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The main purpose of this paper is to investigate the uniqueness of transcendental
meromorphic functions that share four values in one angular domain which is an unbounded
subset of the whole complex plane. From one of our main results, a question of J.H.
Zheng [J.H. Zheng, On uniqueness of meromorphic functions with shared values in one
angular domain, Complex Var. Elliptic Equ. 48 (9) (2003) 777–785] is completely answered.
Furthermore, we give an example to explain the necessity of the condition

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞

in our results.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, a transcendental meromorphic function is meromorphic in the whole complex plane C and not rational.
We assume familiarity with the Nevanlinna’s theory of meromorphic functions and the standard notations such as m(r, f ),
T (r, f ). For references, please see [6]. We say that two meromorphic functions f and g share the value a (a ∈ C = C∪{∞})
in X ⊆ C provided that in X , we have f (z) = a if and only if g(z) = a. We will state whether a shared value is by CM
(counting multiplicities) or by IM (ignoring multiplicities). If a is shared IM by f and g and the multiplicities of zeros of
f − a and g − a are different, then we say that the value a is shared DM by f and g.

R. Nevanlinna (see [8]) proved the following well-known theorems.

Theorem 1.1. (See [8].) If f and g are two non-constant meromorphic functions that share five distinct values a1 , a2 , a3 , a4 , a5 IM in
X = C, then f (z) ≡ g(z).

Theorem 1.2. (See [8].) If f and g are two distinct non-constant meromorphic functions that share four distinct values a1 , a2 , a3 , a4
CM in X = C, then f is a Möbius transformation of g, two of the shared values, say a1 and a2 , are Picard values, and the cross ratio
(a1,a2,a3,a4) = −1.

After his very work, the uniqueness of meromorphic functions with shared values in the whole complex plane attracted
many investigations (for references, see [13]). In [14], Zheng took into account of the uniqueness dealing with five shared

✩ This work was supported by the NNSF of China (No. 10771121) and the NSF of Jiangxi of China (No. 2008GQS0075).

* Corresponding author.
E-mail addresses: tbcao@ncu.edu.cn, ctb97@163.com (T.-B. Cao), hxyi@sdu.edu.cn (H.-X. Yi).
0022-247X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.04.043

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:tbcao@ncu.edu.cn
mailto:ctb97@163.com
mailto:hxyi@sdu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2009.04.043


82 T.-B. Cao, H.-X. Yi / J. Math. Anal. Appl. 358 (2009) 81–97
values in some angular domains of C. It is an interesting topic to investigate the uniqueness with shared values in the
remaining part of the complex plane removing an unbounded closed set, see [14,15,1,9,7,11]. In [15], Zheng continued to
investigate this subject. From the proof of Theorem 3 in [15], we deduce easily that the following result is true.

Theorem 1.3. Let f and g be two transcendental meromorphic functions. Given one angular domain X = {z: α < arg z < β} with
0 < β − α � 2π , we assume that f and g share five distinct values a1 , a2 , a3 , a4 , a5 IM in X . Then f (z) ≡ g(z), provided that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

Throughout, we denote by E a set of finite linear measure, not necessarily the same in each time. Sα,β(r, f ) is Nevan-
linna’s angular characteristic and its definition can be found below. We may denote Theorems 1.1 and 1.3 by 5IM theorem.
In [15], Zheng mentioned another result by a simple notation 3CM + 1IM = 4CM as follows.

Theorem 1.4. (See [15].) Let f and g be two distinct transcendental meromorphic functions. Given one angular domain X =
{z: α < arg z < β} with 0 < β − α � 2π , we assume that f and g share three distinct CM shared values a j ( j = 1,2,3) and
one IM shared value a4 in X . Then a4 is also one CM shared value in X of f and g, provided that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

Zheng [15, p. 778] raised a question as follows.

Question 1.1. Whether does 2CM + 2IM = 4CM hold?

Also, we may raise a natural question

Question 1.2. What can be said to an analogous result as Theorem 1.2 in one angular domain?

In this paper, we shall answer these questions. Nevanlinna’s theory on angular domain (see [3]) will play a key role
in this paper. Let f be a meromorphic function on the angular domain Ω = {z: α � arg z � β}, where 0 < β − α � 2π.

Following Nevanlinna define

Aα,β(r, f ) = ω

π

r∫
1

(
1

tω
− tω

r2ω

){
log+ ∣∣ f

(
teiα)∣∣ + log+ ∣∣ f

(
teiβ)∣∣}dt

t
, (1)

Bα,β(r, f ) = 2ω

πrω

β∫
α

log+ ∣∣ f
(
reiθ )∣∣ sinω(θ − α)dθ, (2)

Cα,β(r, f ) = 2
∑

1<|bn|<r

(
1

|bn|ω − |bn|ω
r2ω

)
sinω(θn − α), (3)

Dα,β(r, f ) = Aα,β(r, f ) + Bα,β(r, f ), (4)

where ω = π
β−α , 1 � r < ∞, and bn = |bn|eiθn are the poles of f on Ω , appearing according their multiplicities. If we only

consider the distinct poles of f , we denote the corresponding angular counting function by Cα,β(r, f ). Nevanlinna’s angular
characteristic is defined as follows

Sα,β(r, f ) = Aα,β(r, f ) + Bα,β(r, f ) + Cα,β(r, f ). (5)

Now we show one of our main results by a simple notation 4CM theorem similarly as Theorem 1.2, from which we can
answer Question 1.2.

Theorem 1.5. Let f and g be two distinct transcendental meromorphic functions. Given one angular domain X = {z: α < arg z < β}
with 0 < β − α � 2π , we assume that f and g share four distinct values a1 , a2 , a3 , a4 CM in X, and that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

Then f is a Möbius transformation of g, two of the shared values, say a1 and a2 , are Picard values in X, and the cross ratio
(a1,a2,a3,a4) = −1.
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Let f and g be two distinct transcendental meromorphic functions and let X = {z: α < arg z < β} with 0 < β − α � 2π.

We denote by C E
α,β(r, f (z) = a = g(z)) the counting function of those a-points in X where f and g have same multiplicities,

each point in the counting function being counted only once. Throughout, we denote by R(r,∗) quantities satisfying

R(r,∗) = O
(
log

(
rT (r,∗)

))
, r /∈ E.

We say that f and g share the value a “CM” in X if f and g share a IM in X , furthermore,

Cα,β

(
r,

1

f − a

)
− C E

α,β

(
r, f (z) = a = g(z)

) = R(r, f )

and

Cα,β

(
r,

1

g − a

)
− C E

α,β

(
r, f (z) = a = g(z)

) = R(r, g).

Remark 1.1. Obviously, if a is shared CM by f and g in X , then it must be shared “CM” by f and g in X .

Theorem 1.6. Let f and g be two distinct transcendental meromorphic functions. Given one angular domain X = {z: α < arg z < β}
with 0 < β − α � 2π , we assume that f and g share two distinct values a1 , a2 “CM” and other two distinct values a3 , a4 IM in X .

Then a1 , a2 , a3 , a4 are shared CM by f and g in X, provided that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

We may denote the above result by a simple notation 2“CM” + 2IM = 4CM. Thus we can answer Question 1.1 above from
the following corollary which is immediately deduced by Theorem 1.6.

Corollary 1.1. Let f and g be two distinct transcendental meromorphic functions. Given one angular domain X = {z: α < arg z < β}
with 0 < β − α � 2π , we assume that f and g share two distinct values a1 , a2 CM and other two distinct values a3 , a4 IM in X . Then
a1 , a2 , a3 , a4 are shared CM by f and g in X, provided that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

By the following example, we explain the necessity of the condition

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞

in Theorems 1.3–1.6, Corollary 1.1 and Question 5.1 in the final section.

Example 1.1. Consider two entire functions f (z) = ez+1 − 1 and g(z) = f 2(z) = (ez+1 − 1)2. Set X = {z ∈ C: π
2 = α <

arg z < β = 3π
2 }. So ω = 1. By the equality |ez+1 − 1| = |ez+1| + O (1), we have log+ | f (reiα)| = O (1), log+ | f (reiβ)| = O (1),

log+ | f (reiθ )| = max{r cos θ,0} + O (1). Hence we have

Aα,β(r, f ) = O

(
1 + 1

r
+ 1

r2

)
, Bα,β(r, f ) = O

(
1

r

)
, Cα,β(r, f ) ≡ 0,

and thus

Sα,β(r, f ) = Aα,β(r, f ) + Bα,β(r, f ) + Cα,β(r, f ) = O

(
1 + 1

r
+ 1

r2

)
.

Noting that T (r, f ) = r
π + O (1), we have

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
< ∞. (6)

On the other hand, if a is a real number with a � 16, then neither of the functions f and g attains this value a in the
angular domain X because

f (z) = a ⇐⇒ z ∈ −1 + log(a + 1) + i2πZ ⊂ C \ X,

g(z) = a ⇐⇒ z ∈ −1 + log(
√

a ± 1) + i2πZ ⊂ C \ X .
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However, the value 0 is shared DM by f and g in the angular domain X because

f (z) = g(z) = 0 in X ⇐⇒ z ∈ −1 + 2πZ ⊂ X .

(i) If take a1 = 16, a2 = 17, a3 = 18, a4 = 19, a5 = 20, then a1, a2, a3, a4, a5 are shared IM by f and g in X . However,
f (z) 
≡ g(z).

(ii) If take a1 = 16, a2 = 17, a3 = 18, a4 = 19, then a1, a2, a3, a4 are shared CM by f and g in X . However, f is not a
Möbius transformation of g.

(iii) If take a1 = 0, a2 = 16, a3 = 17, a4 = 18, then a1 is shared IM, and a2, a3, a4 are shared CM by f and g in X .

However, a1 is not shared CM by f and g in X .

(iv) If take a1 = 0, a2 = 16, a3 = 17, a4 = 18, then a1 and a2 are shared IM, and a3, a4 are shared CM by f and g in X .

However, a1 is not shared CM by f and g in X .

(v) If take a1 = 0, a2 = 16, a3 = 17, a4 = 18, then a1, a2, a3 are shared IM, and a4 is shared CM by f and g in X .

However, a1 is not shared CM by f and g in X .

2. Lemmas

Lemma 2.1. (See [10,12,16].) Suppose that g is a non-constant meromorphic function in one angular domain Ω = {z: α � arg z � β}
with 0 < β − α � 2π. Then

(i) (see [3, Chapter 1]) for any complex number a 
= ∞,

Sα,β

(
r,

1

g − a

)
= Sα,β(r, g) + ε(r,a),

where ε(r,a) = O (1) (r → ∞);
(ii) (see [3, p. 138]) for any 1 � r < R,

Aα,β

(
r,

g′

g

)
� K

{(
R

r

)ω R∫
1

log+ T (t, g)

t1+ω
dt + log+ r

R − r
+ log

R

r
+ 1

}
,

and

Bα,β

(
r,

g′

g

)
� 4ω

rω
m

(
r,

g′

g

)
,

where ω = π
β−α and K is a positive constant not depending on r and R.

Remark 2.1. Nevanlinna conjectured that

Dα,β

(
r,

g′

g

)
= Aα,β

(
r,

g′

g

)
+ Bα,β

(
r,

g′

g

)
= o

(
Sα,β

(
r,

1

g − a

))
(7)

when r tends to +∞ outside an exceptional set of finite linear measure, and he proved that Dα,β(r, g′
g ) = O (1) when the

function g is meromorphic in C and has finite order. In 1974, Gol’dberg constructed a counter-example to show that (7) is
not valid (see [2]). However, it follows from Lemma 2.1(ii) that

Dα,β

(
r,

g′

g

)
= Aα,β

(
r,

g′

g

)
+ Bα,β

(
r,

g′

g

)
= R(r, g).

Lemma 2.2. (See [15].) Suppose that f is a non-constant meromorphic function in one angular domain Ω = {z: α � arg z � β} with
0 < β − α � 2π , then for arbitrary q distinct a j ∈ C (1 � j � q), we have

(q − 2)Sα,β(r, f ) �
q∑

j=1

Cα,β

(
r,

1

f − a j

)
+ R(r, f ),

where the term Cα,β(r, 1
f −a j

) will be replaced by Cα,β(r, f ) when some a j = ∞.

Remark 2.2. If R(r, f ) = o(Sα,β(r, f )), then we can deduce from Lemma 2.2 that a meromorphic function f has at most
two Picard values in X . Here, we explain the necessity of the condition R(r, f ) = o(Sα,β(r, f )). By Example 1.1, any value
d ∈ {a ∈ R: 16 � a} ∪ {∞} is a Picard value of f (z) = ez+1 − 1 in X = {z ∈ C: π

2 < arg z < 3π
2 }. However, there holds (6).
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Lemma 2.3. (See [1].) Suppose that f is a non-constant meromorphic function in the plane and that X = {z: α < arg z < β} is an
angular domain, where 0 < β − α � 2π. Let P ( f ) = a0 f p + a1 f p−1 + · · · + ap (a0 
= 0) be a polynomial of f with degree p, where
the coefficients a j ( j = 0,1, . . . , p) are constants, and let b j ( j = 1,2, . . . ,q) be q (q � p + 1) distinct finite complex numbers. Then

Dα,β

(
r,

P ( f ) · f ′

( f − b1)( f − b2) · · · ( f − bq)

)
= R(r, f ).

Lemma 2.4. (See [1].) Let f and g be two distinct transcendental meromorphic functions that share four distinct values a1 , a2 , a3 , a4
IM in one angular domain X = {z: α < arg z < β} with 0 < β − α � 2π. Then

(i) Sα,β(r, f ) = Sα,β(r, g) + R(r, f ), Sα,β(r, g) = Sα,β(r, f ) + R(r, g);
(ii)

∑4
j=1 Cα,β(r, 1

f −a j
) = 2Sα,β(r, f ) + R(r, f );

(iii) Cα,β(r, 1
f −b ) = Sα,β(r, f ) + R(r, f ), Cα,β(r, 1

g−b ) = Sα,β(r, g) + R(r, g), where b 
= a j ( j = 1,2,3,4);

(iv) C∗
α,β(r, 1

f ′ ) = R(r, f ), C∗
α,β(r, 1

g′ ) = R(r, g), where C∗
α,β(r, 1

f ′ ) and C∗
α,β(r, 1

g′ ) are respectively the counting functions of the

zeros of f ′ that are not zeros of f − a j ( j = 1,2,3,4), and the zeros of g′ that are not zeros of g − a j ( j = 1,2,3,4);
(v)

∑4
j=1 C∗∗

α,β(r, f (z) = a j = g(z)) = R(r, f ), where C∗∗
α,β(r, f (z) = a j = g(z)) is the counting function for common multiple zeros

of f − a j and g − a j ( j = 1,2,3,4), counting the smaller one of the two multiplicities at each of the points.

Lemma 2.5. Let f and g be two distinct transcendental meromorphic functions that share four distinct values 0, 1, ∞, c IM in one
angular domain X = {z: α < arg z < β} with 0 < β − α � 2π . Let

F =
{

f ′′

f ′ −
(

2 f ′

f
+ f ′

f − 1
+ f ′

f − c

)
− g′′

g′ −
(

2g′

g
+ g′

g − 1
+ g′

g − c

)}
,

G =
{

f ′′

f ′ −
(

f ′

f − 1
+ f ′

f − c
− 2 f ′

f

)
− g′′

g′ −
(

g′

g − 1
+ g′

g − c
− 2g′

g

)}
.

If F 
≡ 0, G 
≡ 0, then

Sα,β(r, F ) � Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

) + R(r, f ),

Sα,β(r, G) � Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

) + R(r, f ).

Proof. From Lemma 2.3 we have

Dα,β(r, F ) = R(r, f ).

If z1 ∈ X is a zero of f (z) − 1 and g(z) − 1, with multiplicities q and p, respectively

f (z) = 1 + bq(z − z1)
q + bq+1(z − z1)

q+1 + · · · (bq 
= 0),

g(z) = 1 + cp(z − z1)
p + cp+1(z − z1)

p+1 + · · · (cp 
= 0),

then by computation,

F (z) =
{ −1

z − z1
+ O (1)

}
−

{ −1

z − z1
+ O (1)

}
= O (1).

Hence each zero of both f (z) − 1 and g(z) − 1 in X is not a pole of F (z). Similarly, we get that each zero of both f (z) − c
and g(z) − c in X is not a pole of F (z). Obviously, any zero of both f (z) and g(z) with the same multiplicities in X is not
a pole of F (z). From the above discussion and Lemma 2.4(iv) we deduce that

Cα,β(r, F ) � Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

)
+ C∗

α,β

(
r,

1

f ′

)
+ C∗

α,β

(
r,

1

g′

)
+ R(r, f )

= Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

) + R(r, f ).

Using the same argument for G(z) instead of F (z), we can deduce the other inequality. Therefore the lemma follows. �
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Lemma 2.6. Let f and g be two distinct transcendental meromorphic functions that share four distinct values 0, 1, ∞, c IM in one
angular domain X = {z: α < arg z < β} with 0 < β − α � 2π. Let

F1 = g′( f − g)

g( f − 1)(g − c)
, G1 = f ′( f − g)

f (g − 1)( f − c)
,

Fc = g′( f − g)

g(g − 1)( f − c)
, Gc = f ′( f − g)

f ( f − 1)(g − c)
.

Then

Sα,β(r, F1) � Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f ),

Sα,β(r, G1) � Sα,β(r, g) − Cα,β

(
r,

1

g − 1

)
+ R(r, g),

Sα,β(r, Fc) � Sα,β(r, f ) − Cα,β

(
r,

1

f − c

)
+ R(r, f ),

Sα,β(r, Gc) � Sα,β(r, g) − Cα,β

(
r,

1

g − c

)
+ R(r, g).

Proof. We rewrite F1 and get

F1 = 1

f − 1

{
g′

g(g − c)
− g′

g − c

}
+ g′

g(g − c)
.

Thus from Lemma 2.3 we get

Dα,β(r, F1) � Dα,β

(
r,

1

f − 1

)
+ R(r, f ).

If zc ∈ X is a zero of f (z) − c and g(z) − c, then it must be a simple pole of g′
g−c , and be a zero of f − g. Hence zc is not a

pole of F1. Similarly, any zero of f and g in X is not a pole of F1. Let z∗ ∈ X be a pole of f (z) and g(z) with multiplicities
p and q, respectively, then z∗ must be a pole of f (z) − g(z) with multiplicity at most max{p,q}. Hence we have

F1(z) = O
(
(z − z∗)(2q+p)−(q+1+max{p,q}))

= O
(
(z − z∗)(q+p−1−max{p,q})).

So z∗ is not a pole of F1. If z1 ∈ X is a zero of f − 1 with multiplicity p, and is a zero of g − 1, then z1 is also a zero of
f − g. Then z1 is a pole of F1 with multiplicities at most p − 1. From the above discussion we obtain

Cα,β(r, F1) � Cα,β

(
r,

1

f − 1

)
− Cα,β

(
r,

1

f − 1

)
.

Hence we have

Sα,β(r, F1) = Dα,β(r, F1) + Cα,β(r, F1)

� Dα,β

(
r,

1

f − 1

)
+ Cα,β

(
r,

1

f − 1

)
− Cα,β

(
r,

1

f − 1

)
+ R(r, f )

= Sα,β

(
r,

1

f − 1

)
− Cα,β

(
r,

1

f − 1

)
+ R(r, f ).

With a similar argument as above, we can get other three inequalities. Therefore the lemma follows. �
Lemma 2.7. Let f and g be two distinct transcendental meromorphic functions that share four distinct values 0, 1, ∞, c IM in one
angular domain X = {z: α < arg z < β} with 0 < β − α � 2π. Set

γ = F 2 − (1 + c)2Ψ,

δ = G2 − (1 + c)2Ψ,

where Ψ is defined by
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Ψ = f ′g′( f − g)2

( f − a1)( f − a2)( f − a3)(g − a1)(g − a2)(g − a3)
, (8)

F and G are the functions defined in Lemma 2.5. If z0 ∈ X is a simple zero of both f and g, and if z∞ ∈ X is a simple pole of both f
and g, then γ (z0) = 0, δ(z∞) = 0.

Proof. Set

f (z) = a1(z − z0) + a2(z − z0)
2 + · · · (a1 
= 0),

g(z) = b1(z − z0) + b2(z − z0)
2 + · · · (b1 
= 0).

By computation we get

Ψ (z0) = 1

c2
(a1 − b1)

2,

F (z0) =
(

1 + 1

c

)
(a1 − b1).

Hence we have

γ (z0) = (
F (z0)

)2 − (1 + c)2Ψ (z0) = 0.

Set

f (z) = c1

z − z∞
+ c2 + O (z − z∞) (c1 
= 0),

g(z) = d1

z − z∞
+ d2 + O (z − z∞)2 (d1 
= 0).

By computation we get

Ψ (z∞) =
(

1

c1
− 1

d1

)2

,

G(z∞) = (1 + c)

(
1

c1
− 1

d1

)
.

Hence we have

δ(z∞) = (
G(z∞)

)2 − (1 + c)2Ψ (z∞) = 0.

Therefore the lemma follows. �
Lemma 2.8. Under the assumption of Lemma 2.7, we have

F (z0) = (1 + c)F1(z0) = (1 + c)G1(z0) = (1 + c)Fc(z0) = (1 + c)Gc(z0),

G(z∞) = (1 + c)F1(z∞) = (1 + c)G1(z∞) = (1 + c)Fc(z∞) = (1 + c)Gc(z∞),

where F1 , G1 , Fc , Gc are the functions defined in Lemma 2.7.

Proof. Using the same notations as in the proof of Lemma 2.7, we have

F1(z0) = G1(z0) = Fc(z0) = Gc(z0) = 1

c
(a1 − b1),

F1(z∞) = G1(z∞) = Fc(z∞) = Gc(z∞) = 1

c1
− 1

d1
.

Hence we can obtain the conclusion of the lemma. �
We denote by C1)

α,β(r, f (z) = a = g(z)) the counting function of simple zeros of both f (z) − a and g(z) − a in X , by

C1)
α,β(r, 1

f −a ) the counting function of simple zeros of f (z) − a in X , by C (2
α,β(r, 1

f −a ) the counting function of zeros of

f (z) − a in X with multiplicities at least two, and by C (2
α,β(r, f ) the counting function of those poles of f in X with

multiplicities at least two, each point is counted in the counting functions only once. One can obtain the following lemma
by Lemma 2.4(v).
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Lemma 2.9. Let f and g be two distinct transcendental meromorphic functions that share four distinct values a1 , a2 , a3 , a4 IM in one
angular domain X = {z: α < arg z < β} with 0 < β − α � 2π. Then for j = 1,2,3,4, we have

C E
α,β

(
r, f (z) = a j = g(z)

) = C 1)
α,β

(
r, f (z) = a j = g(z)

) + R(r, f ).

Lemma 2.10. Let f and g be two distinct transcendental meromorphic functions. Given one angular domain X = {z: α < arg z < β}
with 0 < β − α � 2π , we assume that f and g share four distinct values a1 , a2 , a3 , a4 “CM” in X, then a1 , a2 , a3 , a4 are shared CM in
X by f and g, provided that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

Proof. Without loss of generality, we assume that a1 = 0, a2 = 1, a3 = ∞, a4 = c. From Lemma 2.4(i) we see that
R(r, f ) = R(r, g). We assume that there exist three of Cα,β(r, 1

f −a j
) ( j = 1,2,3,4), say Cα,β(r, 1

f −a j
) ( j = 1,2,3), such

that Cα,β(r, 1
f −a j

) = R(r, f ), then we deduce by Lemma 2.2 that

Sα,β(r, f ) �
3∑

j=1

Cα,β

(
1

f − a j

)
+ R(r, f ) = R(r, f ),

a contradiction with the condition of the lemma. Hence there are at least two of Cα,β(r, 1
f −a j

) ( j = 1,2,3,4), say

Cα,β(r, 1
f −a j

) ( j = 1,3), such that

Cα,β

(
r,

1

f

)

= R(r, f ), Cα,β(r, f ) 
= R(r, f ). (9)

Since 0, 1, ∞, c are shared “CM” by f and g in X , we obtain from (iv) and (v) in Lemma 2.4 that

C (2
α,β(r, f ) + C (2

α,β(r, g) = R(r, f ) (10)

and

Cα,β

(
r,

1

f ′

)
+ Cα,β

(
r,

1

g′

)
= R(r, f ). (11)

Set

H = f ′′

f ′ − g′′

g′ . (12)

Then we have

Dα,β(r, H) = R(r, f )

and

Cα,β(r, H) � Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β(r, g) − C E
α,β

(
r, f (z) = ∞ = g(z)

)
+ Cα,β

(
r,

1

f ′

)
+ Cα,β

(
r,

1

g′

)
= R(r, f ).

Hence we have

Sα,β(r, H) = R(r, f ).

If z0 ∈ X is a simple pole of f and g , then form (12) we see that z0 must be a zero of H . Hence we can deduce by (10)
that

Cα,β(r, f ) − R(r, f ) � Cα,β

(
r,

1

H

)
� Sα,β(r, H) + O (1) = R(r, f ).

Thus we have Cα,β(r, f ) = R(r, f ), a contradiction with (9). So H ≡ 0. It follows from (12) that

f (z) ≡ Ag(z) + B, (13)
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where A(
= 0), B are constants. From (9) and (13) we get B = 0. Hence we have

f (z) ≡ Ag(z).

Since f (z) 
≡ g(z), we get A 
= 1. This means that 1, c are Picard values of f and g in X . Again by (13), A and Ac also are
Picard values of f and g in X . Therefore we have

A = c, Ac = 1.

From this we obtain c = −1 and f (z) ≡ −g(z). We now get that 0, 1, ∞, c are shared CM by f and g in X . Therefore the
lemma follows. �
Lemma 2.11. Let f and g be two distinct transcendental meromorphic functions. Given one angular domain X = {z: α < arg z < β}
with 0 < β − α � 2π , we assume that f and g share four distinct values a1 , a2 , a3 , a4 IM in X, and that Cα,β(r, 1

f −a j
) = R(r, f )

( j = 1,2). Then a1 , a2 , a3 , a4 are shared CM in X by f and g, provided that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

Proof. Without loss of generality, we assume that a1 = 0, a2 = ∞, a3 = 1, a4 = c. Then

Cα,β

(
r,

1

f

)
= R(r, f ), Cα,β(r, f ) = R(r, f ).

Hence 0, ∞ are shared “CM” by f and g in X . Hence from Lemma 2.2 we have

Sα,β(r, f ) � Cα,β

(
r,

1

f

)
+ Cα,β(r, f ) + Cα,β

(
r,

1

f − 1

)
+ R(r, f )

= Cα,β

(
r,

1

f − 1

)
+ R(r, f ).

From Lemma 2.1(i) we have

Cα,β

(
r,

1

f − 1

)
= C1)

α,β

(
r,

1

f − 1

)
+ C (2

α,β

(
r,

1

f − 1

)

� C1)
α,β

(
r,

1

f − 1

)
+ 1

2
C (2

α,β

(
r,

1

f − 1

)

� 1

2
C1)

α,β

(
r,

1

f − 1

)
+ 1

2
Cα,β

(
r,

1

f − 1

)

� 1

2
C1)

α,β

(
r,

1

f − 1

)
+ 1

2
Sα,β

(
r,

1

f − 1

)

� 1

2
C1)

α,β

(
r,

1

f − 1

)
+ 1

2
Sα,β(r, f ) + O (1).

From the above inequalities and the condition of the lemma, we have

Sα,β(r, f ) � C1)
α,β

(
r,

1

f − 1

)
+ R(r, f ) � Sα,β(r, f ) + R(r, f ) � Sα,β(r, f ).

Hence we obtain

Sα,β(r, f ) = C1)
α,β

(
r,

1

f − 1

)
+ R(r, f ),

C (2
α,β

(
r,

1

f − 1

)
= R(r, f ).

By a similar discussion, we have

C (2
α,β

(
r,

1
)

= R(r, g) = R(r, f ).

g − 1
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Hence

C (2
α,β

(
r, f (z) = 1 = g(z)

) = R(r, f ).

Therefore we have

C1)
α,β

(
r, f (z) = 1 = g(z)

) + R(r, f ) = C 1)
α,β

(
r, f (z) = 1 = g(z)

) + C (2
α,β

(
r, f (z) = 1 = g(z)

) + R(r, f )

= Cα,β

(
r,

1

f − 1

)
+ R(r, f ).

From these equalities and Lemma 2.9, we have

C E
α,β

(
r, f (z) = 1 = g(z)

) = C1)
α,β

(
r, f (z) = 1 = g(z)

) + R(r, f )

= Cα,β

(
r,

1

f − 1

)
+ R(r, f ).

This means that 1 is shared “CM” by f and g in X .

Using a similar discussion, we can deduce that c is also shared “CM” by f and g in X . Thus 0, ∞, 1, c are “CM” shared
values of f and g in X . By Lemma 2.10, we get that 0, ∞, 1, c are CM shared values of f and g in X . Therefore the lemma
follows. �
3. Proof of Theorem 1.5

Using the same argument as in the proof of Lemma 2.10, we get that R(r, f ) = R(r, g), and that there are at least two
of Cα,β(r, 1

f −a j
) ( j = 1,2,3,4), say Cα,β(r, 1

f −a j
) ( j = 3,4), such that

Cα,β

(
r,

1

f − a3

)

= R(r, f ), Cα,β

(
r,

1

f − a4

)

= R(r, f ). (14)

Set

L(z) = z − a3

z − a4
· a2 − a4

a2 − a3
.

Then L(a3) = 0, L(a4) = ∞, L(a2) = 1, and

L(a1) = a1 − a3

a1 − a4
· a2 − a4

a2 − a3
= (a1,a2,a3,a4)

which is the cross ratio of a1, a2, a3, a4. Let

F (z) = L
(

f (z)
)
, G(z) = L

(
g(z)

)
.

We get from f (z) 
≡ g(z) that F (z) 
≡ G(z). Since a j ( j = 1,2,3,4) are shared CM by f and g in X , L(a j) ( j = 1,2,3,4)

are shared CM by F and G in X . Hence c, 1, 0, ∞ are CM shared values of F and G in X , where c = L(a1). Obviously,
R(r, F ) = R(r, G). We obtain by (14) that

Cα,β

(
r,

1

F

)

= R(r, f ), Cα,β(r, F ) 
= R(r, f ). (15)

Set

H = F ′

F (F − 1)(F − c)
− G ′

G(G − 1)(G − c)
. (16)

Assume that H(z) 
≡ 0, we get from Lemma 2.3 that

Dα,β(r, H) = R(r, F ).

If z0 ∈ X is a point such that F (z0) = G(z0) = L(a j) for some j = 1,2,3,4, then from (16) we see that H has no pole in X .

Hence we have

Sα,β(r, H) = Dα,β(r, H) + Cα,β(r, H) = R(r, F ).

If z1 ∈ X is a pole of F with multiplicity p, then it must be a pole of G with multiplicity p. Thus from (16) we see that z1
is a zero of H with multiplicities at least 3p − (p + 1) = 2p − 1. Therefore
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Cα,β

(
r,

1

F

)
� Cα,β

(
r,

1

H

)
� Sα,β(r, H) + O (1) = R(r, f ),

a contradiction with (15). So we have H(z) ≡ 0.

Set

Q = F F ′

(F − 1)(F − c)
− GG ′

(G − 1)(G − c)
. (17)

Assume that Q (z) 
≡ 0, we get from Lemma 2.3 that

Dα,β(r, Q ) = R(r, F ).

If z0 ∈ X is a point such that F (z0) = G(z0) = L(a j) for some j = 1,2,3,4, then from (17) we see that Q has no pole in X .

Hence we have

Sα,β(r, Q ) = Dα,β(r, Q ) + Cα,β(r, Q ) = R(r, F ).

If z1 ∈ X is a zero of F with multiplicity p, then it must be a zero of G with multiplicities p. Thus from (17) we see that z1
is a zero of H with multiplicity at least 3p + (p − 1) = 2p − 1. Therefore

Cα,β

(
r,

1

F

)
� Cα,β

(
r,

1

Q

)
� Sα,β(r, Q ) + O (1) = R(r, f ),

a contradiction with (15). So we have Q (z) ≡ 0.

From F (z) ≡ G(z) ≡ 0 we have

F 2(z) ≡ G2(z).

Since F (z) 
≡ G(z), we have F (z) ≡ −G(z). Thus both 1 and −1 are Picard values of F and G in X . It follows from
Lemma 2.4(iii) that c = −1. Hence we have

L(a1) = (a1,a2,a3,a4) = −1.

Therefore we obtain that both a1 and a2 are Picard values of f and g in X and that

L
(

f (z)
) = −L

(
g(z)

)
.

It means that f is a Möbius transformation of g.

Therefore Theorem 1.5 follows.

4. Proof of Theorem 1.6

Without loss of generality, we assume a1 = ∞, a2 = 0, a3 = 1, a4 = c. Using the notations of the lemmas in Section 2,
we deal with four cases as follows.

Case 1. Assume that γ 
≡ 0, δ 
≡ 0.

Since ∞, 0 are shared “CM” in X by f and g , we can get from Lemmas 2.5, 2.7 and 2.9 that

Cα,β

(
r,

1

f

)
= C E

α,β

(
r, f (z) = 0 = g(z)

)
= C 1)

α,β

(
r, f (z) = 0 = g(z)

) + R(r, f )

� Cα,β

(
r,

1

γ

)
� Sα,β(r, γ ) + O (1)

� Sα,β

(
r,α2 − (1 + c)2Ψ

) + O (1)

� 2Sα,β(r,α) + Sα,β(r,Ψ ) + O (1)

= 2

[
Cα,β(r, f ) − C E

α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

)] + R(r, f )

= R(r, f ).

Similarly, we can get from Lemmas 2.5, 2.7 and 2.9 that
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Cα,β(r, f ) = R(r, f ).

Hence from Lemma 2.11 we get that 0, ∞, 1, c are shared CM by f and g in X .

Case 2. Assume that γ 
≡ 0, δ ≡ 0.

Since γ 
≡ 0, we can also get similarly to Case 1 that

Cα,β

(
r,

1

f

)
= R(r, f ). (18)

Subcase 2.1. c 
= −1.

If F1 ≡ G1, then

f ′( f − 1)

f ( f − c)
≡ g′(g − 1)

g(g − c)
.

From the equality, we see that 0, 1, ∞, c are shared CM by f and g in X . Similarly, if Fc ≡ Gc , then we also see that 0, 1,
∞, c are shared CM by f and g in X . We now assume that F1 
≡ G1, and Fc 
≡ Gc . From F1 
≡ G1, we get that at least one
of the two functions

β − (1 + c)F1, β − (1 + c)G1

are not identically equal to 0. From Lemmas 2.1, 2.4–2.6, 2.8 and 2.9, we have

Cα,β(r, f ) = C E
α,β

(
r, f (z) = ∞ = g(z)

)
= C1)

α,β

(
r, f (z) = ∞ = g(z)

) + R(r, f )

� Cα,β

(
r,

1

β − (1 + c)F1

)
� Sα,β(r, β) + Sα,β(r, F1) + O (1)

= Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

)
+ Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f )

= Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f ),

or

Cα,β(r, f ) = C E
α,β

(
r, f (z) = ∞ = g(z)

)
= C1)

α,β

(
r, f (z) = ∞ = g(z)

) + R(r, f )

� Cα,β

(
r,

1

β − (1 + c)G1

)

� Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

)
+ Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f )

= Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f ).

Similarly, from functions

β − (1 + c)Fc, β − (1 + c)Gc,

we also have
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Cα,β(r, f ) � Sα,β(r, f ) − Cα,β

(
r,

1

f − c

)
+ R(r, f ).

Hence we can deduce by Lemma 2.4(ii) that

2Cα,β(r, f ) � 2Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
− Cα,β

(
r,

1

f − c

)
+ R(r, f )

= Cα,β(r, f ) + Cα,β

(
r,

1

f

)
+ R(r, f ),

namely,

Cα,β(r, f ) � Cα,β

(
r,

1

f

)
+ R(r, f ). (19)

From (18) and (19) we get

Cα,β(r, f ) = R(r, f ). (20)

Again making use of Lemma 2.11, we get from (18) and (20) that 0, ∞, 1, c are shared CM by f and g in X .

Subcase 2.2. c = −1.

Since δ ≡ 0, then β ≡ 0. By integration, we have

f ′ f 2

f 2 − 1
≡ A · g′g2

g2 − 1
, (21)

where A(
= 0) is an integral constant. If both −1 and 1 are Picard values of f (z) in X , then from Lemma 2.11 we get that
1, −1, 0, ∞ are shared CM by f and g in X . Without loss of generality, we now assume that 1 is not a Picard value of f
in X . Hence we can assume that z1 ∈ X such that f (z1) = 1 = g(z1) and

f (z) = 1 + bp(z − z1)
p + bp+1(z − z1)

p+1 + · · · (bp 
= 0),

g(z) = 1 + cq(z − z1)
q + cq+1(z − z1)

q+1 + · · · (cq 
= 0).

From (21), we deduce by computation that A = p
q . Hence

f ′ f 2

f 2 − 1
≡ p

q
· g′g2

g2 − 1
. (22)

Set

λ = f ′

f ( f 2 − 1)
− p

q
· g′

g(g2 − 1)
. (23)

If λ ≡ 0, then we have

f ′

f ( f 2 − 1)
≡ p

q
· g′

g(g2 − 1)
. (24)

Combining (22) and (24), we get f 3 ≡ g3. Hence we have

f (z) ≡ B · g(z), (25)

where B is a constant such that B3 = 1. Since f 
≡ g , then B 
= 1. Hence B is either exp{ 2iπ
3 } or exp{ 4iπ

3 }. From (25) we
obtain that 1, −1, B , −B are Picard values of f in X . From Remark 2.2, we see that this is a contradiction. Therefore we
have λ 
≡ 0. By Lemma 2.3, we have

Dα,β(r, λ) = R(r, f ) + R(r, g) = R(r, f ).

It is obvious that each pole of both f and g in X is not a pole of λ. If z∗ ∈ X is a zero of both f (z) − 1 and g(z) − 1 and

f (z) = 1 + bm(z − z∗)m + bm+1(z − z∗)m+1 + · · · (bm 
= 0),

g(z) = 1 + cn(z − z∗)n + cn+1(z − z∗)n+1 + · · · (cn 
= 0).

From (22) we have m = p
. Hence from (23) we have
n q



94 T.-B. Cao, H.-X. Yi / J. Math. Anal. Appl. 358 (2009) 81–97
λ(z) =
(

2m

z − z∗ + O (1)

)
− p

q
·
(

2n

z − z∗ + O (1)

)
= O (1).

So z∗ is not a pole of λ. Similarly, each zero of both f (z) + 1 and g(z) + 1 in X is not pole of λ. Hence we get

Cα,β(r, λ) � Cα,β

(
r,

1

f

)
. (26)

Combining (18) and (26), we have

Cα,β(r, λ) = R(r, f ).

Hence

Sα,β(r, λ) = R(r, f ).

If z∗∗ ∈ X is a pole of f and g with same multiplicity t , then from (23) we see that z∗∗ is a zero of λ with multiplicity at
least 2t − 1. Hence we have

Cα,β(r, f ) = C E
α,β

(
r, f

(
z = ∞ = g(z)

))
� Cα,β

(
r,

1

λ

)
+ R(r, f )

� Sα,β(r, λ) + O (1)

= R(r, f ).

Therefore from Lemma 2.11 we get that 0, ∞, 1, c are shared CM by f and g in X .

Case 3. Assume that γ ≡ 0, δ 
≡ 0.

Since δ 
≡ 0, we can also get similarly to Case 1 that

Cα,β(r, f ) = R(r, f ). (27)

Subcase 3.1. c 
= −1.

If F1 ≡ G1 or Fc ≡ Gc , then we can get similarly to Subcase 2.1 that 0, 1, ∞, c are shared CM by f and g in X . We now
assume that F1 
≡ G1, and Fc 
≡ Gc . From F1 
≡ G1, we get that at least one of the two functions

α − (1 + c)F1, α − (1 + c)G1

are not identically equal to 0. From Lemmas 2.1, 2.4–2.6, 2.8 and 2.9, we have

Cα,β

(
r,

1

f

)
= C E

α,β

(
r, f (z) = 0 = g(z)

)
= C 1)

α,β

(
r, f (z) = 0 = g(z)

) + R(r, f )

� Cα,β

(
r,

1

α − (1 + c)F1

)
� Sα,β(r,α) + Sα,β(r, F1) + O (1)

= Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

)
+ Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f )

= Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f ),

or
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Cα,β

(
r,

1

f

)
= C E

α,β

(
r, f (z) = 0 = g(z)

)
= C 1)

α,β

(
r, f (z) = 0 = g(z)

) + R(r, f )

� Cα,β

(
r,

1

α − (1 + c)G1

)
� Sα,β(r,α) + Sα,β(r, G1) + R(r, f )

= Cα,β(r, f ) − C E
α,β

(
r, f (z) = ∞ = g(z)

) + Cα,β

(
r,

1

f

)
− C E

α,β

(
r, f (z) = 0 = g(z)

)
+ Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f )

= Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
+ R(r, f ).

Similarly, from functions

β − (1 + c)Fc, β − (1 + c)Gc,

we also have

Cα,β(r, f ) � Sα,β(r, f ) − Cα,β

(
r,

1

f − c

)
+ R(r, f ).

Hence we can deduce by Lemma 2.4(ii) that

2Cα,β

(
r,

1

f

)
� 2Sα,β(r, f ) − Cα,β

(
r,

1

f − 1

)
− Cα,β

(
r,

1

f − c

)
+ R(r, f )

= Cα,β(r, f ) + Cα,β

(
r,

1

f

)
+ R(r, f ),

namely,

Cα,β

(
r,

1

f

)
� Cα,β(r, f ) + R(r, f ). (28)

From (27) and (28) we get

Cα,β

(
r,

1

f

)
= R(r, f ). (29)

Again making use of Lemma 2.11, we get from (27) and (29) that 0, ∞, 1, c are shared CM by f and g in X .

Subcase 3.2. c = −1.

Since γ ≡ 0, then α ≡ 0. By integration, we have

f ′

f 2( f 2 − 1)
≡ A · g′

g2(g2 − 1)
, (30)

where A(
= 0) is an integral constant. Set

μ = f ′ f

f 2 − 1
− A · g′g

g2 − 1
. (31)

If μ ≡ 0, then we have

f ′ f

f 2 − 1
≡ A · g′g

g2 − 1
. (32)

Combining (30) and (32), we get f 3 ≡ g3. Using a similar discussion to Subcase 2.2, we can also have a contradiction.
Therefore, we have λ 
≡ 0.

By Lemma 2.3, we have

Dα,β(r,μ) = R(r, f ) + R(r, g) = R(r, f ).
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Using similar argument to Subcase 2.2, we get from (30) and (31) that

Cα,β(r,μ) � Cα,β(r, f ). (33)

Combining (27) and (33), we have

Cα,β(r,μ) = R(r, f ).

Hence

Sα,β(r,μ) = R(r, f ).

Obviously, each zero of f and g in X is a zero of μ. Hence we have

Cα,β

(
r,

1

f

)
� Cα,β

(
r,

1

μ

)
� Sα,β(r,μ) + O (1) = R(r, f ).

Therefore from Lemma 2.11 we get that 0, ∞, 1, c are shared CM by f and g in X .

Case 4. Assume that γ ≡ 0, δ ≡ 0. Then γ − δ ≡ 0.

Since

γ − δ = α2 − β2 = (α + β)(α − β).

Hence we have α + β ≡ 0, or α − β ≡ 0.

If α − β ≡ 0, then from

α − β = −4 f ′

f
+ 4g′

g
,

we get

f ′

f
≡ g′

g
.

By integration, we have

f (z) ≡ A · g(z),

where A(
= 0) is an integral constant. Since f (z) 
≡ g(z), we have A 
= 1. Using similar argument to the proof of Lemma 2.10,
we get that A = c = −1, and 0, ∞, 1, c are shared CM by f and g in X .

If α − β 
≡ 0, then from

α + β =
{

2 f ′′

f ′ − 2

(
f ′

f − 1
+ f ′

f − c

)}
−

{
2g′′

g′ − 2

(
g′

g − 1
+ g′

g − c

)}
,

we get

f ′′

f ′ − f ′

f − 1

f ′

f − c
≡ g′′

g′ − g′

g − 1
− g′

g − c
.

By integration, we have

f ′

( f − 1)( f − c)
≡ A · g′

(g − 1)(g − c)
, (34)

where A(
= 0) is an integral constant. If 1, c are Picard values of f and g in X , then from Lemma 2.11 we get that 0, ∞, 1, c
are shared CM by f and g in X . Without loss of generality, let z1 ∈ X such that f (z1) = 1 = g(z1) and

f (z) = 1 + bp(z − z1)
p + bp+1(z − z1)

p+1 + · · · (bp 
= 0),

g(z) = 1 + cq(z − z1)
q + cq+1(z − z1)

q+1 + · · · (cq 
= 0).

From (34) we have A = p
q . Hence we have

q · f ′
≡ p · g′

.

( f − 1)( f − c) (g − 1)(g − c)



T.-B. Cao, H.-X. Yi / J. Math. Anal. Appl. 358 (2009) 81–97 97
From integration, it becomes(
f − 1

f − c

)q

≡ B ·
(

g − 1

g − c

)p

, (35)

where B (
= 0) is an integral constant. From (35), we have

qSα,β(r, f ) = pSα,β(r, g) + O (1).

From this and Lemma 2.4(i), we have p = q. Hence(
f − 1

f − c

)
≡ B ·

(
g − 1

g − c

)
.

Hence we can deduce that 1 and c are shared CM (of course “CM”) by f and g in X . Therefore we get from Lemma 2.10
that 0, ∞, 1, c are shared CM by f and g in X . This completes the proof of Theorem 1.6.

5. Concluding remark

It is well known that there exists an example, which shows that the four values CM cannot be replaced by the four
values IM in Theorem 1.1 if X = C (see [5]). So we may raise the following question by a simple notation 1CM + 3IM = 4CM
similarly as the open question in the uniqueness theory of meromorphic functions that share four values in the plane [4].

Question 5.1. Let f and g be two distinct transcendental meromorphic functions that share three values IM and share
a fourth value CM in one angular domain X = {z: α < arg z < β} with 0 < β − α � 2π. Suppose that

lim
r→∞

Sα,β(r, f )

log(rT (r, f ))
= ∞ (r /∈ E).

Then do f and g necessarily share the four values CM in X?
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