
J. Math. Anal. Appl. 340 (2008) 845–853

www.elsevier.com/locate/jmaa

All-derivable points in continuous nest algebras ✩

Jun Zhu ∗, Changping Xiong

Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, PR China

Received 11 July 2007

Available online 11 September 2007

Submitted by Richard M. Aron

Abstract

Let A be an operator algebra on a Hilbert space. We say that an element G ∈ A is an all-derivable point of A for the strong
operator topology if every strong operator topology continuous derivable linear mapping ϕ at G (i.e. ϕ(ST ) = ϕ(S)T + Sϕ(T ) for
any S,T ∈ algN with ST = G) is a derivation. Let N be a continuous nest on a complex and separable Hilbert space H . We show
in this paper that every orthogonal projection operator P(M) (0 �= M ∈N ) is an all-derivable point of algN for the strong operator
topology.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

Let A be an operator subalgebra in B(H), where H is a complex and separable Hilbert space. We say that a
linear mapping ϕ from A into itself is a derivable mapping at G if ϕ(ST ) = ϕ(S)T + Sϕ(T ) for any S,T ∈ A with
ST = G. We say that an element G ∈ A is an all-derivable point of A for strong operator topology if every strong
operator topology continuous derivable linear mapping ϕ at G is a derivation.

We describe some of the results related to ours. Jin and Lu [7] showed that every derivable mapping ϕ at 0 with
ϕ(I) = 0 on nest algebras is a derivation. Li, Pan and Xu [11] prove that every derivable mapping ϕ at 0 with ϕ(I) = 0
on CSL algebras is a derivation. Zhu and Xiong in [13–15] showed that

(1) every norm-continuous generalized derivable mapping at 0 on finite CSL algebras is a generalized derivation;
(2) every invertible operator of nest algebras is an all-derivable point for the strong operator topology; and
(3) G ∈ T M2 is an all-derivable point of T M2 if and only if G �= 0, where T M2 is the algebra of all 2 × 2 upper

triangular matrices.

For other results, see [1–3,8,9,12,16,17].
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It is the aim of this paper to prove the following statement. Let N be a continuous nest on a complex and separable
Hilbert space H . If {0} �= M ∈ N , we show in this paper that the orthogonal projection operator P(M) is an all-
derivable point of the nest algebra algN for the strong operator topology.

This paper is organized as follows: Section 2 concerns some results of all-derivable points in the algebra of 2 × 2
upper triangular operator matrices, and we obtain the major new result Theorem 2.2 in this paper. Using the results in
Section 2, we give the proof of Theorem 3.2 in Section 3.

The symbols B(H) and F(H) stand for the algebra of all bounded linear operators on H and the algebra of all finite
rank operators on H , respectively. We use the symbols IH or I to denote the unit operator on H . If N is a complete
nest on H , then the nest algebra algN is the set of all operators which leave every member of N invariant. The algebra
algN is a Banach algebra. If N ∈ N , we write N− for ∨{M ∈ N : M ⊂ N}. We say that N is a continuous nest if
N− = N for any N ∈ N . If N is a closed subspace in H , we write P(N) for the orthogonal projection operator from
H onto N . If A ∈ B(H), then the kernel space and range space of A will be denoted by N(A) and R(A), respectively.
We denote C for the complex number field.

2. All-derivable points in 2 × 2 upper triangular operator matrices

In this section, every 2 × 2 operator matrix is always represented as relative to the orthogonal decomposition
H ⊕ H . We use the symbols I to denote the unit operator on H .

Lemma 2.1. Let N be a complete nest on a complex and separable Hilbert space H . If ϕ : algN → algN be a
derivable mapping at 0. Then there exist two operators C,D ∈ B(H) such that

ϕ(X) = XC + DX

for any X ∈ algN .

Proof. Since ϕ is a derivable mapping at 0 on algN , we know from Theorem 5 in [7] that ϕ(ST ) = ϕ(S)T +Sϕ(T )−
Sϕ(I)T for any S,T ∈ algN . We define a linear mapping ψ : algN → algN as

ψ(T ) = ϕ(T ) − T ϕ(I), ∀T ∈ algN .

It is easy to verify that ψ is a derivation on algN . By Theorem 19.7 in [4], ψ is an inner derivation, i.e. there exists
an operator D ∈ B(H) such that ψ(T ) = T D − DT for any T ∈ algN . Furthermore ϕ(T ) = ψ(T ) + T ϕ(I) =
T D − DT + T ϕ(I) for any T ∈ algN . It is obvious that C = ϕ(I) + D and D are desired in the lemma. �
Theorem 2.2. Let N be a complete nest on a complex and separable Hilbert space H . If we write

A =
{[

X Y

0 Z

]
: X,Y,Z ∈ algN

}
,

then E11 = [
I 0
0 0

]
is an all-derivable point of A for the strong operator topology.

Proof. Let ϕ be a strong operator topology continuous derivable linear mapping at E11 from A into itself. We only
need to prove that ϕ is a derivation. For arbitrary X,Y,Z ∈ algN , we write⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ

([
X 0
0 0

])
=

[
A11(X) A12(X)

0 A22(X)

]
,

ϕ

([
0 Y

0 0

])
=

[
B11(Y ) B12(Y )

0 B22(Y )

]
,

ϕ

([
0 0
0 Z

])
=

[
C11(Z) C12(Z)

0 C22(Z)

]
.

Obviously, Aij ,Bij and Cij (i, j = 1,2, i � j) are strong operator topology continuous linear mappings on algN .
Since ϕ is a derivable mapping at E11 on A, we have[

A11(I ) A12(I )

0 A (I)

]
= ϕ(E11) = ϕ

(
E2

11

) = ϕ(E11)E11 + E11ϕ(E11) =
[

2A11(I ) A12(I )

0 0

]
.

22
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Thus we have A11(I ) = A22(I ) = 0.
For arbitrary X ∈ algN and S = [

I 0
0 X

]
, T = [

I 0
0 0

]
in A, then ST = [

I 0
0 0

] = E11. So ϕ(E11) = ϕ(S)T + Sϕ(T ).
Thus we have[

0 A12(I )

0 0

]
= ϕ

([
I 0
0 0

])
= ϕ(E11) = ϕ(S)T + Sϕ(T )

=
[
C11(X) A12(I ) + C12(X)

0 C22(X)

][
I 0
0 0

]
+

[
I 0
0 X

][
0 A12(I )

0 0

]

=
[
C11(X) A12(I )

0 0

]
.

It follows that C11(X) = 0 for any X ∈ algN .
For arbitrary x, y, z,u, v,w ∈ C, we take S = [ xX1 yI

0 zI

]
and T = [

uX2 vI

0 wI

]
in A with ST = [

I 0
0 0

] = E11, then

ST =
[
xX1 yI

0 zI

][
uX2 vI

0 wI

]
=

[
xuX1X2 xvX1 + ywI

0 zwI

]
=

[
I 0
0 0

]
= E11,

i.e. xuX1X2 = I , xvX1 + ywI = 0 and zw = 0. Thus we have[
0 A12(I )

0 0

]
= ϕ(E11) = ϕ(S)T + Sϕ(T )

= ϕ

([
xX1 yI

0 zI

])[
uX2 vI

0 wI

]
+

[
xX1 yI

0 zI

]
ϕ

([
uX2 vI

0 wI

])

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xuA11(X1)X2 + yuB11(I )X2 xvA11(X1) + yvB11(I ) + zvC11(I )

+ zuC11(I )X2 + xuX1A11(X2) + xwA12(X1) + ywB12(I ) + zwC12(I )

+ xvX1B11(I ) + xwX1C11(I ) + xuX1A12(X2) + xvX1B12(I ) + xwX1C12(I )

+ yuA22(X2) + yvB22(I ) + ywC22(I )

0 xwA22(X1)I + ywB22(I )I + zwC22(I )I

+ zuA22(X2) + zvB22(I ) + zwC22(I )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1)

Using Eq. (1) and C11(X) = 0, the following equations hold

0 = xuA11(X1)X2 + yuB11(I )X2 + xuX1A11(X2) + xvX1B11(I ), (2)

A12(I ) = xvA11(X1) + yvB11(I ) + xwA12(X1) + ywB12(I ) + xuX1A12(X2) + xvX1B12(I )

+ xwX1C12(I ) + yuA22(X2) + yvB22(I ) + ywC22(I ), (3)

0 = xwA22(X1) + ywB22(I ) + zuA22(X2) + zvB22(I ) (4)

for any xuX1X2 = I , xvX1 + ywI = 0, zw = 0.
If we take x = u = 1 and y = z = v = w = 0 in Eq. (2), then A11(X1)X2 + X1A11(X2) = 0 = A11(I ) for any

X1,X2 ∈ algN with X1X2 = I . So A11 is a derivable mapping at I on algN for the strong operator topology.
It follows from the main theorem in [14] that A11 is an inner derivation on algN . Thus there exists an operator
A ∈ B(H) such that

A11(X) = XA − AX (5)

for any X ∈ algN . It follows from Eq. (2) and A11(X1)X2 + X1A11(X2) = A11(I ) = 0 that

0 = yuB11(I )X2 + xvX1B11(I ).

If we take X1 = X2 = I , x = u = y = 1 and z = v = w = 0 in the above equation, then B11(I ) = 0. If we take
X1 = X2 = I , x = u = w = 1 and y = z = v = 0 in Eq. (4), then A22(I ) = 0.

For arbitrary F ∈ algN with F 2 = F , we write Fλ = F + λI . If we take α,β ∈ C with αβ = 1 and α + β = −1,
then FαFβ = FβFα = I and Fα +Fβ = 2F − I . Let X1 = Fα , X2 = Fβ , x = u = w = 1 and y = z = v = 0 in Eq. (4),
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then A22(Fα) = 0. Furthermore A22(F ) = A22(F + αI) = A22(Fα) = 0. Notice that every rank one operator in algN
may be written as a linear combination of at most four idempotents in algN (see [6]), and every finite rank operator in
algN may be represented as a sum of rank one operators in algN (see [5]). So A22(X) = 0 for any X ∈ algN ∩F(H).
It follows from Erdos Density Theorem (see Theorem 3.11 in [4]) that A22(X) = 0 for any X ∈ algN . It follows from
Eq. (4) that

0 = ywB22(I ) + zvB22(I ).

Taking X1 = X2 = I , x = u = −1, y = v = w = 1 and z = 0 in the above equation, then B22(I ) = 0.
If we take X1 = Fα , X2 = Fβ , x = u = 1 and y = z = v = w = 0 in Eq. (3), then

A12(I ) = FαA12(Fβ).

Multiplying the above equation from left by Fβ , we have A12(Fβ) = FβA12(I ). Similarly, A12(Fα) = FαA12(I ).
Adding two equations, we have A12(F ) = FA12(I ). By imitating the proof of the above paragraph, we obtain

A12(X) = XA12(I )

for any X ∈ algN . If we write B = A12(I ), then A12(X) = XB . Taking X1 = X2 = I , x = u = w = 1 and y = z =
v = 0 in Eq. (3), we have A12(I ) + C12(I ) = 0. If we take X1 = X2 = I , y = x = u = w = 1, v = −1 and z = 0 in
Eq. (3), then

−A11(I ) − B11(I ) + A12(I ) + B12(I ) + A12(I ) − B12(I ) + C12(I ) + C22(I ) = A12(I ).

So C22(I ) = 0.
For arbitrary X ∈ algN , taking S = [ xI yX

0 zI

]
and T = [

uI vX
0 wI

]
in A with ST = [

I 0
0 0

] = E11, we have

ST =
[
xI yX

0 zI

][
uI vX

0 wI

]
=

[
xuI (xv + yw)X

0 zwI

]
=

[
I 0
0 0

]
,

i.e. xu = 1, xv + yw = 0 and zw = 0. It follows that[
0 A12(I )

0 0

]
= ϕ(E11) = ϕ(S)T + Sϕ(T )

= ϕ

([
xI yX

0 zI

])[
uI vX

0 wI

]
+

[
xI yX

0 zI

]
ϕ

([
uI vX

0 wI

])

=
[
yuB11(X) + xvB11(X) ∗

0 ywB22(X) + zvB22(X)

]
. (6)

Using Eq. (6), we have

0 = yuB11(X) + xvB11(X), (7)

0 = ywB22(X) + zvB22(X), (8)

for any X ∈ algN , xu = 1, xv + yw = 0 and zw = 0. If we take x = y = u = 1 and z = w = v = 0 in Eq. (7),
then B11(X) = 0. If we take x = y = u = v = 1, w = −1 and z = 0 in Eq. (8), then B22(X) = 0. Hence B11(X) =
B22(X) = 0 for any X ∈ algN .

For arbitrary X ∈ algN , if we take S = [
xI yI

0 0

]
and T = [

uI vX
0 wX

]
in A with ST = [

I 0
0 0

] = E11, then

ST =
[
xI yI

0 0

][
uI vX

0 wX

]
=

[
xuI (xv + yw)X

0 0

]
=

[
I 0
0 0

]
,

i.e. xu = 1 and xv + yw = 0. Then the following matrix equation holds[
0 A12(I )

0 0

]
= ϕ(E11) = ϕ(S)T + Sϕ(T )

= ϕ

([
xI yI

0 0

])[
uI vX

0 wX

]
+

[
xI yI

0 0

]
ϕ

([
uI vX

0 wX

])

=
⎡
⎣0 xwA12(I )X + ywB12(I )X + xuA12(I )

+xvB12(X) + xwC12(X) + ywC22(X)

0 0

⎤
⎦ (9)
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for any xu = 1 and xv + yw = 0. If we take x = u = w = 1 and y = v = 0 in Eq. (9), then we have A12(I )X +
C12(X) = 0. Thus C12(X) = −A12(I )X = −BX. If we take y = x = u = w = 1 and v = −1 in Eq. (9), then we have

B12(I )X − B12(X) + C22(X) = 0. (10)

For arbitrary S = [ xFα yFα

0 zFα

]
and T = [ uFβ vI

0 wI

]
in A with ST = [

I 0
0 0

] = E11, then

ST =
[
xFα yFα

0 zFα

][
uFβ vI

0 wI

]
=

[
xuI (xv + yw)Fα

0 zwFα

]
=

[
I 0
0 0

]
,

i.e. xu = 1, xv + yw = 0 and zw = 0. Then the following matrix equation holds[
0 A12(I )

0 0

]
= ϕ(E11) = ϕ(S)T + Sϕ(T )

= ϕ

([
xFα yFα

0 zFα

])[
uFβ vI

0 wI

]
+

[
xFα yFα

0 zFα

]
ϕ

([
uFβ vI

0 wI

])

=
⎡
⎣0 xvA11(Fα) + xwA12(Fα) + ywB12(Fα)

+ xuFαA12(Fβ) + xvFαB12(I ) + xwFαC12(I )

0 0

⎤
⎦ (11)

for any xu = 1, xv + yw = 0 and zw = 0. Since A12(X) = XA12(I ) and A12(I ) + C12(I ) = 0, xwA12(Fα) +
xwFαC12(I ) = xwFα(A12(I ) + C12(I )) = 0. If we take y = x = u = w = 1, v = −1 and z = 0 in Eq. (11) and note
that A12(I ) = FαA12(Fβ), then

−A11(Fα) + B12(Fα) − FαB12(I ) = 0.

Similarly, we have

−A11(Fβ) + B12(Fβ) − FβB12(I ) = 0.

Adding the above two equations, we have −A11(F ) + B12(F ) − FB12(I ) = 0. It follows that

−A11(X) − XB12(I ) + B12(X) = 0 (12)

for any X ∈ algN .
For arbitrary Z1,Z2 ∈ algN with Z1Z2 = 0, we take S = [ I 0

0 Z1

]
and T = [ I 0

0 Z2

]
. Then ST = E11. Thus we have[

0 A12(I )

0 0

]
= ϕ(E11) = ϕ(S)T + Sϕ(T ) =

[
0 ∗
0 C22(Z1)Z2 + Z1C22(Z2)

]
.

So C22(Z1)Z2 +Z1C22(Z2) = 0 = C22(0), i.e. C22 is a derivable mapping at 0 from algN into itself. By Lemma 2.1,
there exist two operators C,D ∈ B(H) such that

C22(X) = XC + DX. (13)

It follows from Eqs. (10) and (13) that

B12(X) = B12(I )X + C22(X) = B12(I )X + XC + DX.

If we take X = I in the above equation, then we obtain C + D = 0. So C22(X) = XC − CX. Furthermore we have

B12(X) = B12(I )X + XC − CX = XC − (
C − B12(I )

)
X. (14)

It follows from Eqs. (12) and (5) that

B12(X) = XB12(I ) + A11(X) = XB12(I ) + XA − AX = X
(
A + B12(I )

) − AX. (15)

Subtracting Eqs. (14) and (15), we get

X
(
C − A − B12(I )

) − (
C − A − B12(I )

)
X = 0.

So C − A − B12(I ) ∈ (algN )′ = CI . Thus there exists λ ∈ C such that C − A − B12(I ) = λI . Hence B12(I ) =
C − A − λI .
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For arbitrary X ∈ algN , we have

A22(X) = B11(X) = B22(X) = C11(X) = 0,

A11(X) = XA − AX,

A12(X) = XB,

C12(X) = −BX,

C22(X) = XC − CX,

B12(X) = XC − (A + λI)X = XC − AX − λX.

Thus we have

ϕ

([
X 0
0 0

])
=

[
A11(X) A12(X)

0 A22(X)

]
=

[
XA − AX XB

0 0

]
=

[
X 0
0 0

][
A B

0 C

]
−

[
A B

0 C

][
X 0
0 0

]
,

ϕ

([
0 Y

0 0

])
=

[
B11(Y ) B12(Y )

0 B22(Y )

]
=

[
0 YC − AY − λY

0 0

]

=
[

0 Y

0 0

][
A B

0 C

]
−

[
A B

0 C

][
0 Y

0 0

]
− λ

[
0 Y

0 0

]
,

ϕ

([
0 0
0 Z

])
=

[
C11(Z) C12(Z)

0 C22(Z)

]
=

[
0 −BZ

0 ZC − CZ

]
=

[
0 0
0 Z

][
A B

0 C

]
−

[
A B

0 C

][
0 0
0 Z

]

for any X,Y,Z ∈ algN . Hence we get

ϕ

([
X Y

0 Z

])
=

[
X Y

0 Z

][
A B

0 C

]
−

[
A B

0 C

][
X Y

0 Z

]
− λ

[
0 Y

0 0

]

=
[
X Y

0 Z

][
A + 1

2λI B

0 C − 1
2λI

]
−

[
A + 1

2λI B

0 C − 1
2λI

][
X Y

0 Z

]
.

Hence ϕ is an inner derivation. This completes the proof. �
3. All-derivable points in continuous nest algebras

In this section, we always use N to denote a continuous nest on a complex and separable Hilbert space H . If
M ∈ N with {0} �= M �= H , then all 2 × 2 operator matrices always are represented as relative to the orthogonal
decomposition H = M ⊕ M⊥.

Lemma 3.1. Let N be a complete nest on a complex and separable Hilbert space H . Let ϕ : B(H) → B(H) be a
strong operator topology continuous linear mapping such that ϕ(Y )W = 0 for any Y ∈ B(H) and W ∈ algN with
YW = 0. Then there exists an operator D ∈ B(H) such that ϕ(Y ) = DY for any Y ∈ B(H).

Proof. Case 1. Suppose H− �= H . For arbitrary Y ∈ B(H) and x ∈ N(Y), we claim that ϕ(Y )x ∈ R(Y ). In fact, if we
take y ∈ (H−)⊥ with ‖ y ‖= 1, then W = x ⊗ y ∈ algN and YW = 0. So we have

ϕ(Y )W = ϕ(Y )x ⊗ y = 0,

i.e. ϕ(Y )N(Y ) = 0 ∈ R(Y ). Obviously ϕ(Y )N(Y ) ⊆ R(Y ). By Theorem 3 in [18], there exist two operators D′,F ′ ∈
B(H) such that

ϕ(Y ) = YF ′ + D′Y,

for any Y ∈ B(H). For arbitrary closed subspace L ⊂ H , then 0 = ϕ(P (L⊥))L = (P (L⊥)F ′ + D′P(L⊥))L =
P(L⊥)F ′L. Thus L ∈ LatF ′. Hence there exists λ ∈ C such that F ′ = λI . Thus we have

ϕ(Y ) = (λI + D′)Y
for any Y ∈ B(H). Hence D = λI + D′ is desired as in the lemma.
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Case 2. Suppose H− = H . Then there exists a sequence of closed subspaces {Nn} ⊆ N in H such that P(Nn) → I

for the strong operator topology. We define mappings ϕn : B(Nn) → B(Nn) as

ϕn(T ) = P(Nn)ϕ(T )P (Nn)

for any T ∈ B(Nn). For arbitrary T ∈ B(Nn) ⊆ B(H), take x ∈ N(T ) ∩ Nn. If y ∈ (Nn)
⊥ with ‖ y ‖= 1, then W =

x ⊗ y ∈ algN and T W = 0. So we have

0 = ϕ(T )x ⊗ y = ϕn(T )x ⊗ y,

i.e. ϕn(T )N(T ) = 0 ∈ R(T ). By imitating the proof in the Case 1, there exists Dn ∈ B(Nn) such that

ϕn(T ) = DnT .

Note that limn→+∞ Dn = limn→+∞ DnP (Nn) = limn→+∞ ϕ(P (Nn)) = ϕ(I) for the strong operator topology. We
claim that D = ϕ(I) is desired as in the lemma. In fact, for arbitrary Y ∈ B(H), taking Yn = P(Nn)YP (Nn) ∈ B(Nn),
we have

P(Nn)ϕ(Yn)P (Nn) = ϕn(Yn) = DnYn = DnP (Nn)YP (Nn).

Let n → +∞ in the above equation. Then we have

ϕ(Y ) = DY.

This completes the proof. �
Theorem 3.2. Let N be a continuous nest on a complex and separable Hilbert space H . If {0} �= M ∈ N , then P(M)

is an all-derivable point of algN for the strong operator topology.

Proof. Suppose that 0 �= M ∈ N . We claim that P(M) is an all-derivable point of algN for the strong operator
topology. By the main theorem in [14], we may assume that M �= H .

Let ϕ be a strong operator topology continuous derivable mapping at P(M) on algN , and write NM = {N ∩ M:
∀N ∈ N }. Note that N is a continuous nest. So both NM and NM⊥ are continuous nests on infinite dimension
separable Hilbert M and M⊥, respectively. By Theorem 2.10 in [10], given ε > 0, we know that there exist a position
invertible operator on M⊥ and a unitary operator U from M⊥ into M with T − IM compact and ‖ T − I ‖< ε such
that UTMM = MM⊥ . Then algNM⊥ = UT algNM(UT )−1.

We write P = UT and

A =
{[

X YP −1

0 PZP −1

]
: X,Y,Z ∈ algNM

}
.

Obviously A ⊆ {[
X YP−1

0 PZP−1

]
: X,Z ∈ algNM,Y ∈ B(M)

} = algN . We know from the main theorem in [14] that IM is
an all-derivable point of algNM for the strong operator topology. By imitating the proof of Theorem 2.2, we may get
that E11(IM) = [

IM 0
0 0

]
is an all-derivable point of A for strong operator topology and there exists Q = [

A BP−1

0 PCP−1

] ∈
B(H) (where A,B,C ∈ B(M)) such that

ϕ(S) = SQ − QS

for any S ∈A. For arbitrary Y ∈ B(M) and W ∈ algNM , we write

ϕ

([
0 YP −1

0 0

])
=

[
B11(Y ) B12(Y )P −1

0 PB22(Y )P −1

]
.

Note that ϕ is a strong operator topology continuous derivable mapping at E11(IM) on algN . We take S = [
I YP−1

0 0

]
and T = [

I 0
0 PWP−1

]
in algN with ST = E11(IM), i.e. YW = 0. Note that E11(IM) = [

I 0
0 0

]
and

[
I 0
0 PWP−1

]
in A, so

we have
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[
0 BP −1

0 0

]
= ϕ

(
E11(IM)

) = ϕ(S)T + Sϕ(T )

= ϕ

([
I 0
0 0

]
+

[
0 YP −1

0 0

])[
I 0
0 PWP −1

]
+

[
I YP −1

0 0

]
ϕ

([
I 0
0 PWP −1

])

=
([

0 BP −1

0 0

]
+

[
B11(Y ) B12(Y )P −1

0 PB22(Y )P −1

])[
I 0
0 PWP −1

]

+
[
I YP −1

0 0

][
0 BP −1 − BWP −1

0 P(WC − CW)P −1

]

=
[
B11(Y ) (BW + B12(Y )W + B − BW + Y(WC − CW))P −1

0 PB22(Y )WP −1

]
.

It follows from the above matrix equation that (B12(Y ) − YC)W = 0 and B22(Y )W = 0 for any Y ∈ B(M) and
W ∈ algN with YW = 0. We also know from the above matrix equation that B11(Y ) ≡ 0 for any Y ∈ B(M). By
Lemma 3.1, there exist two operators F1,F2 ∈ B(M) such that B12(Y ) − YC = F1Y and B22(Y ) = F2Y . Hence
B12(Y ) = YC + F1Y for any Y ∈ B(M). Thus, for arbitrary Y ∈ algNM , we have

[
0 (YC + F1Y)P −1

0 PF2YP −1

]
=

[
B11(Y ) B12(Y )P −1

0 PB22(Y )P −1

]
= ϕ

([
0 YP −1

0 0

])

=
[

0 YP −1

0 0

]
Q − Q

[
0 YP −1

0 0

]

=
[

0 YP −1

0 0

][
A BP −1

0 PCP −1

]
−

[
A BP −1

0 PCP −1

][
0 YP −1

0 0

]

=
[

0 (YC − AY)P −1

0 0

]
.

So YC + FY = YC − AY and F2 = 0. Hence F1 = −A, i.e. B12(Y ) = YC − AY and B22(Y ) = 0 for any Y ∈ B(M).
Thus we have

ϕ

([
0 YP −1

0 0

])
=

[
0 YP −1

0 0

][
A BP −1

0 PCP −1

]
−

[
A BP −1

0 PCP −1

][
0 YP −1

0 0

]

for any Y ∈ B(M). Furthermore we have ϕ(T ) = T Q − QT for any T = [
X YP−1

0 PZP−1

] ∈ algN . Hence ϕ is an inner
derivation. This completes the proof. �
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