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1. Introduction

During the 20th century mathematicians introduced and investigated many generalizations of convexity. As it is well
known, the notion of the classical convexity can be expressed in terms of affine functions. Thus, an important direction for
the generalization of convexity was to replace affine functions by another family of functions with, colloquially speaking,
nice and reasonable properties. For instance, Beckenbach [1] introduced in 1937 the convexity in a new sense, based on
the family of functions with the unique interpolation property with respect to two nodes: for any two points of the plane
with distinct abscissas there exists exactly one function belonging to such a family with a graph joining these points.
Tornheim [22] extended this idea by consideration of interpolation involving more than two nodes. Eleven years before
Beckenbach, in 1926, Hopf in his PhD dissertation [16] treated the functions with nonnegative divided differences. This
study was continued by Popoviciu [21], who introduced the name higher-order convexity (or n-convexity) and established
many basic properties. In this case affine functions were replaced with polynomials of order n (i.e. of degree not greater
than n). Then Hopf-Popoviciu’s convexity concept is the special case of the Tornheim’s one (this last author did not assume
the linear structure of the considered family). A direct generalization of higher-order convexity seems to be convexity with
respect to Chebyshev systems exposed in detail in the book [18]. Instead of polynomials the linear span of a Chebyshev
system is considered. Then this is also the special case of convexity in Tornheim’s sense.

In this paper we deal just with convexity with respect to Chebyshev systems.

It is well known that any convex function defined on a real interval admits an affine support at every interior point of
a domain (the converse is also true). We extend this idea to convexity in the above mentioned sense.

The paper consists of six sections. Section 2 contains the preliminary information and some results useful in the proofs
of our main theorems. Among others, we present Chebyshev systems and the convexity notion induced by them. Section 3
contains the first main result of the paper, which is Theorem 3.1 of support-type. Its special case concerning higher-order
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convexity was recently proved in [24, Theorem 2]. In Section 4 we present some applications of Theorem 3.1. Supports in the
classical sense as well as so-called principal supports are considered. Section 5 is devoted to determining when the supports
are unique (for the ordinary convex function affine support at an interior point of a domain is unique if and only if this is
a point of differentiability; in the case of convexity induced by Chebyshev systems the situation is more complicated). The
last Section 6 concerns the characterization of convexity in question in terms of support-type properties. The main results of
this section are contained in Theorem 6.1 and Proposition 6.4. The classes of supports characterizing and not characterizing
such a convexity are precisely determined.

The results are commented and compared with the other research in the field. In particular, our results are closely related
to the works of Hungarian mathematicians Bessenyei and Pales.

2. Preliminaries
2.1. Difference operator
Let f:R — R be an arbitrary function, x, h € R, n € N. Then

Af)=ALf )= fx+h) —f(), AT fx) = ApA] f(x).

The properties of this operator are well known. Below we recall two of them:

n “ n— n
8w =3 () roce . @)
fxy=x" = Ajf(x)=nlh. (2.2)

The proofs run by elementary induction. If x=0, h =1, then (2.1) and (2.2) yield

. _1\n—k n n__
I;( 1) (k>k =nl. (2.3)

Ifie{0,...,n—1} and f(x) =x!, then (2.2) implies that A;;f(x) =ilh. Therefore A} f(x) =0 and using (2.1) for x=0, h=1,
we obtain

n
Z(—l)”‘kCl:)ki:O, i=0,...n—1, (2.4)
k=0

with the convention 0° =1, if i = 0.
From now on I denotes the real interval.

Lemma 2.1. Let I be an open interval, f € €™~ (I) and x € I. If the finite right n-th derivative

lim fODx+h) — fD(x)
—0t h

0=

exists, then

. AZf () (n)
hlin& o Tt ®)-

The analogous result is well known if the function f is n-times differentiable (see e.g. [17]; it follows also by the
properties of divided differences—see e.g. [11] or [19, p. 375] together with [16, pp. 5, 10] or [21, p. 34]). However, in this
paper we consider the convexity with respect to Chebyshev systems. This kind of convexity implies only the existence of
the finite right n-th derivative on the interior of the domain (cf. Theorem 2.2 below). For that reason we give a proof, which
requires a bit more attention than in the classical case of n-times differentiability.

Proof of Lemma 2.1. Fix x € I. Consider Agf(x) as a function of h, i.e. by (2.1)

AN _ . 1k n
@) = Ahf(x)—g( 1) (k>f(x+l<h).
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Letie{0,...,n—1}. By (24)

(l)(h)_Z( 1)11 k( )k f(l)(x_l_kh)—>Z( 1)11 k( )k f(l)(x)

Also (h)® ﬁ) 0. Applying L'Hospital’s rule n — 1 times we obtain
—0

A ™ Dy im n—k n—1 p(n—1)
lim = lim —— h_>0+ m Z(— ) ()k f (x+kh),

h—0t+ hn h—0t+ (hn)(nfl)

if the last limit exists. But using (2.4) (for i =n — 1) we may write

L & =k (MY n—1 c(n—1) _L é _ n—k(n> n—1( f(n—1) _ f@=1)
"”‘,;o( 1 (k)k f (X+kh)_n!h§( D ST TV e k) = TR 0)

_ i(_l)n_k <n) K1 fDx+kh) — FOD(x)
- Pt k) n! ’

kh

If h — 0T, then this expression tends to

Z( )" "() P =1,

which equality follows by (2.3). This finishes the proof. O

2.2. Chebyshev systems

The extensive study of this topic is given in a book [18]. We recall some concepts needed in this paper.
Let n € N and let the functions ug, uq,...,uy :  — R be continuous. An (n + 1)-tuple % = (ugp, uq,...,uy) is called
a Chebyshev system on I (T-system for brevity, this notation is adopted from [18]) provided

up(x1) Uo(x2) ... Uo(Xn+1)
ur(x1) u1(x2) ... U1(Xnt1)
. . . >0
Up(x1) Un(X2) ... Upn(Xp+1)
for any x1, X2, ...,Xp+1 € I such that x; <xp <--- < Xp4+1. A letter “T” is connected with formerly used spelling “Tchebycheff”,

as in the title of the book [18]. Nowadays the form “Chebyshev” is the most frequently used. If additionally u; € €™(I),
i=0,...,n, then a T-system %/ is called an extended Chebyshev system (ET-system) on I provided

0—1 0,1
uox) ... uy V) ... uot) ... ul*Vx)
: : >0 (2.5)
01 01
unx) w0 ) u T ()
for any k <n+1, x1,...,% € I such that x; <--- < x; and any multiplicities ¢1, ..., £, € N summing up to n+ 1, i.e.
X1]= =X < <Xp=---=Xg
—— —— ———
£1 times £ times

and the above sequence contains n + 1 terms. Let us give a simple example. If ug, uy, uz € €%(I), then (ug, u1, uz) is an
ET-system on [ if it is a T-system on [ and

up(x1) ug(x1) uo(x2) up(x1) uo(xa) up(x2)
up(xq) uj(x1) ui(x2)|>0, ui(x1) ui(xp) uj(x2)|>0
uz(x1) uh(x1) ua(x2) uz(x1) uz(x2) uH(x2)

for any x1, x € I such that x; < x and
uo(x1) uo(xl) ug(x1)
ui(x1) ujxy) ufxp|>0

uz(x1) uh(x1) uj(xq)
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for any x; € I. Finally, % is called an extended complete Chebyshev system (ECT-system) on I provided for any k € {0, 1, ...,n}
a system (ug, ..., Ug) is an ET-system on I. It is worth mentioning that %/ is an ECT-system if and only if all Wronskians
W (up), W(ug, uq), ..., W(up,us,...,uy) are positive (for details see [18]). However, this condition will not be used in this
paper.

There are many examples of T-systems, ET-systems and ECT-systems. Let us notice that a polynomial system (1,x, ..., x")
as well as an exponential system (e*0*, e*1* . . e**) (where g, a1, ...,y € R are distinct), are the fundamental examples
of ECT-systems.

2.3. Generalized convexity

A function f:I — R is called convex with respect to a T-system % = (ug, U1, ..., uy) (briefly % -convex), if
uo(x1) uo(x2) ... uo(Xn42)
ur(x1) u1(x2) ... u1(Xny2)
D(x1,X2, ..., X425 ) = : : >0 (2.6)
Un(x1) Un(x2) ... Un(Xn42)
fx) fx) .. f(xn42)
for all X1, X2, ...,Xp42 € I such that x; <xp <--+ < Xpy2.
The convexity with respect to the polynomial ECT-system (1,x,...,x") (called n-convexity or convexity of order n) was

considered by Hopf [16] and Popoviciu [21], who established many basic properties. It was also extensively studied by
many authors in the past and in present. Notice also that if n =1 and % = (1,x), then % -convexity, i.e. 1-convexity,
reduces to the ordinary convexity.

Convex functions with respect to ECT-systems have nice regularity properties.

Theorem 2.2. Let % = (ug, U1, ..., Un) be an ECT-system on 1. If the function f : I — R is % -convex, then f € €"~'(IntI) and for
any x € Int [ there exist the finite one-sided n-th derivatives ffr")(x), fi") (x). Moreover, the function fi”) is right-continuous on Int I,
while the function ff") is left-continuous on Int I.

This result is not trivial. It can be found in [18, Chapter XI] (for the statement see §2, for the proof see §11). The above
properties are well known, at least in the case of ordinary convex functions (classical) and convex functions of higher order
(see e.g. [16,19-21]). In this special setting the proofs are not so difficult.

Let us recall some further property of higher-order convexity (see [19, Theorem 4, p. 392]). There is also the analogy for
9/ -convexity with respect to the arbitrary ECT-system (see [18, p. 381]).

Theorem 2.3. Let n € N, n > 1, I be an open interval and let f : I — R be a continuous function. Then f is n-convex if and only if
f € €™ 1(I) and the derivative f ™1 is convex.

As the immediate consequence we obtain (see [19, Theorem 6, p. 392]):

Theorem 2.4. Let I be an open interval and let f : I — R be (n + 1)-times differentiable on I. Then f is n-convex if and only if
FODx) >0,xel.

2.4. Osculatory interpolation

The above term is connected with interpolation with multiple nodes. The Latin word osculare means “to kiss”. Let f €

%" 1(Int]) and the finite fj_") exists on Int]. To simplify the notation, whenever we write f™, we will have in mind the

right derivative fﬂ'). This convention concerns only the derivative of n-th order, all derivatives of lower orders are ordinary

two-sided ones.
Now let % = (ug, u1, ..., u) be a T-system on I. Any linear combination u = Y\ ; ;ju; will be called the % -polynomial.
The osculatory interpolation with respect to ET-systems is known and considered in many places. That is why the fol-
lowing result seems to be classical. We give a proof to make the paper self-contained.

Theorem 2.5. Let %/ = (up, uq,...,un) be an ET-systemon I. Letk <n+1,x1,..., xx €I, x1 < --- <Xy, and {1, ..., £, € N with
01 + -+ £, = n + 1. Additionally assume that if x; = infI, then £1 = 1, if x; = sup I, then ¢, = 1. If f € €"~1(Int ) and the finite

right n-th derivative fi") exists on Int I, then there exists exactly one %/ -polynomial u = Z?:O aju; such that

fOx)=uPx), j=1,....,k i=0,...,¢;—1. (2.7)
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Moreover, for any x € I,

uo(x1) ... ug“])(xo ooug(xp) ... u((f"_])(xk) ug(x)
. « 7~1) . @ _‘]) : =0. (28)
Up(X1) ... up U)o un(X) . U () un(®)

fx) o fO D) L fx) . fETDx) u)

Proof. Using the interpolatory conditions (2.7) and the form u = Z?:o «juj, we arrive at the system of n+1 linear equations
with unknowns g, ..., ay. Its determinant does not vanish due to an ET-property (2.5). Then the existence and uniqueness
are proved. Eq. (2.8) holds because the last row of the involved determinant is a linear combination of the remaining rows
(by (2.7), f can be replaced by u =1 jau;). O

To clarify the determinantal form of an interpolating %/ -polynomial we give two examples.

1. For % = (ug, uq, uz, u3) the % -polynomial u such that u(x;) = f(x1), u(x2) = f(x2), v'(x2) = f'(x2), u”(x2) = f"(x2)
(where x; € IntI) has the form
up(x1) uo(x2) ug(xa) ug(x2) uo(x)
up(x)) ur(x2) uj(x2) uf(x2) urx)
uz(x1) ua(x2) uj(x2) uj(x2) u2(x)|=0, xel
uz(x1) us(x2) uj(x2) uj(xa) us(x)
fx) f) fx2) f'(x2) u)
2. For % = (ug, u1,u) the % -polynomial u such that u(x1) = f(x1), u'(x1) = f'(x1), u”(x1) = f}(x1) (where x; € IntI)
has the form
ug(x1) up(x1) ug(x1) up(x)
ur(x) uj(x1) uf(x) ur(x)|
up(x1) up(xa) uy(x1) ua(®)|

fx) ffx) fix) u®)

3. Support-type theorem

xel.

In this section, because of regularity properties of % -convex functions needed in the proof of Theorem 3.1 (cf. Theo-
rem 2.2), we assume that %/ is an ECT-system on .

Theorem 3.1. Let % = (ug, U1, ...,Uy) be an ECT-systemon I. Letk <n+1,x1,...,xx €, x; <--- <X, and {1, ..., £, € N with
1+ -+ + £, =n + 1. Additionally assume that if x; = infl, then £1 = 1, if x, = sup, then £, = 1. If the function f : I — R is
%/ -convex, then there exists a % -polynomial u = Z?:o oiug such that u(x;) = f(x;),i=1,...,k and

D" (fX) —u@®) >0 forx<xq, xel, (3.1)
(—1)"+1—(z1+...+ej)(f(x) — u(x)) 20 forxj<x<xjp1, 1<j<k—1, (3.2)
f)—ux)>0 forx>xy, xel. (3.3)
The numbers ¢4, ..., ¢, can be interpreted as the multiplicities of the points x1, ..., X, respectively. The %/ -polynomial

u from the assertion will be called the support of (¢1, ..., £;)-type. This abbreviation will be useful later in the paper.

Before we start the proof let us notice that the above inequalities have a simple geometrical interpretation. We omit
a trivial verification.

Observation 3.2. The % -polynomial u described in Theorem 3.1 has the following properties:

(1) u@) < fx), x>x,x€1,
(ii) if £}, i.e. the multiplicity of x;, is even, then the graph of u passing through xj remains on the same side of the graph of f, while it
changes the side, if £; is odd.

Proof of Theorem 3.1. As a %/ -convex function, f has the regularity properties needed in Theorem 2.5. Then there exists
a 2 -polynomial u = Z?:o oju; fulfilling (2.7), in particular, interpolating f at the nodes x1, ..., X.
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We shall prove the inequality (3.2). The remaining inequalities (3.1) and (3.3) are even easier to handle by a similar way,
so we omit the details.
Fix je{l,...,k—1} and x € I such that xj < x < x;;1. For sufficiently small h > 0 the sequence

(X1.x1+h.. x1+ (@ — Dh, .. xj,xj+h, ..., xj+ (£ — Dh, x,
Xjr1, Xjp1 +h o X 4 g — Dhy X X+ hy L X+ (G — Dh)
is increasingly ordered and it contains n+ 2 points. By %/ -convexity and (2.6)
D(x1,....xj 4+ (¢j — Dh,x, Xj11, ... X + (& — Dh; f) > 0.

In the above determinant we shift the column containing x to the last column. It is easy to see that n4+1— (€1 +--- 4+ £)
inversions are needed. Hence

(=DM DD (xq, L, xj 4+ (€ — DR, Xj1, .., X+ (G — Dh,X; f) > 0.

In the explicit form it reads as

up(x1) uo(x1+h) -+ uox1+ ¢ —Dh) -+ upX) uoX+h) --- uo(Xk+ (L —1h) up(x)
un(x1) up(x1+h) - upx1+ @ —Dh) - un(x) une+h) - up(g+ G —Dh) up(x)
fx1)  fGa+h - fxr+E€—=Dh) - fGw) f&x+h) - f&x+Eb-Dh f&x

We use the properties of determinants and the form (2.1) of a difference operator. From the second column of the above
determinant we subtract the first one and then we divide the result by h > 0. From the third column we subtract two times
the second column, then we add the first column and we divide the result by h? and so on. Then in the second column we
obtain the Ap operator divided by h, in the third column the Aﬁ operator divided by h? and so on. After this operation the
determinant changes the value but the sign is preserved. Hence

01 41
A A ug(x1) A A ug(xg)
up(xy) Antet) . b Uo(Xk) Ao .. b Uo(x)
1—(Cy4-+L)
(=D J -1 =1 =0
Apn(x Ay un(xq) Apn (Xg) A Un (Xk)
Up(xy) SR ST () SO L 2T ()
1-1 0,1
Apf(x1) AT fe) Ay F ) AST )
fx1) " = hhz1—1 = fe) 0 e hhlk—l < fw
(1)

Because f is % -convex, by Theorem 2.2 we infer that f € ¥"!(IntI) and fy’ exists on Intl. Let h — 0". Using
Lemma 2.1 we arrive at

up(x1) up(xy) - uff] D) - uo) ug(Xe) ... uff"_”(xk) up(x)
(— 1) HI= ) : : >0. (34)
/ (t-1) / (=1 -
Un(x1) Up(x1) - up ' P(1) o up() uhe) ... up® V() un(x)

f)y f'ea) - fO D) o fx) ) .. fATDX) FX

On the other hand, we apply (2.8) to the % -polynomial u constructed at the beginning of the proof. The obtained
determinant differs from that of (3.4) only in one entry in the lower right corner:

— L—1
upx1) upe) - ulTVxn) o uolu)  uh(xe) ul* V) uo(x)
(_1)n+17(Z1+~-~+£j) . . . . —0. (35)
, (t1-1) , (G-1)
Up(x1) Up(x1) - Uy (x1) o up(X)  up(xg) Up (Xk)  un(x)

fx) ffx) o fO V) - fa) ) . VXY u®)

Note that if k=1, then £; =n+1 and f™ appears in the above two determinants. Then we use the convention f® = fJ(r").
If xq is the left endpoint of I, then ¢; =1 by the assumption and in this case no differentiation is needed at x;. Similarly,
if X is the right endpoint of I, then ¢, =1 and in this case no differentiation is needed at x. So the regularity properties
forced by % -convexity (cf. Theorem 2.2) suffice to write down both determinants.
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From the determinant at the inequality (3.4) we subtract that of (3.5). Using linearity with respect to the last row we
arrive at

uox1) uhpex) - ulTV@) e uo)  up(xe) ul* V) uo®)
(_1)n+1f(ﬁ1+~-+£j) . . . . . >0

un(x1) uhe) - uTV) e ua) ) e up V) un®)

0 0 .. 0 .0 0 .. 0 FO) —u(x)

Expanding the above determinant along the last row we obtain immediately

(=M= (£ (x) — u(x)) > 0.

Indeed, because %/ in an ECT-system, it is in particular an ET-system, therefore by (2.5) the minor at f(x) —u(x) is positive.
Thus the inequality (3.2) is checked and the proof is finished. O

Remark 3.3. From the proof of Theorem 3.1 we derive even more than it was asserted in the statement: one of possible
support-type %/ -polynomials is the osculatory interpolation %/ -polynomial fulfilling (2.7).

Now we would like to give some comments. First observe that if n =1, % = (1,x) and k =1, Theorem 3.1 reduces to
the classical support theorem for convex functions. Specifying an ECT-system to the polynomial one (1,x,...,x"), we get
immediately the following result (see [24, Theorem 2]).

Corollary 3.4. Letk, x1, ..., X, and ¢4, ..., £y fulfill the assumptions of Theorem 3.1. If f : I — R is n-convex (i.e. convex with respect
to the ECT-system (1,x,...,x")), then f admits at the points X1, ..., X the n-th order polynomial support of (¢1, ..., £,)-type, i.e.
there exists a polynomial u(x) = Y i, o' satisfying the assertions of Theorem 3.1.

The method used in the proof given in [24] is based on boundedness of divided differences and the Newton’s form of
the interpolating polynomial. The constructed polynomial is in fact the same as the polynomial obtained in the proof of
Theorem 3.1 by osculatory interpolation (in the special case of the polynomial ECT-system).

Remark 3.5. Theorem 3.1 was formulated in the form of the necessary condition. This is also a sufficient one. However, there
are considerably weaker sufficient conditions of %/ -convexity: some particular cases of Theorem 3.1 characterize % -convex
functions. This will be studied in detail later in Section 6. Now let us turn attention to two cases.

The first one we have in mind is obtained for k=n+1 and ¢; =--- = ¢;,41 = 1 (the support of (1,1,...,1)-type). It
says that f is %/ -convex if and only if for any x1, ..., X;+1 € I such that x; < --- < X;+1, the graph of the % -polynomial u
interpolating f at xi,...,Xp+1, passing through the points (x1, f(x1)), ..., (Xa+1, f (Xn+1)), alters the side of the graph of f
starting with u(x) < f(x), x > x,41, X € I, next u(x) > f(x), X, < X < Xp4+1, and so on. In the literature concerning higher-
order convexity this condition is often treated as a definition, equally with (2.6) and nonnegativeness of divided differences.
For n =1 it expresses the fundamental geometrical interpretation of convexity: for any x1,x; € I, X1 < X, the graph of
a convex function f:I— R lies on (x1,x2) below the chord joining the point (x1, f(x1)) with (x2, f(x2)) (and above both
on the left of x; and on the right of x,).

The second necessary and sufficient condition of %/ -convexity we would like to mention, was proved in [23, Theorem 3].
In terms of our Theorem 3.1 we obtain it for k=n, x1,...,xp€Intl, Xy <--- <Xy, {1 =---=4€y,_1 =1 and ¢, = 2. Thus the
supports of (1,...,1,2)-type characterize % -convexity.

4. Some applications of Theorem 3.1

In this section we present some support-type results which are the immediate consequences of Theorem 3.1. For some
reasons they seem to be important in the theory of generalized convex functions. For instance they can be used to prove
Hermite-Hadamard-type inequalities between quadrature operators (the well known Gauss-Legendre, Lobatto and Radau
quadratures in the case of higher-order convexity) and the integral of the % -convex function. For details see [24] (higher-
order convexity) and [4] (the general % -convexity).

4.1. Support theorem in the classical sense
We present a support theorem for convex functions with respect to ECT-systems with an even number of elements.

Corollary 4.1. Let % = (ug, uq,...,Uy—1) be an ECT-system on I. If f : I — R is %/ -convex, then for any x; € IntI there exists

a % -polynomial u = 21‘220_1 aju; such thatu(xq) = f(xy) andu < fon I.
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Proof. Use Theorem 3.1 for 2n — 1 instead of n and for k =1, £; = 2n. Since ¢1 is even and u(x) < f(x), x> xq, x €1,
then the graph of the % -polynomial obtained by Theorem 3.1 remains below the graph of f on the whole I (see Observa-
tion 3.2). O

Let us turn attention to the case n = 1. In this setting, i.e. for convex functions with respect to an ECT-system (ug, u1),
the above result was proved by Bessenyei and Péles [6, Theorem 4]. Obviously, if % = (1, x), then we obtain the classical
support theorem for convex functions. Thus we can see that in our results it is necessary to assume that the multiplicities
of (possible) endpoints of I are 1. For instance, the function f(x) = —+/1 —x2 is convex on [—1, 1] with no affine support
at the endpoints.

Return to the general case of Corollary 4.1. For polynomial ECT-systems its assertion was proved in [24, Corollary 6].
Ger [13] established a support theorem for (2n — 1)-convex functions defined on an open and convex subset of a normed
space. However, it was proved under ¢2"-class regularity assumption, which was not used in our results (notice that not
every convex function with respect to an ECT-system possesses such regularity properties, e.g. for n =1, f(x) = |x| is convex
and not differentiable). Only the regularity properties forced by % -convexity (cf. Theorem 2.2) are engaged in Theorem 3.1.

The assertion of Corollary 4.1 is no longer valid for ECT-systems with odd number of elements, that is for % =
(ug, u1,...,uzy). If we try to repeat the proof, taking k =1 in Theorem 3.1, we must assign to x; an odd multiplicity.
That is why the % -polynomial resulting from this construction does not have a support property. Its graph passing through
x1 changes the side of the graph of f (cf. Observation 3.2). It is easy to give a counterexample. The function f(x) = x3
is 2-convex (cf. Theorem 2.4), i.e. convex with respect to an ECT-system (1, x, x%), and there is no 2nd order polynomial
supporting f on R (see [13]).

4.2. Principal supports

Now we would like to derive from Theorem 3.1 support-type properties involving more than one point. Let % =

(upg, u1,...,uy) be en ECT-system on I. In some circumstances, if we take k = L%J + 1 points X1, ..., x, € I, for a % -convex
function f :I — R there exists the %/-polynomial u interpolating f at xi,...,x; with the graph lying below or above
the graph of f. We have in mind the supports of types (2,2,...,2), (1,2,...,2,1) for odd n and of types (1,2,...,2),
(2,...,2,1) for even n (with the reservation that the points of multiplicity 1 are the endpoints of I). Such supports, fol-

lowing Bessenyei [4], will be called principal supports. If u < f on I, then u is the lower principal support (see Corollaries 4.2
and 4.4 below). If u > f on I, then u is the upper principal support (cf. Corollaries 4.3 and 4.5).

Corollary 4.2. Let % = (ug, Uq,...,Uy—1) be an ECT-system on I. If f : I — R is % -convex, then for any n distinct points

X1,...,%p €Intl, X1 < --- < xp, there exists a % -polynomial u = 21-2251 ajui such that u(x;)) = f(xp), i=1,....,n,and u < f
onI.
Proof. In Theorem 3.1 take 2n — 1 in the role of n, further k=n, {1 =---=¢,=2.Then 1 +---+ ¢, =2n=02n—1) + 1.

By Observation 3.2 the graph of the % -polynomial u obtained by Theorem 3.1 remains on the same side of the graph of f
(below since u(x) < f(x), x> x,). O

The assertion of Corollary 4.2, i.e. the existence of a lower principal support at any n interior points of a domain, is in
fact the necessary and sufficient condition of % -convexity for % = (ug, uq, ..., u2,—1). However, to prove the sufficiency,
it is not needed to assume that %/ is an ECT-system, T-system is enough. That is why we formulate Corollary 4.2 only
in the form of the necessary condition. The sufficiency is the immediate consequence of Theorem 6.1. Nevertheless, to
announce the idea, we sketch the proof in this very special situation. Assume that f admits the lower principal support at

any n interior points of I. To prove (ug, u1, ..., Uz;—1)-convexity, we have to check that (2.6) holds for any x1,...,Xxn41 €1
such that x; < --- < xop41. For, take the lower principal support u at n points X, X4, ..., X2n. Then D(X1,...,Xon+1; f) =
D(X1,...,Xn+1;u)=0.

Corollary 4.3. Forn > 2 let % = (ug, U1, ..., Uzn—1) be an ECT-system on [a, b]. If f : [a, b] — R is % -convex, then for any n — 1
distinct points X2, ..., xp € (a,b), xa < --- < Xy, there exists a %/ -polynomial u = Zfif aju; such that u(a) = f(a), u(b) = f(b),
u(xj) = f(xj),i=2,...,n,andu > f on[a,b].

Proof. The proof is similar to that of Corollary 4.2: use Theorem 3.1 for 2n — 1 instead of n, take k=n+1, x;y =a, xp+1 = b,
b=bpp1=1,l=---={,=2. O

The above result remains valid also for n =1 with no interior nodes. Then (for % = (1, x)) it states that a convex
function f :[a,b] — R admits only one upper principal support, which is a chord joining the points (a, f(a)) and (b, f(b)).
Of course, this is not a characterization of convexity. In general, the existence of upper principal supports does not imply
% -convexity. We will return to this problem in Section 6.
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Corollary 4.4. Assume that a =infl € I and % = (up, U1, ..., Up) is an ECT-system on I. If f : I — R is %/ -convex, then for any
n distinct points X, ..., Xp+1 € Intl, X3 < --- < Xp41, there exists a %/ -polynomial u = Z,—zio o such that u(a) = f(a), u(x;) =
fxp),i=2,....n+1,andu< fonl.

Proof. In Theorem 3.1 take 2n instead of n, further k=n+1 and x; =a, ¢1=1,¢,=---=4y41 =2.Then {1+ -+ €p41 =
2n + 1 and the desired conclusion follows immediately by Observation 3.2. O

In the similar way we obtain:

Corollary 4.5. Assume that b =sup | € I and % = (up, Uy, ..., Uzy) is an ECT-system on I. If f : I — R is %/ -convex, then for any
n distinct points X1, ..., xp € Intl, x| < --- < Xy, there exists a % -polynomial u = 2?20 aju; such that u(x;)) = f(x;),i=1,...,n,
u()y=fb)andu > fonl

Let us turn attention to support-type results of the paper [4] by Bessenyei. He obtained the existence of principal sup-
ports in the setting of convexity with respect to so-called Beckenbach families, which includes % -convexity as a special
case (this is a kind of convexity considered by Tornheim [22]—cf. the Introduction). The proof is based on another method,
not on the general support theorem like our Theorem 3.1. Till now, for convexity in this sense, such a result is not known.

Principal supports seem to be important in the theory of generalized convexity. They can be used to prove the Hermite-
Hadamard-type inequalities between the quadrature operators and the integral of the function, which is convex in a desired
sense. Using the support approach, for higher-order convexity it was done by the present author in [24], for (ug,u1)-
convexity by Bessenyei and Péles [6] and for convexity with respect to Beckenbach families by Bessenyei [4]. There is also
a series of papers, where the results of this kind were proved using another approach: [2] by Bessenyei and [5,7,8] by
Bessenyei and Pales. Many results quoted in this paragraph are also collected in Bessenyei's PhD dissertation [3].

5. Unique supports

The classical result in the theory of convex functions states that any convex function defined on a real interval admits
an affine support at every interior point of a domain. The support at some point is unique if and only if this is a point
of differentiability. Green [14] investigated in this direction the functions, which are convex in the sense of Beckenbach.
A natural question arises whether the support-like functions obtained by Theorem 3.1 are unique. The first impression
could suggest the positive answer—in the proof of Theorem 3.1 the desired % -polynomial was precisely pointed as the
osculatory interpolation %/ -polynomial. But some reflection shows that in general the supports need not to be unique. It is
the case with ordinary convex functions: the function f(x) = |x| admits at the point 0 infinitely many affine supports. Here
the reason is the lack of differentiability. For % -convexity with respect to % = (ug, U1, ..., Uuy), where n > 1, the situation
is more complicated: the supports of some types are unique, while supports of the other types are not unique. Here the
non-uniqueness is not caused by the lack of smoothness (in the example below we consider the function of €*° class).
It will be explained after the proof of Theorem 5.2.

Example 5.1. Let f(x) =8, It is easy to see that f is 5-convex, that is (1,x,x?,x3,x* x°)-convex (use either (2.6), or

Theorem 2.4). Take x; = —1, x = 0, x3 = 1 with multiplicities ¢; = £3 = 1, £3 = 4. Then using Theorem 3.1 (precisely
Corollary 3.4) for n =5 and k = 3, we obtain that there exists a polynomial u of degree at most 5 such that

u-H=f=nH=1 u@=f0=0  ul=fD=1, (5.1)
ux) < f(x) forl|x|>1, (5.2)
ux) > f(x) for|x]<1. (5.3)

The difference f —u is a polynomial of sixth degree with zeros —1, 0, 1 and O is at least a double zero. Hence

f@) —u@ =x° —u® = (x* —1)x*(x* + ax +b)

for some a,b € R and the necessary and sufficient condition for (5.1)-(5.3) is X2 +ax+b >0 for any x € R, i.e. a® < 4b.
Therefore any polynomial

ux) = —ax’ + (1 — byx* + ax® + bx?,

where a® < 4b, has the support-like properties expressed by (5.1)-(5.3). The same argument shows that the support-like
polynomial obtained for the same nodes —1, 0, 1, but for multiplicities 1, 2, 3 (or 3, 2, 1), respectively, is not unique as
well.

Notice that this example corrects a wrong one given in the author’s earlier paper (see [24, Remark 4]).
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Below we determine the situations, when the support-like functions are unique. It is the case only in a very special
situation, where all multiplicities of the involved nodes are either 1, or 2.

Theorem 5.2. Let n > 1. Under assumptions and notations of Theorem 3.1,if ¢1, ..., £, € {1, 2}, then the % -convex function f admits
at the points x1, ..., X; the unique support u = Z?:o aiu; of (U1, ..., Ly)-type.

Proof. By Theorem 3.1 the function f admits at the points xq,..., X, the support u = Z?:o aju; of (€1,...,L,)-type. We
shall show that u is unique.

Let j e {1,...,k}. We have at the node x; the interpolatory condition u(x;) = f(x;). If £; =2, then x; € IntI by the
assumption. Furthermore, support properties of u imply that the sign of the difference u — f remains unchanged on some
neighbourhood of x; (see Observation 3.2). Then u — f has the local extremum at x;. By regularity properties of % -
convexity, f is differentiable on Int[ (cf. Theorem 2.2). Hence (u — f)'(x;) =0 and we have at x; an additional interpolatory
condition u’(x;) = f’(x;). Thus u is the osculatory interpolation %/ -polynomial fulfilling (2.7). By Theorem 2.5, u is uniquely
determined. O

The above argument is impossible to repeat for n =1, i.e. for (ug, u1)-convex functions, which may be non-differentiable.
In this case at some points there are non-unique supports (e.g. for the usual convexity and f(x) = |x|).

Remark 5.3. It follows immediately by Theorem 5.2 that for % = (ug, u1,...,u,) with n > 1, the principal supports are
unique.

We could see in Example 5.1 that if some ¢}, i.e. the multiplicity of xj, is greater than 2, then the support-like function
obtained by Theorem 3.1 need not to be unique. Indeed, only the multiplicities 1 or 2 carry the full information on inter-
polatory properties. If £; =1, then the difference u — f has at x; a zero, which forces one interpolatory condition. If £; =2,
then u — f has at x; at least a double zero and this case produces two interpolatory conditions. For greater multiplicities
some degrees of freedom are still left and the information is lost. In this case it is impossible to distinguish between simple
or double zero and a multiple zero. Only the parity is preserved: odd multiplicities yield one interpolatory condition, while
even multiplicities give two conditions.

6. Characterization of generalized convexity via support properties

It is well known that the existence of an affine support at every interior point of a domain characterizes the ordinary
convexity. In this section we extend this idea to convexity with respect to Chebyshev systems. It was previously said (cf.
the comment after the proof of Corollary 4.2) that (uo, u1, ..., uy;—1)-convexity follows by the existence of lower principal
supports. It will be shown at the end of this section that it is not the case for (ug, uq, ..., uz;)-convexity. Also the existence
of upper principal supports does not imply % -convexity. It was proved in [23] that the supports of type (1,...,1,2)
characterize (ug, ..., uy)-convexity (for all n € N). The class of supports with the characterization property is significantly
richer. Theorem 3.1 states that the % -convex function admits the %/ -polynomial supports of any type (¢1, ..., £;). Some
types characterize %/ -convexity, while the other do not characterize it. We will determine both these types of supports.

6.1. Supports characterizing %/ -convexity

Below we shall prove that %/ -convexity follows by the existence of supports of (¢1, ..., £;)-type with £1, ..., £, € {1,2}.

Theorem 6.1. Let % = (ug, u1,...,Uy) be a T-systemon I. Let k <n+ 1, €1,..., ¢, € {1,2} with £1 + --- + €, =n + 1. If the
function f : I — R admits the support of ({1, ..., £x)-type at any points X1, ..., X, € I, then f is %/ -convex.

Proof. Take the arbitrary xi,...,Xp42 € I such that x; < --- < xp42. We shall prove that (2.6) holds. Define the set S :=
{i1,..., ik} C{1,...,n+ 2} choosing its elements in the following way:

i1:=2, ijpr:=1ij+4;, j=1,...., k-1

Then ijyq efij+1,ij+2}, j=1,...,k—1. Moreover, if i e {1,...,n+ 1}, then {i,i + 1} NS #@.
Let u be a support of (¢1,...,€)-type at the points x;,, ..., X;,. The numbers £, ..., € are called the multiplicities of
the points x;,, ..., x;,, respectively. These points induce a partition of I into k 41 subintervals.

Claim 1.Ifi € S, then (—1)"(f (x) — u(x)) < O for all x belonging to the subinterval of the above partition with the right endpoint x;.

Claim 1 holds for i = 2, which is the first element of S. Indeed, by the support property (3.1), (=1)"*1(f(x) — u(x)) >0,
X <Xy, xel.ForieS,i> 2, suppose that Claim 1 is true for all i’ € S with i’ <i. Let j:=max{i’ € S: i’ < i}. By the previous
assumption we get
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(=" (f() —u®) <0 (61)

on the left neighbourhood of x;. If the multiplicity of x; equals 1, then by Observation 3.2 the inequality in (6.1) reverts on
(xj, x;). But the construction of the set S yields i = j+ 1, whence i fulfills the inequality of Claim 1. If the multiplicity of x;
equals 2, then we derive from Observation 3.2 that the inequality in (6.1) is preserved on (xj, ;). Since i = j 42 (we use
once more the construction of S), then i fulfills Claim 1.

Claim 2.Ifi ¢ S, then (—1)"™(f (x;) — u(x;)) > 0.

Ifn4+2¢S, then n+1¢€S and by virtue of (3.3), f(x) —u(x) >0, X > x5+1, X € I. In particular, f(xp42) —u(Xp42) =0
and Claim 2 holds fori=n+2.Ifi¢S,i<n+2,theni+ 1€ S and Claim 2 follows immediately by Claim 1.

Finally we check (2.6), i.e. the inequality D(X1,...,Xn42; f) > 0. Observe that D(xq,...,xnp42;u) = 0, because u =
Y% oeiuj and the last row of this determinant is a linear combination of the remaining rows. Notice also that
D(x1,...,Xp4+2;+) is a linear functional. Using the Laplace expansion along the last row we arrive at the desired conclu-
sion:

n+2
D(X1. .. Xng2s /) =D, .. Xng: f—w) =Y (=D vi(f(x) — u(x)) >0.
i=1

Indeed, the minors v, ..., vp4p are positive, because %/ is a T-system. The components of the above sum with i € S vanish
due to the interpolation property of u, while the components with i ¢ S are nonnegative by Claim 2. O

Remark 6.2. Forn=1, k=1 and % = (1, x), Theorem 6.1 reduces to the classical result characterizing convexity mentioned
at the beginning of this section.

Note that under the continuity assumption there are also another characterizations of convexity and generalized con-
vexity, which involve Hermite-Hadamard-type inequalities. For ordinary convex functions they are well known (e.g. [9,12,
15], [19, Exercise 8, p. 205]). For (ug, u1)-convex functions see [3,9]. For higher-order convexity see [10]. Till now such
a characterization of % -convexity for non-polynomial T-systems consisting of more than two functions is not known.

6.2. Supports, which do not characterize %/ -convexity

We will show that only the supports of (¢1, ..., £y)-type with £1, ..., ¢ € {1,2} characterize % -convexity. The existence
of supports of (£1, ..., £x)-type with at least one multiplicity ¢; > 2 does not imply % -convexity. In the construction of
a counterexample for simplicity we restrict ourselves to n-convexity, i.e. (1, x, ..., X")-convexity. Let x; := max{x, 0}.

Proposition 6.3. Let m € N, m > 1. The function f (x) = (x+)™, x € R, is m-convex and it is not n-convex for any n > m.

Proof. We have ™=V (x) =m!x,, whence f™~1 is a convex function. Then the first assertion follows by Theorem 2.3. The
second assertion follows by Theorem 2.2, because f is not m times differentiable at 0. O

Recall that the polynomial of order n means the polynomial of degree at most n.

Proposition 6.4. Letn > 1,k <n+1,¢1,..., ¢, e Nwith £1 4 --- + £, =n + 1. If at least one multiplicity £; > 2, then there exists
a non-n-convex function, which admits the n-th order polynomial support of (¢1, ..., £x)-type at any k points of a domain.

Proof. Define the new multiplicities E;, i=1,...,k by

1, if¢; >3isodd,
0:=12, if¢ >4iseven,
£, ife;e{1,2}.

If £; >2 for some je{1,...,k}, then m:=¢] +--- + £, —1<(n+1) —1—-2 <n—1. The function f(x) =(x)", x€R,
is m-convex and it is not n-convex (see Proposition 6.3 above). By m-convexity and Theorem 3.1 (precisely Corollary 3.4),
f admits at any points X1,...,X € R with x; <--- < x;, the m-th order polynomial support of (¢},...,¢,)-type. This is
also the n-th order polynomial support of (¢1, ..., £)-type. It follows by the character of inequalities (3.1)-(3.3). The new
multiplicities ¢/ ZI’C are obtained by subtracting the even numbers from the old ones ¢1,..., ¢, so the signs of the
expressions in these inequalities remain unchanged. O
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Remark 6.5. The similar counterexample can be also given for any ECT-system % = (ug, u1,...,Uy). In this general case
the construction requires the ECT-property (recall that the characterization of %/ -convexity given Theorem 6.1 is given
for T-systems). Let m < n. In [18, Lemma 2.1, p. 382] we can find the function, which is (uo,...,un)-convex but it is
not (ug,...,Um,...,Uy)-convex. This last assertion (concerning nonconvexity) is not explicitly written, but it can be read
between the lines. Then we could perform exactly the same construction as in the proof of Proposition 6.4.

6.3. Upper principal supports do not characterize %/ -convexity

By Theorem 6.1 we obtain immediately that the existence of lower principal supports characterizes (ug, uq, ..., Uan—1)-
convexity (in this case such supports are of (2,2,...,2)-type). As we announced at the beginning of this section, now we
shall show that the existence of lower principal supports does not characterize (ug, uq, ..., Ua,)-convexity. In this case such
supports are of (1,2,...,2)-type and the first support point is the left endpoint of I (compare with Corollary 4.4). Notice
that by Theorem 6.1 the characterization holds, if the support exists at any k points. The placement of even one support
point in a fixed position (as in a discussed case) causes the loss of the characterization property.

Example 6.6. Let % = (1, x, x?), i.e. we deal with 2-convexity. Consider the function f :[—1, c0) — R given by

f(0) = (xp)e*.

Because f is not differentiable at 0, it is not 2-convex (such functions are of €' class on the interior of a domain, see
Theorem 2.2).

We will show that f admits lower principal supports, that is for any a > —1 there exists a polynomial u of order 2,
which is a support of (1, 2)-type at the points —1 and a. Precisely, u fulfills the conditions

u(—1)=f(-1)=0, u@=f@@ and u<f on[—1,00).

If a € (—1,0], then u(x) =0 has the desired properties. For a > 0 we will demonstrate that it is enough to take the polyno-
mial u given by

eL‘l
(a+1)2
This is a polynomial interpolating f at a simple node —1 and at a double node a, so it can be determined either by
Newton'’s interpolation formula, or by (2.8) (having in mind the method of the proof of Theorem 3.1, osculatory interpolation
polynomial is the natural object of research).

Obviously u(—1) = f(—1) =0 and u(a) = ae® = f(a). Now the inequality u < f on [—1, 00) is left to check.

The zeros of u are —1 and ﬁ > 0. Then, in particular, u(x) < 0= f(x) for x € [—1,0).

Let x € [0, 00). Consider the auxiliary function ¢(x) = f(x) — u(x). Since ¢”’(x) = (x+3)e* > 0, then by Theorem 2.4, ¢ is
2-convex on [0, co). Using Theorem 3.1 (in fact Corollary 3.4) together with Remark 3.3, we conclude ¢ has at the points 0
and a the quadratic (precisely at most quadratic) support ¥ of (1, 2)-type, which is additionally the osculatory interpolation
polynomial, i.e. together with ¥ < ¢ on [0, c0), ¥ fulfills the conditions ¥ (0) = ¢(0), ¥ (a) = ¢(a), ¥’ (a) = ¢’(a). Then v is
uniquely determined by the interpolatory conditions. Using once more the Newton’s interpolation formula or (2.8) we have

ux) = (x+D[x(@®* +a+1) —d®].

0=—_x-a
WX_mx—a.

Because ¥ < ¢ on [0, c0), using the above equation we arrive at

0<Yx) <X =fx —ukx), xel0,00).

This shows that u < f on [—1, 00).

Remark 6.7. It turns out that for % = (ug, u1, ..., uzy) upper principal supports do not characterize % -convexity as well.
To convince ourselves of it, consider a function g: (—oco, 1] — R given by g(x) = — f(—x), where f is given in Example 6.6.
Then g is a non-2-convex function admitting upper principal supports, i.e. for any a < 1 the function g admits the 2nd
order polynomial support p of (2, 1)-type at the points a and 1 (p(a) = g(a), p(1) = g(1) and p > g on (—o0, 1]). Indeed,
let u be a lower principal support for f at the points —1 and —a. Then it is enough to take p(x) = —u(—x). O

We considered above the case of (ug,uq, ..., us;)-convexity. There is also no characterization of (ug,uq,...,u—1)-
convexity via upper principal supports. It is easy to see for n =1 and the usual convexity (cf. the comment after the proof
of Corollary 4.3). Below we announce the nontrivial example.
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Example 6.8. Let 7 = (1, x, x>, x>)—now we deal with 3-convexity. The function f:[—1,1] — R given by

fx) = (x4)%e*

is not 3-convex, while it admits upper principal supports, that is for any a € (—1, 1) there exists a polynomial u of 3rd
order, which is a support of (1,2, 1)-type for f at the points —1, a and 1 (u(—1) = f(-1), u(a) = f(a), u(1) = f(1) and
u> f on [—1,1]; compare with Corollary 4.3). This is the osculatory interpolation polynomial satisfying apart from the
above interpolatory conditions the additional one u’(a) = f'(a).

As we can see, the idea is the same as in Example 6.6. However, to check the above assertions we need considerably
longer and more complicated computations, which we would like to omit.
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