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Abstract

Let A be an operator algebra on a Hilbert space. We say that an element G € A is an all-derivable point of A for the strong
operator topology if every strong operator topology continuous derivable linear mapping ¢ at G (i.e. ¢(ST) = ¢(S)T + S¢(T) for
any S, T € algN with ST = G) is a derivation. Let \V be a continuous nest on a complex and separable Hilbert space H. We show
in this paper that every orthogonal projection operator P(M) (0 % M € N) is an all-derivable point of alg/\ for the strong operator
topology.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

Let A be an operator subalgebra in B(H), where H is a complex and separable Hilbert space. We say that a
linear mapping ¢ from A into itself is a derivable mapping at G if ¢(ST) = ¢(S)T + S¢(T) for any S, T € A with
ST = G. We say that an element G € A is an all-derivable point of A for strong operator topology if every strong
operator topology continuous derivable linear mapping ¢ at G is a derivation.

We describe some of the results related to ours. Jin and Lu [7] showed that every derivable mapping ¢ at 0 with
¢ (I) = 0 on nest algebras is a derivation. Li, Pan and Xu [11] prove that every derivable mapping ¢ at O with ¢(/) =0
on CSL algebras is a derivation. Zhu and Xiong in [13—15] showed that

(1) every norm-continuous generalized derivable mapping at O on finite CSL algebras is a generalized derivation;

(2) every invertible operator of nest algebras is an all-derivable point for the strong operator topology; and

(3) G € T M; is an all-derivable point of 7 M if and only if G # 0, where 7 .M, is the algebra of all 2 x 2 upper
triangular matrices.

For other results, see [1-3,8,9,12,16,17].
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It is the aim of this paper to prove the following statement. Let A be a continuous nest on a complex and separable
Hilbert space H. If {0} # M € N, we show in this paper that the orthogonal projection operator P(M) is an all-
derivable point of the nest algebra alg/N" for the strong operator topology.

This paper is organized as follows: Section 2 concerns some results of all-derivable points in the algebra of 2 x 2
upper triangular operator matrices, and we obtain the major new result Theorem 2.2 in this paper. Using the results in
Section 2, we give the proof of Theorem 3.2 in Section 3.

The symbols B(H) and F (H) stand for the algebra of all bounded linear operators on H and the algebra of all finite
rank operators on H, respectively. We use the symbols Iy or I to denote the unit operator on H. If A/ is a complete
nest on H, then the nest algebra alg/V is the set of all operators which leave every member of N\ invariant. The algebra
alg/N is a Banach algebra. If N € A/, we write N_ for V{M € N: M C N}. We say that \V is a continuous nest if
N_ = N forany N € N.If N is a closed subspace in H, we write P(N) for the orthogonal projection operator from
H onto N.If A € B(H), then the kernel space and range space of A will be denoted by N(A) and R(A), respectively.
We denote C for the complex number field.

2. All-derivable points in 2 x 2 upper triangular operator matrices

In this section, every 2 x 2 operator matrix is always represented as relative to the orthogonal decomposition
H & H. We use the symbols / to denote the unit operator on H.

Lemma 2.1. Let N be a complete nest on a complex and separable Hilbert space H. If ¢ : algN — alg\ be a
derivable mapping at 0. Then there exist two operators C, D € B(H) such that

o(X)=XC+ DX
forany X € algN.
Proof. Since ¢ is a derivable mapping at 0 on alg/\, we know from Theorem 5 in [7] that o(ST) = ¢(S)T + Se(T) —
Se(I)T for any S, T € alg/N'. We define a linear mapping ¥ : algN — alg\ as

Y(T)=¢(T) —To(), VT calgh.

It is easy to verify that ¥ is a derivation on algN . By Theorem 19.7 in [4], v is an inner derivation, i.e. there exists
an operator D € B(H) such that y(T) = TD — DT for any T € algN'". Furthermore ¢(T) = ¥ (T) + To(I) =
TD— DT +Te(I) forany T € algN . It is obvious that C = ¢(I) + D and D are desired in the lemma. O

Theorem 2.2. Let N be a complete nest on a complex and separable Hilbert space H. If we write

X Y
A:{[O 7 i|:X,Y,ZealgN},

then E|| = [(I) 8] is an all-derivable point of A for the strong operator topology.

Proof. Let ¢ be a strong operator topology continuous derivable linear mapping at E1; from A into itself. We only
need to prove that ¢ is a derivation. For arbitrary X, Y, Z € alg\, we write

(X 0]\ _[An(X) AnpX)
Alo of)T| o  Anmo]

[0 YT\ _[Bu(¥) Bn(Y)
PAlo o) 0o Bam]

[0 0]\ _[Cu(Z) Cin(2)
Alo z])7 o @]

Obviously, A;j, Bijj and Cjj (i, j = 1,2,i < j) are strong operator topology continuous linear mappings on alg\ .
Since ¢ is a derivable mapping at E11 on A, we have

[An(l) App()

2A11(1) A12(1):|
0 Axn() '

:|=§0(E11)=<P(E%1)=¢(E11)E11+E11§0(E11)=[ 0 0
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Thus we have A1 () = A (1) =0.
For arbitrary X € algN and § = [(I) g], T = [(1)(())] in A, then ST = [(I)g] =E11.So ¢(E11) = (ST 4+ Se(T).
Thus we have

3ol i) =rvomssr s

Z[Cu(X) A12(1)+C12(X)][1 0}_'_[1 0] [0 A12(1)i|

0 Cn(X) 0 0 0 x||o 0
| CuX) Apd)
| o 0o |

It follows that C11(X) = 0 for any X € alg\.
For arbitrary x, y, z, u, v, w € C, we take S = [xgl y’] and T = [”X2 “] in A with ST = [(’) 8] = E|1, then

zl 0 wl
ST — xX1 yl||uXy vl| _ |xuX1Xo xvX;+ywl| |I O _F
Tl o |l o wI|T| o0 wl ~lo o~

ie. xuX1Xo,=1,xvX; 4+ ywl =0 and zw = 0. Thus we have

|:8 Al%(l)] =@(E) =¢S)T + Se(T)

(e R R A )

[xuA11(X1)X2 + yuBi1(1)X> xvA11(X1) + yvBii () +zvCii (1)
+zuCii(NXy +xuX1A(X2) +xwA(X1) + ywBi2(I) +zwCra(1)
+xvX 1B () +xwXCy1(1) +xuX1App(X2) +xvX1Bi2(I) +xwX 1 Ci2(1)

= + yuAr(X2) + yvBa(I) + ywCa (1)

0 xwA» (X 1) + ywByp(I)I + zwCrx(I)I
i +zuA2n(X2) + zvBn(I) + zwCa (1) ]
(1)
Using Eq. (1) and C11(X) = 0, the following equations hold

0=xuA(X1) X2+ yuBi(HX2+xuXA11(X2) +xvX 1B (D), 2

Ap() =xvAn(X1) +yvBii(l) + xwAp(X1) + ywBiao(I) + xuXiA12(X2) + xvX1Bi2(1)
+xwX1Cra(I) + yuAn(X2) + yvBxn(l) + ywCan(l), (3)
0=xwAxn(X1) + ywByn() 4+ zuAx»(X2) + zvByn(l) “4)

forany xuX1Xo =1, xvX| +ywl =0, zw =0.

Ifwetake x =u=1and y=z=v=w=01n Eq. (2), then A11(X1)X2 + X1A11(X2) =0 = A11(I) for any
X1, X2 € algN with X1X, = 1. So Ay is a derivable mapping at I on algN for the strong operator topology.
It follows from the main theorem in [14] that Aj; is an inner derivation on algN'. Thus there exists an operator
A € B(H) such that

A(X)=XA - AX 5)
for any X € algN . It follows from Eq. (2) and A11(X1) X2 + X1A11(X2) = A1 (1) =0 that
O0=yuB11(I)X2 +xvX1B11(1).

If wetake X1 =Xo =1, x=u=y=1and z =v =w = 0 in the above equation, then By;(/) = 0. If we take
Xi=Xo=I,x=u=w=1and y=z=v=0i1n Eq. (4), then Ay (/) =0.

For arbitrary F € alg\ with F2 = F, we write F; = F + AI. If we take o, f € C withaf =1 and o + f = —1,
then Fy Fg=FgFy=1and Fy + Fg=2F —1.Let X =F,, X =Fg,x=u=w=1and y =z=v=0inEq. 4),
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then Ay (Fy) = 0. Furthermore A (F) = Ay (F +al) = Ay (F,) = 0. Notice that every rank one operator in alg\”
may be written as a linear combination of at most four idempotents in alg\ (see [6]), and every finite rank operator in
alg/\ may be represented as a sum of rank one operators in alg/\ (see [5]). So A2 (X) =0 forany X € algN NF(H).
It follows from Erdos Density Theorem (see Theorem 3.11 in [4]) that A22(X) = 0 for any X € alg\'. It follows from
Eq. (4) that
0=ywBxn(I)+ zvBy ().
Taking X1 =X, =1, x=u=—1,y=v=w =1 and z =0 in the above equation, then B(/) =0.
If we take X1 = Fy, Xo=Fg, x=u=1and y=z=v=w =0inEq. (3), then
Ap(I) = FyAn(Fg).
Multiplying the above equation from left by Fg, we have A12(Fg) = FgA12(1). Similarly, A12(Fy) = FoA12(1).
Adding two equations, we have A12(F) = FA12(]). By imitating the proof of the above paragraph, we obtain
Ap(X)=XAnpd)
for any X € algN. If we write B = A15(I), then Ajp(X) = XB.Taking X1 =Xo =, x=u=w=1land y =z =
v=01n Eq. (3), we have A1p({/) + C1o(I) =0.If wetake X1 =Xo =1, y=x=u=w=1,v=—landz=01in
Eq. (3), then
—An () = Bn() +Anp() + Bip(I) + Ap(l) — Bio(I) + Ci2(1) + Coo(1) = Apa (D).
So C» (1) =0.

For arbitrary X € alg\/, taking S = [XOI g] and T = [”01 ZJ’I(] in A with ST = [(’) 8] = Ey, we have

ST — xI yX||lul vX| |xul @v+yw)X| |I 0
10 zZI||O0 wI| | O zwl {0 o)’
ie. xu=1,xv+ yw=0and zw = 0. It follows that

[8 A%m] =(E11) =9(S)T + Sp(T)

()| R e )

_ |:yuB11(X) + xvB1(X) * ] ©)
B 0 ywBn(X) + zvBn(X) ]’
Using Eq. (6), we have
0=yuB11(X) +xvBi1(X), @)
0= ywBn(X) + zvBn(X), )

for any X € algN, xu =1, xv + yw =0 and zw =0. f we take x =y =u =1 and z=w = v =0 in Eq. (7),
then Bjj(X) =0.If wetake x =y=u=v =1, w = —1 and z = 0 in Eq. (8), then B(X) = 0. Hence B1;(X) =
B2 (X) =0 for any X € algV'.

For arbitrary X € alg\/, if we take S = [XOI )(’)I] and T = [”01 5));] in A with ST = [(I) 8] = Ei1, then

ST — xI yl||ul vX | |xul @v+yw)X| |I O
0 0|0 wx| | O 0 |0 0}

i.e. xu = 1 and xv + yw = 0. Then the following matrix equation holds

[8 A%(I)] =@(E1) =¢(S)T + Sp(T)

. xI ylI ul vX xI yl ul vX
={lo oo wx|T|o 0o|?\|0o wx
0 xwAp()X +ywBp(H)X +xuAx(l)

+xvB12(X) + xwCia(X) + ywCa(X) 9)
0 0
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for any xu =1 and xv + yw =0. If we take x =u =w =1 and y = v = 0 in Eq. (9), then we have A1o(1)X +
C12(X)=0.Thus C12(X) =—Apnp(I)X =—BX.If wetake y=x =u =w =1 and v = —1 in Eq. (9), then we have

Bio(I)X — B1o(X) + Coa(X) =0. (10)
. Fy yF, Fg vl - . _r107_
For arbitrary S = [xo ;Fa] and T = [”Oﬂ IZI] in A with ST = [00] = E11, then
ST — xFy yFy||uFg vl| |xul @v+yw)Fy| |I O
|1 0 zF, 0 wI| | O wkF, 10 0}

ie.xu =1, xv+ yw =0 and zw = 0. Then the following matrix equation holds

[8 A%(I)] = o(E1) = @(S)T + So(T)

. xFy, yFy ubg vl n xFy, yFy ukg vl
=\l 0 :zF, 0 wl 0 zF |?\| 0o wr

0 xvA(Fy)+xwA2(Fy) + ywBia(Fy)
= +xuFyA1p(Fg) +xvFyBio(I) + xwF,Cra(1) (11)
0 0

for any xu = 1, xv + yw =0 and zw = 0. Since A12(X) = XA12(I) and Ajp(I) + C12(1) =0, xwA2(Fy) +
XWFyCpp(I) =xwFy(A12(I)+ C12(I)) =0.If wetake y=x =u=w =1, v=—1 and z =0 in Eq. (11) and note
that Ajp(1) = Fy A12(Fp), then

—A11(Fy) + B12(Fy) — Fo B12(1) =0.
Similarly, we have
—A11(Fg) + B12(Fg) — FgB12(1) =0.
Adding the above two equations, we have —A11(F) + B12(F) — FB12(1) = 0. It follows that
—An(X) — XBi2(I) + Bia(X) =0 (12)

for any X € algN.
For arbitrary Z;, Z, € alg\ with Z,Z, =0, we take S = [(I)Zol] and T = [(I) 202] Then ST = E|;. Thus we have

0 Ap(D)|_ _ _lo *
[O 0 ]_(p(Ell)_(p(S)T+S¢(T)_[0 sz(Zl)Zz+21C22(Zz):|'

S0 C(Z1)Za + Z1C(Z2) = 0= C2(0), i.e. Cy; is a derivable mapping at 0 from alg/V into itself. By Lemma 2.1,
there exist two operators C, D € B(H) such that

Cn(X)=XC+ DX. 13)
It follows from Egs. (10) and (13) that

B12(X) = Bi2o(DX + Coo(X) = Bp(H)X + XC + DX.
If we take X = I in the above equation, then we obtain C + D = 0. So C22(X) = XC — CX. Furthermore we have

Bi2(X)=Bip(DX+XC—CX=XC—(C—Bn)X. (14)
It follows from Egs. (12) and (5) that

Bi(X)=XBip()+ Ai(X)=XBi(l) + XA— AX = X(A+ Bia(I)) — AX. (15)
Subtracting Eqgs. (14) and (15), we get

X(C—A-Bpn)—(C—A-Bp)X=0.

So C — A — Byx(I) € (algN') = CI. Thus there exists A € C such that C — A — Byp(I) = Al. Hence Bja(I) =
C—A-—A\lL
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For arbitrary X € alg\, we have

An(X) = B11(X) = Bn(X) =C11(X) =0,
An(X)=XA - AX,

Ap(X)=

Ci2(X) =—-BX,

Cpn(X)=XC—-CX,
—(A+2HX=XC—-AX — AX.

Bpp(X) =

Thus we have

x 0]\ _[Au() Apx)] [xA—Ax XxB] [x 0][4 B] [A B|[x ©
Lo o) o Anx|™ 0 0o |=|o ofllo c| |o c|lo ol
0 YT\ _[Bu(¥) Bn®)] [0 YC—AY -1y
“Nlo ol)T| o  Bum|~|o0 0

Bl ﬁH’é 6 1)- x[z Y]

0 01\ _[Cu@ Cn2 0 —-BZ 0 0 0
“Alo z])7| 0o @]~ |0 zc-cz]T|o 0 c 0z
for any X, Y, Z € algN'. Hence we get
x Y\ _[x Y][A B A B X Y
o z|)Tlo zllo c| o ¢
_[x Y|[A+3ia B A+ 31l X v
~lo z 0 c—iar| o C—%AI 0 z|

Hence ¢ is an inner derivation. This completes the proof. O

3. All-derivable points in continuous nest algebras

In this section, we always use A to denote a continuous nest on a complex and separable Hilbert space H. If
M € N with {0} # M # H, then all 2 x 2 operator matrices always are represented as relative to the orthogonal
decomposition H = M @& M.

Lemma 3.1. Let N be a complete nest on a complex and separable Hilbert space H. Let ¢ : B(H) — B(H) be a
strong operator topology continuous linear mapping such that (Y)W =0 for any Y € B(H) and W € algN with
YW = 0. Then there exists an operator D € B(H) such that ¢(Y) = DY for any Y € B(H).

Proof. Case 1. Suppose H_ # H. For arbitrary Y € B(H) and x € N(Y), we claim that ¢(Y)x € R(Y). In fact, if we
take y € (H_)* with || y |[=1, then W =x ® y € alg\ and Y W = 0. So we have

(W =9p¥)x®y=0,
ie. p(Y)N(Y)=0¢€ R(Y). Obviously ¢(Y)N(Y) € R(Y). By Theorem 3 in [18], there exist two operators D', F’ €
B(H) such that

o(Y)=YF +D'Y,

for any Y € B(H). For arbitrary closed subspace L C H, then 0 = (P (L)L = (P(LY)F' + D'P(L*Y))L =
P(LY)F'L. Thus L € LatF’. Hence there exists A € C such that F' = 1. Thus we have

o(Y)= @I+ DY
for any Y € B(H). Hence D = Al + D’ is desired as in the lemma.
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Case 2. Suppose H_ = H. Then there exists a sequence of closed subspaces {N,} € N in H such that P(N,) — I
for the strong operator topology. We define mappings ¢, : B(N,) — B(N,) as

@n(T) = P(Np)@(T) P(Ny)

for any T € B(N,,). For arbitrary T € B(N,) € B(H), take x € N(T) N N,,. If y € (N,,)* with || y |=1, then W =
x®y €algN and TW = 0. So we have

O0=9p(MxQ@y=ea(T)x®y,
ie. 9, (T)N(T) =0 € R(T). By imitating the proof in the Case 1, there exists D, € B(N,,) such that
(pn(T) = DnT~

Note that lim,— o0 Dy = limy— 400 Dy P(Ny) = limy,— 450 @(P(Ny)) = ¢(I) for the strong operator topology. We
claim that D = ¢(I) is desired as in the lemma. In fact, for arbitrary Y € B(H), taking Y;, = P(N,)Y P(N,) € B(N,),
we have

P(Nn)q)(Yn)P(Nn) = (Pn(Yn) =DuY, = Dy P(Ny)Y P(Ny).
Let n — 400 in the above equation. Then we have
p(Y)=DY.

This completes the proof. O

Theorem 3.2. Let N be a continuous nest on a complex and separable Hilbert space H. If {0} # M € N, then P(M)
is an all-derivable point of algN for the strong operator topology.

Proof. Suppose that 0 # M € N. We claim that P(M) is an all-derivable point of alg/\ for the strong operator
topology. By the main theorem in [14], we may assume that M # H.

Let ¢ be a strong operator topology continuous derivable mapping at P(M) on alg/N', and write Ny = {N N M:
VN € N}. Note that N is a continuous nest. So both Ny, and Ny, are continuous nests on infinite dimension
separable Hilbert M and M=, respectively. By Theorem 2.10 in [10], given & > 0, we know that there exist a position
invertible operator on M+ and a unitary operator U from M~ into M with T — I}y compact and || T — I ||< & such
that UT My = M,,1. Then algNy . = UTalgNy (UT) ™.

We write P =UT and

X vyp!
A={|:O PZP_l]’ X, Y,ZealgNM}.

Obviously A C {[g PYZP;I |- X, Z € algNy, Y € B(M)} = alg\'. We know from the main theorem in [14] that /)y is

an all-derivable point of alg\), for the strong operator topology. By imitating the proof of Theorem 2.2, we may get
that E11(Iy) = [1(")/’ 8 ] is an all-derivable point of A for strong operator topology and there exists Q = [6‘ PBC};_II ] €
B(H) (where A, B, C € B(M)) such that

p(§) =50 —-0S§

for any S € A. For arbitrary Y € B(M) and W € algN)y, we write
0 YP'T\ _[Bu®) Bp@)P!
Ao o |)7| o PpPepmprl]

Note that ¢ is a strong operator topology continuous derivable mapping at E11 (1)) on alg\'. We take S = [é Y 1(3)71]

and T =} 5] inalg\ with ST = E1;(Iy), i.e. YW =0. Note that Ey; (Iyy) =[{ )] and [, °,-1]in A, s
we have
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—1
[8 o } = (EnIn) = (ST + So(T)

I 0 0 yp! I 0 I yp! 1 0
¢00+0 0 o pwp|Tlo o |“\|o pwp-!
o BP B11(Y) Bp()pP! I 0
0 PBy(Y)P! 0 pwp!

[1 YP~ } [0 BP~ ! —Bwp! ]
+ ~1

0 0 0 P(WWC-CW)P

_[Bi1(¥Y) (BW+Bp(Y)W+B—BW+Y(WC—CW)P~!
- 0 PBu(Y)Wp~!

It follows from the above matrix equation that (Bj2(Y) — YC)W =0 and By (Y)W =0 for any Y € B(M) and
W € algN with YW = 0. We also know from the above matrix equation that Bj;(Y) = 0 for any Y € B(M). By
Lemma 3.1, there exist two operators Fi, F> € B(M) such that Bj2(Y) — YC = F1Y and By (Y) = F>Y. Hence
B12(Y) =YC + FyY forany Y € B(M). Thus, for arbitrary Y € alg/N}, we have

0 YCc+rmVP 1 _[Bu® BoMP '] _ ([0 vYpP!

0 PRYP |T| 0 PBymP'[T?\|0o o
[0 yp~! 0 YP~
b 7o Jeels
_[o yP1][A BP'7 [A BP'][0 vYP!
o0 0 pcp! 0 pcP7'|[O0 O
_[o (rc-Ayr)p!
=lo 0 :

SoYC+ FY=YC — AY and F, =0.Hence F| = —A,ie. Bj2(Y)=YC — AY and By (Y) =0 forany Y € B(M).
Thus we have

o ypP'\_[o yrP~1][A BP'] [A BP'][0 YP~!
Ao o J)7o o Jlo pcp'] [0 pcP']l0 O

for any Y € B(M). Furthermore we have ¢(T) =T Q — QT for any T = [3‘ PYZPPill] € algN . Hence ¢ is an inner
derivation. This completes the proof. O
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