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Abstract

The binomial tree methods (BTM), first proposed by Cox, Ross and Rubinstein [J. Cox, S. Ross, M. Ru-
binstein, Option pricing: A simplified approach, J. Finan. Econ. 7 (1979) 229–264] in diffusion models and
extended by Amin [K.I. Amin, Jump diffusion option valuation in discrete time, J. Finance 48 (1993) 1833–
1863] to jump-diffusion models, is one of the most popular approaches to pricing options. In this paper, we
present a binomial tree method for Asian options in jump-diffusion models and show its equivalence to
certain explicit difference scheme. Employing numerical analysis and the notion of viscosity solution, we
prove the uniform convergence of the binomial tree method for European-style and American-style Asian
options.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

An Asian option gives the holder a payoff that depends on the average price of the underlying
asset over a specified period of time (see [16]). The binomial tree method (BTM) is one of the
most popular approaches to pricing vanilla options in diffusion model (see [6]). By introducing
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an additional path-dependent variable at each node, BTM can be extended to the valuation of
Asian option (see [9,11]).

In the paper, we study the BTM for Asian options in jump-diffusion models. It is well known
that jump-diffusion models give a better explanation of sudden changes of asset prices in the
market. Amin [2] first generalized Cox, Ross and Rubinstein’s BTM to jump-diffusion models
for vanilla options. Xu, Qian and Jiang [17] gave an optimal error estimation of European options
in Amin’s model. In essence, BTM belongs to the probabilistic one; however, it can be proved
that the binomial tree method is consistent with certain explicit difference scheme (see [10,11,
14,17]). By virtue of the notion of viscosity solution (see [7]), Barles and Souganidis [4], Barles,
Daher and Romano [3], and Jiang and Dai [11] presented a framework to prove the convergence
of difference schemes for parabolic equations and convergence of BTM for vanilla and path-
dependent options in diffusion models. Qian, Xu, Jiang and Bian [14] proved the convergence
of BTM for American options in jump-diffusion models. In this paper, following the ideas of
Amin [2] and Jiang and Dai [11], we develop a binomial tree method for Asian options in jump-
diffusion models and use numerical analysis and the theory of viscosity solution to prove the
convergence of this algorithm.

The rest of this paper is organized as follows. In the next section, we give the continuous model
for Asian options in jump-diffusion models. Section 3 is devoted to the construction of BTM for
Asian options in jump-diffusion models. In Section 4, we discuss the equivalence of the BTM
and an explicit difference scheme and therefore give the convergence of the BTM for European-
style Asian options. Finally, we prove the convergence of the BTM for some American-style
Asian options.

2. Continuous model

Suppose there is a financial market with two assets (Bt , St ). The first one is a risk-free asset
whose price Bt is governed by the equation dBt = rBt dt where r is the constant positive interest
rate, and the other is a risky asset. In a given probability space (Ω,F ,P), the underlying asset
price evolves according to the stochastic differential equation

dSt

St

= (μ − q)dt + σ dWt + U dNt, (2.1)

where the coefficients μ,q,σ are positive constants, q is the dividend yield, (Wt)t�0 is a standard
Brownian motion, (Nt )t�0 is a Poisson process with constant intensity λ, and U is a square
integrable random variable taking values in (−1,+∞) (since the price of a financial asset should
be positive).

Consider an Asian option with the life time [0, T ] and the payoff

g(S,A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(S − A)+ for floating strike call,

(A − S)+ for floating strike put,

(A − K)+ for fixed strike call,

(K − A)+ for fixed strike put,

where constant K is the strike price and

A =
{

1
t

∫ t

0 S(τ) dτ for arithmetic average,

exp
( 1 ∫ t lnS(τ) dτ

)
for geometric average.
t 0
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Let V (S,A, t) be the Asian option price at time t with stock price S and path-dependent vari-
able A. Because the market here is not complete, we may assume risk-neutrality for brevity (see
[8,14]). Then we must have μ = r −λk where k = E[U ] and E[·] is the expectation operator over
the random variable U (see [13]). Using an argument similar to Pham [13], it can be shown that
the European-style Asian option’s price solves the following partial integro-differential equation:{LV (S,A, t) = 0, t ∈ (0, T ), (S,A) ∈D = (0,∞) × (0,∞),

V (S,A,T ) = g(S,A), (S,A) ∈D,
(2.2)

where L is the parabolic integro-differential operator defined as

LV =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂V
∂t

+ S−A
t

∂V
∂A

+ σ 2

2 S2 ∂2V

∂S2 + (r − q − λk)S ∂V
∂S

− (r + λ)V

+ λ
∫ ∞
−1 V (S(1 + y),A, t) dN (y), for arithmetic average,

∂V
∂t

+ A
t
(lnS − lnA)∂V

∂A
+ σ 2

2 S2 ∂2V

∂S2 + (r − q − λk)S ∂V
∂S

− (r + λ)V

+ λ
∫ ∞
−1 V (S(1 + y),A, t) dN (y), for geometric average

and N (x) is the distribution function of random variable U .
For the American-style Asian options, (2.2) is replaced by a parabolic variational inequality

given by{
min

{−LV (S,A, t),V (S,A, t) − g(S,A)
} = 0, t ∈ (0, T ), (S,A) ∈D,

V (S,A,T ) = g(S,A), (S,A) ∈D.
(2.3)

Remark 2.1. Note that LV is not well defined at t = 0. For European-style Asian options, it is
easy to check that we can take the following transformation

I =
{

tA for arithmetic average,

t lnA for geometric average,

to remove the singularity. But for American-style Asian options, one cannot remove the singular-
ity in (2.3) at t = 0 because it is a nonlinear problem. In this paper, we always confine ourselves
to the interval (0, T ] instead of [0, T ] for American-style Asian options.

3. Binomial tree method

In this section, we develop the BTM for Asian options in a jump-diffusion model. The idea
stems from Amin [2]. In our discrete time market, trade occurs only on discrete dates in the
interval [0, T ]. Let Z = {0,±1,±2, . . .}, N be the number of discrete time points, Δt = T

N
and

ti = iΔt for i = 0,1,2, . . . ,N . We assume that only two assets are traded in the market. The
first is a bond B which has a riskless rate of return of ρ in every period. The second is a risky
asset, for example, a stock. We assume that the underlying stock price S can take on values in a
discrete set {ul : l ∈ Z} with u = eσ

√
Δt . We also assume that this stock pay a dividend η = eqΔt

for positive constant dividend yield q in each period.
We now describe the stock price dynamics. In each period, the stock price undergoes either

of two different types of price changes. In most periods, the stock price undergoes only “local”
changes. Analogous to the Cox, Ross and Rubinstein’s BTM [6], the stock price S moves up to
Su or down to Su−1. This price change is the discrete counterpart of the stock price changes due
to the diffusion component in the continuous time case.
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The stock price can also be changed due to the occurrence of a “rare event,” which has a low
probability of occurring in any given period. It corresponds to the arrival of important information
which causes a large change in the stock price. When the “rare event” occurs, the stock price
“jumps” to potentially any state Sul (l ∈ Z) at the next date. But we may assume that the two
different kinds of changes in stock price are mutually exclusive, i.e., the stock price can not
“jump” to the adjacent states Su±1. However, in the limit as N → ∞, it does not matter whether
we define the “jump” event in an adjacent state or over every point in the state space.

Let V n(S,A) be the option price at time tn with stock price S and path-dependent variable A.
Here we have

A =
{ 1

n

∑n
i=1 Sti for arithmetic average,

(
∏n

i=1 Sti )
1
n for geometric average,

where Sti stands for the stock price of such path at the time ti , i = 0,1, . . . , n (note Stn = S). If
at time tn+1, stock price S changes to Sul (l ∈ Z), A will consequently become Al , where

Al =
{

nA+Sul

n+1 for arithmetic average,

(AnSul)
1

n+1 for geometric average.

At time tn, we consider a portfolio with one option, Δ share of stock and B dollars in the
riskless bond. If we assume that the initial investment in this portfolio at time tn is zero, then the
portfolio value Πn is given by

Πn = ΔS + B + V n(S,A) = 0. (3.1)

Suppose now the investor wishes to eliminate the risk of this portfolio due to the local changes
of stock price in the interval [tn, tn+1]. Then the portfolio value must be equal (not necessarily
zero) in the both adjoint states Su±1 at time tn+1. This implies that

Πn+1
±1 = ΔSuη + ρB + V n+1(Su,A+1)

= ΔSu−1η + ρB + V n+1(Su−1,A−1
)
. (3.2)

Solving the above equation for Δ yields

Δ = −V n+1(Su,A+1) − V n+1(Su−1,A−1)

Sη(u − u−1)
. (3.3)

Now, eliminating Δ and B from (3.2) by using (3.1) and (3.3), we obtain

Πn+1
±1 = p̃V n+1(Su,A+1) + (1 − p̃)V n+1(Su−1,A−1

) − ρV n(S,A), (3.4)

where

p̃ = ρ/η − u−1

u − u−1
. (3.5)

Therefore, if there is no jump (rare event), the portfolio is riskless and the expression (3.4) must
be equal to zero, which is the BTM for Asian options in diffusion models.

Now, consider the portfolio value when a rare event occurs. Let U be a relative amplitude of
jump on the stock when the rare event occurs and y be the index of the state induced by the jump
at the next date. In other words, if the stock price at time tn is S and a rare event occurs, the stock
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price at time tn+1 will be equal to S(1+U) = Suy . Then the portfolio value Πn+1
y can be written

as

Πn+1
y = ΔS(1 + U)η + ρB + V n+1(Suy,Ay

)
. (3.6)

Eliminating Δ and B from (3.6) by using (3.1) and (3.3), we get

Πn+1
y = −V n+1(Su,A+1) − V n+1(Su−1,A−1)

u − u−1

(
U + 1 − ρ

η

)

+ V n+1(Suy,Ay

) − ρV n(S,A). (3.7)

Analogous to Merton [12] and Amin [2], we assume the jump risk is diversifiable, which implies
that the expectation of the portfolio value in the next period with respect to the distribution of
the rare event must be zero. Let the probability of a rare event in time interval Δt be equal
to λ̂ (corresponding to the Poisson jump component of the continuous time process in (2.1), we
have λ̂ = λe−λΔtΔt = λΔt +O(Δt2)). Let EU [·] be the expectation operator with respect to the
distribution of U . Taking the expectation of the portfolio value at time tn+1 with respect to the
jump distribution and equating it to zero yields

0 = EU

[
Πn+1] = λ̂EU

[
Πn+1

y

] + (1 − λ̂)Πn+1
±1 . (3.8)

Substituting the portfolio values from (3.4) and (3.7) for those in (3.8) yields

ρV n(S,A) = λ̂

[
EU

[
V n+1(Suy,Ay

)]

− V n+1(Su,A+1) − V n+1(Su−1,A−1)

u − u−1

(
EU [U ] + 1 − ρ

η

)]

+ (1 − λ̂)
[
p̃V n+1(Su,A+1) + (1 − p̃)V n+1(Su−1,A−1

)]
. (3.9)

Further, replacing p̃ in (3.9) by (3.5), we have

ρV n(S,A) = (1 − λ̂)
[
pV n+1(Su,A+1) + (1 − p)V n+1(Su−1,A−1

)]
+ λ̂EU

[
V n+1(Suy,Ay

)]
, (3.10)

where

p =
ρ/η−λ̂(EU [U ]+1)

1−λ̂
− u−1

u − u−1
. (3.11)

Let the cumulative function of U be given by N (x) for x > −1 (noting that k = EU [U ] =∫ +∞
−1 x dN (x)), and p̂l (l ∈ Z) represent the discrete probability distribution. Then, we have

p̂l = Prob

{
ln(1 + U) ∈

[(
l − 1

2

)
σ
√

Δt,

(
l + 1

2

)
σ
√

Δt

)}

= N
(
e(l+ 1

2 )σ
√

Δt
) −N

(
e(l− 1

2 )σ
√

Δt
)

(3.12)

and

EU

[
V n+1(Suy,Ay

)] =
∑

V n+1(Sul,Al

)
p̂l . (3.13)
l∈Z
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Hence, from (3.10)–(3.13), we obtain the BTM for European-style Asian options as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V n(S,A) = 1

ρ

{
(1 − λ̂)

[
pV n+1(Su,A+1) + (1 − p)V n+1(Su−1,A−1

)]
+ λ̂

∑
l∈Z

V n+1(Sul,Al

)
p̂l

}
,

V N(S,A) = g(S,A).

(3.14)

For American-style Asian options, the investor can choose to exercise the option if the current
payoff of the option is worth more than its value being held till the next period. Thus, the BTM
for American-style Asian options can be written instead of (3.14) as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V n(S,A) = max

{
1

ρ

{
(1 − λ̂)

[
pV n+1(Su,A+1) + (1 − p)V n+1(Su−1,A−1

)]
+ λ̂

∑
l∈Z

V n+1(Sul,Al

)
p̂l

}
, g(S,A)

}
,

V N(S,A) = g(S,A).

(3.15)

Theorem 3.1. The binomial tree method (3.14) (respectively (3.15)) is consistent with the corre-
sponding partial integro-differential equation (2.2) (respectively (2.3)).

Proof. We only give the proof for the case of European-type arithmetic average options since
other cases follow similarly. Noting u = eσ

√
Δt , ρ = erΔt , η = eqΔt , λ̂ = λΔt + O(Δt2) and

letting EU [U ] = k, we need to show that for a sufficiently smooth function φ(S,A, t) and
(S0,A0, t0) ∈D × (0, T ),

lim
Δt→0

(S,A,t)→(S0,A0,t0)

1

Δt

[
φ(S,A, t − Δt) − FΔtφ(S,A, t)

] = −LV |(S0,A0,t0),

where

FΔtφ(S,A, t) = e−rΔt

{
(1 − λ̂)

[
pφ(Su,A+1, t) + (1 − p)φ

(
Su−1,A−1, t

)]
+ λ̂

∑
l∈Z

φ
(
Sul,Al, t

)
p̂l

}
, (3.16)

p =
e(r−q)Δt−λ̂(1+k)

1−λ̂
− u−1

u − u−1
= 1

2
+

(
r − q − λk − σ 2

2

)
Δt + O

(
Δt

3
2
)
, (3.17)

Al = (t − Δt)A + SulΔt

t
. (3.18)

It is easy to show that

1 − e−rΔt (1 − λ̂) = (r + λ)Δt + O
(
Δt2),

e−rΔt (1 − λ̂)
[
p(u − 1) + (1 − p)

(
u−1 − 1

)] = (r − q − λk)Δt + O
(
Δt2),

e−rΔt (1 − λ̂)
[
p(u − 1)2 + (1 − p)

(
u−1 − 1

)2] = σ 2Δt + O
(
Δt2),

e−rΔt (1 − λ̂)
[
p(u − 1)3 + (1 − p)

(
u−1 − 1

)3] = O
(
Δt2)
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and noting that Al − A = Sul−A
t

Δt , we have

e−rΔt λ̂
∑
l∈Z

φ
(
Sul,Al, t

)
p̂l = λΔt

∞∫
−∞

φ
(
Sez,A, t

)
dN

(
ez − 1

) + O
(
Δt

3
2
)

= λΔt

∞∫
−1

φ
(
S(1 + y),A, t

)
dN (y) + O

(
Δt

3
2
)
,

e−rΔt (1 − λ̂)
[
p(A+1 − A) + (1 − p)(A−1 − A)

] = S − A

t
Δt + O

(
Δt2),

e−rΔt (1 − λ̂)
[
p(u − 1)(A+1 − A) + (1 − p)

(
u−1 − 1

)
(A−1 − A)

] = O
(
Δt2).

Then, by Taylor expansions, we get from (3.16) and all the above equalities that

1

Δt

[
φ(S,A, t − Δt) − FΔtφ(S,A, t)

]
=

[
−∂φ

∂t
− 1

t
(S − A)

∂φ

∂A
− 1

2
σ 2 ∂2φ

∂S

− (r − q − λk)S
∂φ

∂S
+ (r + λ)φ − λ

∞∫
−1

φ
(
S(1 + y),A, t

)
dN (y)

]
(S,A,t)

+ O
(
Δt

1
2
)
.

This completes the proof. �
4. Finite difference method

In this section, we establish the relationship between BTM and finite difference methods for
Asian options in jump-diffusion models. To illustrate the basic idea, we only consider the case
for the European arithmetic average options since it is similar for other cases. The governing
equation is

∂V

∂t
+ S − A

t

∂V

∂A
+ σ 2

2
S2 ∂2V

∂S2
+ (r − q − λk)S

∂V

∂S
− (r + λ)V

+ λ

∞∫
−1

V
(
S(1 + y),A, t

)
dN (y) = 0. (4.1)

Considering the characteristic line of the first-order partial differential equation
∂V
∂t

+ S−A
t

· ∂V
∂A

= 0 in [tn, tn+1], we have⎧⎨
⎩

dt

t
= dA

S − A
, tn � t � tn+1,

A(tn) = Ak,

whose solution is given by

A(t) = S − tn
(S − Ak), tn � t � tn+1. (4.2)
t
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It is well known that along this characteristic line, we have

∂V

∂t
+ S − A

t
· ∂V

∂A
= d

dt
V

(
S,S − tn

t
(S − Ak), t

)
.

Then (4.1) can be rewritten as

dV

dt

(
S,S − tn

t
(S − Ak), t

)
+

[
σ 2

2
S2 ∂2V

∂S2
+ (r − q − λk)S

∂V

∂S
− (r + λ)V

+ λ

∞∫
−1

V
(
S(1 + y),A, t

)
dN (y)

]
A=S− tn

t
(S−Ak)

= 0. (4.3)

Since our purpose is to derive the discrete scheme of (4.1), we may assume S ∂2V

∂A2 , S2 ∂2

∂S∂A
and

S ∂V
∂A

are all bounded. Then, adding the following equation given by

σ 2

2

(
t − tn

t
S

)2
∂2V

∂A2
+ σ 2 t − tn

t
S2 ∂2V

∂A∂S
+

(
r − σ 2

2

)
t − tn

t
S

∂V

∂A
(tn � t � tn),

to (4.3) at (S,S − tn
t
(S − An), t), we have[

dV

dt
+ σ 2

2
S

d

dS

(
S

dV

dS

)
+

(
r − q − λk − σ 2

2

)
S

dV

dS
− (r + λ)V

]
(S,S− tn

t
(S−Ak),t)

+ λ

∞∫
−1

V

(
S(1 + y), S(1 + y) − tn

t

(
S(1 + y) − Ak

)
, t

)
dN (y) + O(Δt) = 0, (4.4)

where d
ds

is the differential operator with respect to S along the characteristic line defined in (4.2).
We now present an explicit difference scheme for (4.4). Given Δx > 0, let Si = eiΔx

(i ∈ Z). Along the characteristic line (4.1) from (tn, Si,Ak), let V n
i,k and V n+1

i+l,kl
represent, re-

spectively, the values of numerical approximation of V (Si,Ak, tn) and V (Si+l ,Akl
, tn+1) where

Akl
= nAk+Si+l

n+1 . Note that the integral term in (4.4) can be changed to the following form:

λ

∞∫
−1

V

(
S(1 + y), S(1 + y) − tn

t

(
S(1 + y) − Ak

)
, t

)
dN (y),

= λ

∞∫
−∞

V

(
Sez, Sez − tn

t

(
Sez − Ak

)
, t

)
dN

(
ez − 1

)
,

= λ
∑
l∈Z

(l+ 1
2 )Δx∫

(l− 1
2 )Δx

V

(
Sez,

tnAk + (t − tn)Sez

t
, t

)
dN

(
ez − 1

)
.

Then, taking the explicit difference scheme from (4.4), we have

V n+1
i,k0

− V n
i,k + σ 2

2

[
V n+1

i+1,k − 2V n+1
i,k + V n+1

i−1,k

] − (r + λ)V n
i,k
Δt 2Δx 1 0 −1
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+ (r − q − λk − σ 2/2)

2Δx

[
V n+1

i+1,k1
− V n+1

i−1,k−1

] + λ
∑
l∈Z

V n+1
i+l,kl

pl + O
(
Δt

1
2
) = 0, (4.5)

where

pl = N
(
e(l+ 1

2 )Δx − 1
) −N

(
e(l− 1

2 )Δx − 1
)
. (4.6)

Neglecting higher-order terms than Δt , we get

V n
i,k = 1

1 + rΔt

{
1

1 + λΔt
1+rΔt

[(
1 − σ 2Δt

Δx2

)
V n+1

i,k0

+
(

σ 2Δt

2Δx2
+

(
r − q − λk − σ 2

2

)
Δt

2Δx

)
V n+1

i+1,k1

+
(

σ 2Δt

2Δx2
−

(
r − q − λk − σ 2

2

)
Δt

2Δx

)
V n+1

i−1,k−1

]
+ λΔt

1 + λΔt
1+rΔt

∑
l∈Z

V n+1
i+l,kl

pl

}
,

(4.7)

which is the explicit difference scheme along the characteristic line for (4.1).

Now, if we let σ 2Δt

Δx2 = 1 and compare (3.12) and (4.6), we see

pl = p̂l (4.8)

and then neglecting higher-order terms than Δt again, (4.7) is reduced to

V n
i,k = 1

1 + rΔt

{
(1 − λΔt)

[(
1

2
+

(
r − q − λk − σ 2

2

)√
Δt

2

)
V n+1

i+1,k1

+
(

1

2
−

(
r − q − λk − σ 2

2

)√
Δt

2

)
V n+1

i−1,k−1

]
+ λΔt

∑
l∈Z

V n+1
i+l,kl

pl

}
. (4.9)

Comparing the BTM (3.14) and the finite difference scheme (4.9) and noticing u =
eσ

√
Δt = eΔx , ρ = erΔt = 1 + rΔt + O(Δt2), λ̂ = λΔt + O(Δt2), (3.17) and (4.8), we deduce

the following theorem.

Theorem 4.1. The binomial tree method (3.14) is equivalent to the finite difference scheme (4.5)
with σ 2Δt

Δx2 = 1 in the sense of neglecting higher-order terms than Δt .

It is easy to check that the scheme (4.9) is stable if

1

2
−

∣∣∣∣r − q − λk − σ 2

2

∣∣∣∣
√

Δt

2
> 0,

when Δt is small enough. From Theorems 3.1 and 4.1, we can also deduce that the scheme (4.9)
is consistent with (2.2). The next theorem follows from Lax theorem (see [15]) and Theorem 4.1.

Theorem 4.2. As Δt → 0, the solution of binomial tree method (3.14) converges to the solution
of (2.2) in D × [0, T ].

Remark 4.3. Similar equivalence and convergence results can also be obtained for geometric
average options.
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Remark 4.4. For American-style Asian options, we can also obtain similar equivalence results.
But we have to use the notion of viscosity solution to prove the corresponding convergence
results because of the nonlinearity of (2.3).

5. Convergence

In this section, we describe the convergence of BTM for some American-style Asian options.
Without loss of generality, we assume

0 < p < 1, (5.1)

which always holds for Δt small enough by (3.17). Now we investigate the properties of the
BTM (3.15).

Lemma 5.1. Let V n(S,A) be the function defined by (3.15) in D for American fixed strike put
options with payoff (K − A)+. Then for all 0 � n � N ,

V n(S,A) � K. (5.2)

Proof. Clearly, V N(S,A) = (K − A)+ � K . If (5.2) holds for n + 1, then noting (5.1), we have

V n(S,A) = max
{
e−rΔt (1 − λ̂)

[
pV n+1(Su,A+1) + (1 − p)V n+1(Su−1,A−1

)]
+ e−rΔt λ̂

∑
l∈Z

V n+1(Sul,Al

)
p̂l , (K − A)+

}
,

� max
{
e−rΔt (1 − λ̂)

[
pK + (1 − p)K

] + e−rΔt λ̂ · K
∑
l∈Z

p̂l , (K − A)+
}
,

= max
{
Ke−rΔt , (K − A)+

}
,

� K.

This completes the proof. �
Lemma 5.2. Let V n(S,A) be the function defined by the BTM (3.15) in D for American floating
strike call options with payoff (S − A)+. Then for all 0 � n � N ,

V n(S,A) � S. (5.3)

Proof. Clearly, V N(S,A) = (S − A)+ � S. Suppose (5.3) holds for n + 1, then

V n(S,A) = max

{
e−rΔt (1 − λ̂)

[
pV n+1(Su,A+1) + (1 − p)V n+1(Su−1,A−1

)]

+ e−rΔt λ̂
∑
l∈Z

V n+1(Sul,Al

)
p̂l , (S − A)+

}
,

� max

{
e−rΔt (1 − λ̂)S

[
pu + (1 − p)u−1] + e−rΔt λ̂ · S

∑
l∈Z

ulp̂l, (S − A)+
}
.
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Noting that

pu + (1 − p)u−1 = e(r−q)Δt − λ̂(1 + k)

1 − λ̂
,

∑
l∈Z

ulp̂l = 1 + k + O
(
Δt

1
2
)
,

we see for sufficiently small Δt ,

V n(S,A) = max
{
S
[
e−qΔt + O

(
Δt

3
2
)]

, (S − A)+
}

� S,

and thus the result of this theorem follows. �
Employing the notion of viscosity solution, we will show the convergence of the BTM for

some American-style Asian options. Firstly, we recall the definition of viscosity solution and it
is convenient to have the following notations:

USC
(
R × [0, T ]) = {

upper semicontinuous functions u : R × [0, T ] → R
}
,

LSC
(
R × [0, T ]) = {

lower semicontinuous functions u : R × [0, T ] → R
}
.

Definition 5.3. A locally bounded function u ∈ USC(D × (0, T ]) (respectively u ∈ LSC(D ×
(0, T ])) is a viscosity subsolution (respectively supersolution) of (2.3) if, for all (S,A) ∈
D, u(S,A,T ) � g(S,A) (respectively u(S,A,T ) � g(S,A)) and, for all (S,A, t) ∈ D ×
(0, T ),φ ∈ C2(D × (0, T )) such that u(S,A, t) = φ(S,A, t), and u < φ (respectively u > φ)
on D × (0, T ]/(S,A, t), we have

min
{−Lφ(S,A, t),φ(S,A, t) − g(S,A)

}
� 0 (respectively � 0).

Further, we call u ∈ C(D× (0, T ]) is a viscosity solution of (2.3) if it is simultaneously a subso-
lution and a supersolution.

The proof for convergence needs the strong comparison principle which holds for (2.3) (see
Theorem 3.5 of Qian et al. [14], Alvarez et al. [1] and the references therein).

Lemma 5.4 (Comparison principle). Suppose u and v are, respectively, viscosity subsolution
and supersolution of problem (2.3), then u � v.

Remark 5.5. From Lemma 5.4, the uniqueness of the solution for (2.3) follows immediately.

Let V n(S,A) be the function defined by the BTM (3.15) in D. We now define the extension
function VΔt (S,A, t) as follows:

VΔt (S,A, t) = (n + 1)Δt − t

Δt
V n(S,A) + t − nΔt

Δt
V n+1(S,A),

where t ∈ [nΔt, (n + 1)Δt] for n = 0,1, . . . ,N − 1.

Theorem 5.6. Suppose that V (S,A, t) is the viscosity solution of (2.3) for American-style Asian
options with payoff (S − A)+ or (K − A)+. Then, as Δt → 0, we have VΔt (S,A, t) converges
uniformly to V (S,A, t) in any bounded closed subdomain of D × (0, T ).
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Proof. Denote

V ∗(S,A, t) = lim sup
Δt→0, (x,y,z)→(S,A,t)

VΔt (S,A, t),

V∗(S,A, t) = lim inf
Δt→0, (x,y,z)→(S,A,t)

VΔt (S,A, t).

Owing to Lemmas 5.1 and 5.2, V ∗ and V∗ are well defined for American fixed strike call
options and American floating strike call options. Obviously, V ∗ ∈ USC(D × (0, T ]), V∗ ∈
LSC(D × (0, T ]) and V∗(S,A, t) � V ∗(S,A, t). If we can show V ∗ and V∗ are subsolution and
supersolution of (2.3), respectively, then in terms of comparison principle (Lemma 5.4), we de-
duce V ∗ � V∗ and thus V ∗(S,A, t) = V∗(S,A, t) = V (S,A, t), which guarantees that the whole
sequence converges to the unique viscosity solution V (S,A, t).

We only need to show that V ∗ is a viscosity subsolution of (2.3). It can be shown that
V ∗(S,A,T ) = g(S,A). Suppose that for φ ∈ C2(D × (0, T )), V ∗ − φ attains a strict global
maximum at (S0,A0, t0) ∈D × (0, T ) and (V ∗ − φ)(S0,A0, t0) = 0. Set Φ = φ − ε, ε > 0, then
V ∗ − Φ attains a strict global maximum at (S0,A0, t0) and(

V ∗ − Φ
)
(S0,A0, t0) > 0. (5.4)

By the definition of V ∗, there exists a sequence VΔtm(Sm,Am, tm) such that

Δtm → 0, (Sm,Am, tm) → (S0,A0, t0), VΔtm(Sm,Am, tm) → V ∗(S0,A0, t0)

as m → +∞. Assuming that (Ŝm, Âm, t̂m) is a global maximum point of VΔtm −Φ on D×(0, T ),
we can easily deduce by reduction to absurdity that there is a subsequence VΔtmi

(Ŝmi
, Âmi

, t̂mi
)

such that

Δtmi
→ 0, (Ŝmi

, Âmi
, t̂mi

) → (S0,A0, t0),

(VΔtmi
− Φ)(Ŝmi

, Âmi
, t̂mi

) → (
V ∗ − Φ

)
(S0,A0, t0) (5.5)

as mi → +∞. Therefore,

VΔtmi
(·,·, t̂mi

+ Δtmi
) � Φ(·,·, t̂mi

+ Δtmi
) + (VΔtmi

− Φ)(Ŝmi
, Âmi

, t̂mi
) in D. (5.6)

Then, by (3.15), (5.1) and (5.4)–(5.6), we can obtain

VΔtmi
(Ŝmi

, Âmi
, t̂mi

) � max
{
FΔtmi

Φ(Ŝmi
, Âmi

, t̂mi
), g(Ŝmi

, Âmi
)
}

+ (VΔtmi
− Φ)(Ŝmi

, Âmi
, t̂mi

),

where the operator FΔtmi
is defined by (3.16). Thus we have

min{Φ − FΔtmi
Φ, Φ − g}

(Ŝmi
,Âmi

,t̂mi
)
� 0. (5.7)

Dividing the first term of the minimum in (5.7) by Δtmi
and letting mi → ∞, ε → 0, it follows

from Theorem 3.1 that

min{−Lφ, φ − g}(S0,A0,t0) � 0.

Hence, it follows from Definition 5.3 that V ∗ is a subsolution of (2.3). Similarly, we can show
that V∗ is a supersolution of (2.3). Thus, we have proven VΔt (S,A, t) converges to V (S,A, t) as
Δt → 0, and this convergence is locally uniform (see [10,14]). �
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Remark 5.7. It is well known that the BTM is computationally infeasible for pricing arithmetic
average options because the number of possible arithmetic average values increases exponen-
tially with the number of timesteps. Barraquand and Pudet [5] proposed the forward shooting
grid method, a modified BTM to restrict the possible average values to a set of predetermined
values. We can also deduce the forward shooting grid method in jump-diffusion models and show
the convergence of it. For Δt given, let

ΔY = γ σ
√

Δt,

where γ is a quantization parameter depending on Δt . Let discrete values of the stock price S

and the arithmetic average price A be given by

Sn
j = ejσ

√
Δt , An

k = ekΔY

for n = 0, . . . ,N and j, k ∈ Z. If at next timestep, Sn
j changes to Sn+1

j+l (l ∈ Z), An
k will conse-

quently become An+1
kl

, where

An+1
kl

= nAn
k + Sn+1

j+l

n + 1
.

Here An+1
kl

may not coincide with An+1
kl

= eklΔY for some integer kl . Using Barraquand and
Pudet’s technique [5], we define a integer kl by the nearest lattice point

kl = nearest

[ ln(An+1
kl

)

ΔY

]
.

Let V n(Sn
j ,An

k) denote the option price at time t = nΔt,S = Sn
j and A = An

k . We have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V n
(
Sn

j ,An
k

) = max
{
e−rΔt

{
(1 − λΔt)

[
pV n+1(Sn+1

j+1 ,An+1
k1

)
+ (1 − p)V n+1(Sn+1

j−1 ,An+1
k−1

)]
+ λΔt

∑
l∈Z

V n+1(Sn+1
j+l ,An+1

kl

)
pl

}
, g

(
Sn

j ,An
k

)}
,

V N
(
SN

j ,AN
k

) = g
(
SN

j ,AN
k

)
(5.8)

for n = 0,1, . . . ,N − 1 and j, k ∈ Z. Under the condition of

γ = o
(
Δt

1
2
)
,

it is not difficult to verify that the scheme (5.8) is consistent with the corresponding equation
(2.3) and all the preceding proof of this paper can be applied to prove the convergence of the
scheme (5.8).
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