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Abstract

The existence and multiplicity of periodic solutions are obtained for nonautonomous second order Hamiltonian systems by the

minimax methods in critical point theory.
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1. Introduction and main results

Consider the second order Hamiltonian systems

ii(t)=VF(t,u@), ae.tel0,T],
u) —u(T)=u0) —u(T) =0,

(D

where T > 0 and F : [0, T] x RN — R satisfies the following assumption:
(A) F(t,x) is measurable in  for every x € R" and continuously differentiable in x for a.e. ¢ € [0, T], and there exist
aeC(RY,R"),be L0, T; RT) such that
[F@t,0)| <a(x)b@®),  [VF@, 0| <a(lx])b@)

forall x € RN and a.e. t € [0, T].
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Many existence results are obtained for problem (1) by the least action principle, such as [2,10,11,15,16,18,23] and
their references. Meanwhile, using the minimax methods, [4,7,9,14,21,22] consider the superquadratic second order
Hamiltonian systems. The periodic potential (see [3,5,8,17,24]) and the subquadratic potential (see [5,6,16,19,20]) are
also considered.

Especially, under the condition that F(¢,x) — 400 as |x| — +oo uniformly for a.e. ¢ € [0, T], Berger and
Schechter [2] proved the existence of solutions for problem (1) (see Theorem 4.9 in [2]). Being based on [2], Tang
and Wu [18] generalized the existence results to the locally coercive case. A natural question is whether problem (1)
is also solvable under the opposite condition, that is, F (¢, x) — —o0 as |x| — +oo uniformly for a.e. t € [0, T']. In
general, we do not know whether the question is positive answer, but when F (¢, x) = G(x)+ H (¢, x), V H is bounded,
that is, there exists g € L'(0, T; RT) such that

|VH(t, x)| < g(t) (2)
forall x € R" and a.e. r € [0, T'], and there exists r < 4712/T2 such that
(VG(x) = VG (), x —y) = —rlx =y 3)

for all x, y € R, Ahmad and Lazer [1] obtained the same results. In this paper, we suppose that V H is sublinear, that
is, there exist f, g € L'(0, T; R") and « € [0, 1) such that

|VH (t,x)| < f(@0)]x]* +g(1) 4)

for all x € RN and a.e. t € [0, T]. Then the existence of periodic solutions, which generalizes Ahmad-Lazer’s results
mentioned above, are obtained by the minimax methods in critical point theory. Moreover, the multiplicity of periodic
solutions is also obtained. Our main results are the following theorems.

Theorem 1. Suppose that F(t, x) satisfies assumption (A), (2) and (3). Assume that there exists y € L'(0, T) such
that

F(t,x) <y() 4)
forall x € RN and a.e. t € [0, T, and that there exists a subset E of [0, T'] with meas(E) > O such that

F(t,x) —> —0co as |x| = oo, (6)
fora.e. t € E. Then problem (1) has at least one solution in H}, where

1 N | uis absolutely continuous,
Hi=lu:[0.T1—> R ‘

u(0) =u(T) and it € L*(0, T; RN)

is a Hilbert space with the norm defined by

T T 12
|| = (/’u(t)|2dt+f|it(t)|2dt)
0 0

1
foru e Hy.

Remark 1. Theorem 1 extends the result in [1]. Ma and Tang [12] proved the same result replacing (6) by a weaker
condition that

T
/F(t,x)dt—> —00 as |x| = oo,
0

while adding another condition on G, that is, there exists A € C(R N R) such that

[VG(x) = VG| < A(x — ) O
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forall x,y € RV (see Theorem 3 in [12]). A natural question is whether Theorem 3 in [12] holds yet without (7).
There are functions F satisfying the assumptions of our Theorem 1 and not satisfying those of the results mentioned
above. For example, let F (¢, x) = G(x) + H(t, x) with G(x) = —r cos x1, which is bounded, and

H(t,x) = —|sinwt|In(1+ |x|?)
forall x € RY and ¢ € [0, T]. Then F satisfies the assumptions of our Theorem 1. But F does not satisfy those of the

results mentioned above, because that F' (¢, x) is neither superquadratic in x, nor subquadratic in x, nor periodic in x.

Theorem 2. Suppose that F (t, x) satisfies assumption (A), (3) and (4). Assume that
x| F(t, x) > —o0 ®)
as |x| — +o0 uniformly for a.e. t € [0, T, where « is the same as in (4). Then problem (1) has at least one solution

. 1
in Hy.

Remark 2. Theorem 2 also generalizes the result in [1] which is the special case of our Theorem 2 corresponding
to o = 0. There are functions F satisfying the assumptions of our Theorem 2 and not satisfying those of the results
mentioned above. For example, let F (¢, x) = G(x)+ H (¢, x) with G(x) = —(r/2)|x; |2, which is bounded from above,
and

H(t, x) = —|x|'*®
where 0 < o < 1. Then F satisfies the assumptions of our Theorem 2. But F' does not satisfy those of the results
mentioned above, because that F (¢, x) is neither superquadratic in x, nor subquadratic in x, nor periodic in x.

We shall prove a more general result than Theorems 1 and 2.

Theorem 3. Suppose that F (t, x) satisfies assumption (A), (3)—(5). Assume that there exists a subset E of [0, T] with
meas(E) > 0 such that

Ix| 72 F(t,x) > —00 as |x| = oo, 9)

. . 1
fora.e. t € E. Then problem (1) has at lease one solution in Hy.

Remark 3. Replacing condition (9) by a weaker condition that
T

|x|_2“/F(t,x)dt — —00 as |x| = oo,
0
Ma and Tang [12] proved the same result as Theorem 3 in addition to that there exist M > 0, N > 0 such that

IVG@) — VG(y)| < Mlx =y + N (10)

forall x,y € RY (see Theorem 2 in [12]). A natural question is whether Theorem 2 in [12] holds yet without condi-
tion (10).

At last we give a corresponding multiplicity result.

Theorem 4. Suppose that F satisfies (A), (3)—(5) and (9). Assume that there exist § > 0, ¢ > 0 and an integer k > 0
such that

1 2 2,12
_E(k—H) o |x|" < F(t,x) — F(2,0) (11)
f()rallxeRN and a.e. t € [0, T], and
155 2
F(t,x)—F(t,O)g—Ek o (14 ¢)|x| (12)

forall \x| <6 and a.e. t €[0, T], where w = 27” Then problem (1) has at least one nontrivial solution in H%.
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2. Proof of theorems

For u e H}, let

=—/u(t)dx and a(t)=u(t) —u.
Then one has
T
||ft||§o < 12/ u(t)| dt (Sobolev’s inequality)
0
and
T , T
/|ﬁ(t)|2dt < f?/M(t)\zdt (Wirtinger’s inequality).
0

It follows from assumption (A) that the functional ¢ on H} given by

T

T
w(u):%f\u(t)|2dt+/F(t,u(t))dt
0

0

is continuously differentiable and weakly lower semi-continuous on H% (see [11]). Moreover, one has
T
(@' (), v)= f (i(), 0(0)) + (VF(t, u(®)), v(1))] dt
0

forall u,v e H%. It is well known that the solutions of problem (1) correspond to the critical points of ¢.
For convenience to quote we state an analog of Egorov’s theorem (see Lemma 2 in [18]), in which we replace F'
by —F.

Lemma 1. (See [18].) Suppose that F satisfies the assumption (A) and E is a measurable subset of [0, T']. Assume
that
F(t,x) > —oc0 as|x| > o0
fora.e. t € E. Then for every § > 0 there exists a subset Es of E with meas(E \ Es) < § such that
F(t,x) > —oc0 as|x| > o0
uniformly for all t € Es.

Lemma 2. Assume that F satisfies assumption (A), (3)—(5) and (9). Then ¢ satisfies the (PS) condition, that is, u,
has a convergent subsequence whenever it satisfies ¢'(u,) — 0 as n — 0o and ¢(uy) is bounded.

Proof. By Wirtinger’s inequality, we have

T

(/

0

1/2

R 2 NP
Jitn ()] dt <||un||<<4—2+1) /lun<t)| dt (13)

0

for all n.
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It follows from (4) and Sobolev’s inequality that

T
/ VH t, u(t) u(t) dt
0

T
<ff(t)|u+u(t)| |u(t)|dt+/g(t)|u(t)|dt
0

T T

g/zf(r)(|u|“+\ﬁ(r)|“)|zz(z)|dr+/g(z)\ﬁ(t)|dt
0 0
T

<2(Iﬁ|°’+IIIZIIgo)IIﬁIIoo/f(I)dtJrIIﬁlloo/g(t)dt
0

0

3(4n—rT? _ 27T 2 ?
S——F57—llu Py e (7] t)dt
gy UL ESR g vorm s oL /f()

T

T
+2||ft||§o+l/f(t)dtJrllﬁlloo/g(t)dt

0

A —rT
< 7/|u(t)| dt + Cla|™

(a+1)/2 T
+cz(/;a(t)\2dt> +cg(/;a(t)\2dt>
0 0

forallu € H} and some positive constants Cq, C; and C3. From (3) and Wirtinger’s inequality we obtain

1/2

T T 2 T
/(VG(M([) () d f (VG(u(®)) —VG@),u@))d /|u(t)| dr > 2/|1,'t(t)|2dt
0 0 0

forallu € H}. Hence one has

llitn ]l > |(<p/(un> iin)|

T
= f|un(t) dt+/ (VF(t,un()), itn (1)) dt
0
T T
= /|un(t)| dt—i—/(VG(u,,(t)) iin(1)) dr+/ VH(t,un(t)), iin (1)) dt
0 0 0
T T (a+1)/2 T 12
4 2 _ T2
> %ﬂun(mzm—clmﬁa —C2</|un(t)|2dt> —cg(/m,,(t)f)

0 0 0

for large n. By (13) and the above inequality we have

1/2

T
Clity| > (/!anmfdr) —~ Gy (14)
0
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for some constants C > 0, C4 > 0 and all large n, which implies that
linlloo < Cs(lin]® + 1)

for all large n and some positive constant Cs by Sobolev’s inequality. Then one has
| (0)] > litn] = [itn (O] > lin| = linlloo > litn] — Cs(liinl* +1)

for all large n and every ¢ € [0, T'], which implies that

|un ()] > %w (15)

for all large n and every ¢ € [0, T'].
If (Juy,|) is unbounded, we may assume that, going to a subsequence if necessary,

lit,| > 00 asn — oo. (16)

Set 6 = meas E /2. It follows from (11) and Lemma 1 that there exists a subset Es of E with meas(E \ Es) < § such
that

x| 2 F(t,x) > —00 as |x| — 0o
uniformly for all ¢ € E5, which implies that
meas Es = meas E — meas(E \ Es) > 6 >0 (17
and for every § > 0, there exists M > 1 such that
x| F(t,x) < =B (18)
for all x| > M and all t € Es. By (15) and (16), one has
|un(t)| =M (19)
for large n and every ¢ € [0, T]. It follows from (14), (5), (17)—(19) and (15) that
_ 2 2
o)<+l + [ ywd— [ plunof
[0,TI\Es Es
<y s [ yodr-2m,
[0,T\Es
for all large n. Hence, we have

limsup i, | "% @ (uy) < C* —272958.

n—oo

By the arbitrariness of 8 > 0, one has

limsup iz, |~ ¢ (uy) = —o0,
n—oo

which contradicts the boundedness of ¢ (u;). Hence (|it,,|) is bounded. Furthermore, (u,) is bounded by (14) and (13).
Arguing then as in Proposition 4.1 in [11], we conclude that the (PS) condition is satisfied. O

Now we prove our Theorem 3 first.

Proof of Theorem 3. It follows from Lemma 2 the ¢ satisfies the (PS) condition. We now prove that ¢ satisfies the
other conditions of the Saddle Point Theorem (see Theorem 4.6 in [11]). Let H% be the subspace of H} given by

ﬁ}:{ueH%W:O}.
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Then one has

o) — +o0 (20)

as |lu|]| - oo in ﬁ% In fact it follows from Sobolev’s inequality and Wirtinger’s inequality that

1
H(t,u(t)) — H(t,0)]d / VH(t,su(t)),u))dsdt

\ﬂ

o\’*}

(=}

0

1 T 1
/f(t)|su(t)|“|u(t)|dsdz+//g(r)|u(t)|dsdt
0 0 0

O\ﬂ

T
</f(r)|u(r>|°‘|u<t)|dt+fg<t>|u(t)|dr
0 0

T

T

< ||L7||g3]/f(l)dt—i-llulloo/g(l)dl
0 0

T

off

0

T

(@+1)/2 12
|L't(t)|2dt) +C7</|u(t)|2dt)

0

forall u € ﬁ} and some positive constants Cg and C7. By (3) and Wirtinger’s inequality we have

T 1
/ u®) - GO)]dr = f(VG(su(t)) —VG(0), u(t)) dsdt
0 0

l(VG(su(z)) —VG(0), su(r))dsdt
N

0
Hence one has
T T T
L (. 2
w(u)—/F(t,O)dtziﬂu(t” dt—i—/[F(t,u(t))—F(t,O)]dt
0 0 0
v ; ;
=§/|ﬁ(f)|2df+/[G(u(t) - G(0) dt+f (t.u(t)) — H(t,0)]dt
0 0 0

T (at+1)/2 T 172
2 _ 2
S “’TE;TrTﬂu(t)fd; - C6</|u(t)|2dt) - c7</|u(r)|2dt>
0 0 0

forall u € ﬁ}, which implies (20) by (13) and r < 472/ T?. Moreover, by (18) we have
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T
cp(x)=/F(t,x)dt< / y(t)dt—/ﬁ|x|2°‘dt< / y (1) dt — BM>* meas E;
0 [0, TT\Es Es [0, T]\Es
< / y(t)dt — Bmeas E;
(0.7 \Es

for all |x| > M, which implies that

@(x) > —o0 21

as |x| — oo in R" by the arbitrariness of j.
Now Theorem 3 is proved by (20), (21) and the Saddle Point Theorem (see Theorem 4.6 in [11]). O

Then we prove our Theorems 1 and 2.

Proof of Theorems 1 and 2. Theorem 1 follows from Theorem 3 by letting @ = 0. Theorem 3 implies Theorem 2
because (5) follows from (8) and assumption (A). In fact, by (8) there exists M > 0 such that

|72 F (1,00 <0
for all |[x| > M and a.e. t € [0, T'], which implies that
F(t,x)<0
for all x| > M and a.e. t € [0, T]. It follows from assumption (A) that
F(t,x) <agb(t)
forall x| < M and a.e. t € [0, T], where ap = maxog,<m a(s). Now (5) holds with y () = aopb(t). Hence Theorem 2
follows from Theorem 3. O

At last we prove our Theorem 4.

Proof of Theorem 4. Let £ = H},

k
Hk:{Z(ajcosja)t—f—bjsinja)t)‘aj, bjeRN, j:O,...,k}
j=0
and
T ] T T
1//(14)=—g0(u)+/F(t,O)dt=—5/|12(t)’2dt—/[F(t,x)—F(t,O)]dt.
0 0 0

Then ¢ € C'(E, R) satisfies the (PS) condition. By the Generalized Mountain Pass Theorem (see Theorem 5.29 and
Example 5.26 in [13]), we only need to proof

(Y1) liminf|lu]|~2¢ (u) > 0 as u — 0 in Hy.
(Y1) ¥ (u) <O forallu e H-, and
(Y¥3) Y (u) > —oo as ||u|| — oo in Hkl_l.

Notice that
1

F(t,x)—F(,0)= f(VF(t,sx),x) ds
0
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forall x € RN and a.e. t € [0, T]. By (4) we have

F(t,x) = F(t,0) < f() x|+ g(0)lx] < h(n)|x]

forall |x| > 68, a.e.t €[0,T]and some h € L'(0, T; RT) given by
a—2

f)+87%g@).
o

Now it follows from (12) that

8
h(t) = T

1
F(t,x) — F(t,0) < —§k2w2(1 +&)|x|* + h()|x?

for all x € RN and a.e. ¢ € [0, T']. Hence we obtain

T T T
v () > —%/|d(l)|2dt+ %k2w2(1+8)/|u(t)|2dt—fh(t)|u(t)|3dt
0 0 0
T T
—s/|u(t)|2dt+%k2a)2(l+8)|ﬁ|2T— ||u||§,ofh(t)dt

0 0
> Csllull* — Collu|®

for all u € Hy, where Cg = mln{2 2kz 2(14¢&)T}, Co = (Cyp)? fo h(t)dt and the constant C1q follows from the
inequality

~ T\ /2
lulloo < Jit] + lliilloo < T ‘/|u(t>|dt+||u||oo T /2||u||Lz+(12) llill 2 < Crollull

for all u € H)., where we have used Holder’s inequality and Sobolev’s inequality. Now (1) follows from the above
inequality. For u € Hi*, by (11) one has

T T
V) < —%/|d(t)|2dt—l— %(k+1)2w2/|u(t)|2dt<0
0 0

which is (). At last (yr3) follows from (20). Hence the proof of Theorem 4 is completed. O
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