX?. into
itself. Moreover, these lemmas and (3.15) ensure that fosan{ there exists a constant
C > 0 depending only on, §, 8 andy, such that for any & T < §,

1
ISulls,7 < Clluolls.2 + CTZull? 7, Vu € X5 (3.16)
We now take’ = 1, and letM > 0 be a sufficiently large number such that
M = Clluolls,2+ 1,

whereC is the constant in (3.16). Then fat > 0 sufficiently small such thal' < Ty,
whereTy = (CM?2)~%, we infer from (3.16) thas maps the closed ball

X7 = {u € X730 llulls.r < M}

into itself.

Lemma 3.4. Lets > 1/4, and letM, Tp be as above. Then there exidts: T; < Tp such
that for any0 < T < T, S is a contraction mapping ON7 5y

Proof. Givenus, u; € X3 ,,, we have

t
(Sul)('»t)_(5“2)('70:/W(t_T){(ul_“2)8)(”1"'”23)((”1_“2)}("T)df-
0

A similar argument as in the proof of Lemma 3.2 shows that

1
2

T
(/||(u1—uz)axu1+uzax(ul—”2)”5,2‘”)
-T

< Clluy = uzlls,r (lualls,r + lluzlls,7).

so that by (3.15) and Lemma 3.1 we have

1
ISus — Suzlls,r < CT2lluy — uzlls, 7 (ualls,7 + luzlls,7)
1
<2CMT2|lug — uzlls,7-
Hence, if we take O< T§ < Tp sufficiently small such that@M (T{)Y/? < 1, thenS is a
contraction mapping oX3. ,,. O

By Lemma 3.3 and the Banach fixed point theorem, we concludeSthats a unique
fixed pointinX7 ,, provided O< T < T,. Thus we have proved the following result.
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Theorem 3.5. Assume thatig € H*(R) ands > 1/4. Then there exist§ > 0 depending
only ona, 8, y and the upper bound dfuo|s.2, such that the probler{l.2)—(1.3)has a
solutionz on R x [—T, T1], satisfying

ueC([-T,T1, H* (R)) N L{LY,
dqueLlFL®, DSduellL?, DF2uelPLE.
Moreover, the solution is unique under these conditions.

In addition to the usual momentum and energy conservation laws, the Kawahara (1.1)
equation has a third conservation law which reads as follows:

0x

where F represents a polynomial in its arguments. Hence, using Theorem 3.5 and a stan-
dard argument, we obtain the following result.

01 b
E{éazﬁ — ,3(8)(14)2 + y(&fu)z} + —F(u, oru, Oxll, ..., 8;8314, af'u) =0,

Theorem 3.6. Assume thatg € H*(R) and s > 2. Then the problen{l.2)—(1.3)has a
unique global solutiom on R?, satisfying the condition§) and (ii) below

(i) ueC(R, H (R)) N L*®(R, H%(R)), and fort € R,

Juc.1)], = const
o0
Hafu(-,t)”g—g”axu(-,t)”g—i-% / u3(x, 1) dx = const
—0o0o

(i) There exists constart > 0 depending only om, 8 and y such that for any finite
T >0,

T
sup [luC. D), , < ||uo||s,zeXp<C / [ 9xu-, r)lloodr)
l1I<T 7
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