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The main aim of this paper is the investigation of conditions under which a locally convex
quasi ∗-algebra (A[τ ],A0) attains sufficiently many (τ , tw )-continuous ∗-representations in
L†(D, H), to separate its points. Having achieved this, a usual notion of bounded elements
on A[τ ] rises. On the other hand, a natural order exists on (A[τ ],A0) related to the
topology τ , that also leads to a kind of bounded elements, which we call “order bounded”.
What is important is that under certain conditions the latter notion of boundedness
coincides with the usual one. Several nice properties of order bounded elements are
extracted that enrich the structure of locally convex quasi ∗-algebras.
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1. Introduction

Quasi ∗-algebras form an important class of the so-called partial ∗-algebras introduced by J.-P. Antoine and W. Karwowski,
in 1983 (for details, see [2]). Topological quasi ∗-algebras were initiated by G. Lassner, in 1981 (cf. [10,11]), aiming to the
solution of questions that appear in quantum statistics and quantum dynamics, that the algebraic formulation of quantum
theories presented in [9] by Haag and Kastler (1964), could not face. Nevertheless, the given definition of this kind of
algebras, was lacking the “bimodule axiom”, essential for several studies, like e.g., representation theory. The filling of this
vacuous came only after almost 20 years by K. Schmüdgen in [12]. Partial and quasi ∗-algebras play an important role in the
theory of unbounded operators and both have a special bearing in mathematical physics (see, for instance, [2,14]). A serious
investigation of the theory and applications of quasi ∗-algebras has been done by the second named author, himself, and
jointly with some of his collaborators (see, e.g., the literature of this article, as well as that of [18]). An easy example of
a quasi ∗-algebra can be given by taking the completion of a locally convex ∗-algebra A[τ ] with separately (but not jointly)
continuous multiplication.

A particular class of locally convex quasi ∗-algebras is that of locally convex quasi C∗-algebras and/or locally convex quasi
C∗-normed algebras, whose structure has been investigated in [4–6]. These quasi ∗-algebras are realized as locally convex
quasi C∗-, respectively quasi C∗-normed algebras of operators and have several other nice properties similar to those of
C∗-algebras.

The motivation for studying quasi ∗-algebras is quite clear from the above. In the present paper, the possibility of a locally
convex quasi ∗-algebra (A[τ ],A0) is examined, to admit sufficiently many (τ , tw)-continuous ∗-representations, each of
them taking values in some space L†(D, H) (where H is a Hilbert space and D is a dense subspace of H), in order
to separate its points. In the case of bounded ∗-representations, C∗-algebras have, of course, the preceding property. The
achievement of the preceding goal leads to consideration of bounded elements on (A[τ ],A0), whose study gives interesting
information about the structure of locally convex quasi ∗-algebras.
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More precisely, in Section 2, the basic definitions and notation are given, needed throughout the paper. In Section 3, the
concept of positive elements of (A[τ ],A0) is recalled, through which the notion of a positive linear functional on A is given.
If A+ is the set of all positive elements of A, the property A+ ∩ (−A+) = {0} is characterized (Proposition 3.8) and plays
an important role in the whole study. It is this condition together with a second one, related to a property of some ele-
ments of A to become positive, that provides a locally convex quasi ∗-algebra (A[τ ],A0) with sufficiently many unbounded
∗-representations, in order to separate its points (Corollary 3.11). The results of Section 3, lead to consideration of “fully
representable quasi ∗-algebras” in Section 4. Examples of this sort of algebras are given and their structure is studied in
Section 5. More precisely, Section 5 deals with bounded elements and their effects on fully representable locally convex
quasi ∗-algebras. First, a usual notion of bounded elements is given due to the fact that Section 3 assures the existence of
∗-representations on a certain locally convex quasi ∗-algebra (A[τ ],A0). Secondly, the positive elements of A lead, as we
know, to the definition of an order on the real vector space of its self-adjoint elements. This in turn, leads to the notion
of the “order boundedness”, which on certain fully representable quasi ∗-algebras coincides with the “usual” boundedness
(Theorem 5.5, Corollary 5.8). Furthermore, a “weak” partial multiplication � is considered on a fully representable quasi
∗-algebra (A[τ ],A0), and an “unbounded” C∗-seminorm ‖ · ‖b is defined on A (by means of the order boundedness) with
domain the partial ∗-subalgebra Ab of A consisting of all order bounded elements. In this way, under certain conditions,
Ab becomes a C∗-algebra under the weak multiplication � and the C∗-norm ‖ · ‖b (Theorem 5.16).

2. Preliminary definitions and notation

All algebras and vector spaces considered in this paper are over the field C of complexes. Moreover, by “locally convex
space” we always mean a “Hausdorff locally convex space”. Our basic definitions and notation mainly come from [2].

First we recall briefly what a partial ∗-algebra is. A complex vector space A endowed with a conjugate linear involution
∗ and a distributive partial multiplication · on a subset Γ of A × A, such that

(x, y) ∈ Γ ⇔ (
y∗, x∗) ∈ Γ and (x · y)∗ = y∗ · x∗,

is called a partial ∗-algebra.
The set of all right multipliers of an element y ∈ A is denoted by R(y); i.e., R(y) := {x ∈ A: (y, x) ∈ Γ }. Put now

RA := {x ∈ A: (y, x) ∈ Γ, ∀y ∈ A} = ⋂
y∈A R y . The elements of RA are called universal right multipliers. In the same way,

L y and LA are defined.

Definition 2.1. Let A be a complex vector space and A0 a ∗-algebra contained in A. We say that A is a quasi ∗-algebra with
distinguished ∗-algebra A0 (or, simply, over A0) if

(i) the left multiplication ax and the right multiplication xa of an element a of A and an element x of A0, which extend
the multiplication of A0, are always defined and bilinear;

(ii) x1(x2a) = (x1x2)a and x1(ax2) = (x1a)x2, for each x1, x2 ∈ A0 and a ∈ A;
(iii) an involution ∗ , which extends the involution of A0, is defined in A with the property (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗ ,

for all x ∈ A0 and a ∈ A.

We say that a quasi ∗-algebra (A,A0) is unital, if there is an element e ∈ A0, such that ae = a = ea, for all a ∈ A; e is
unique and called the unit of (A,A0).

Definition 2.2. Let (A,A0) be a quasi ∗-algebra and τ a locally convex topology on A. We say that (A[τ ],A0) is a locally
convex quasi ∗-algebra if

(i) the map a ∈ A → a∗ ∈ A is continuous;
(ii) for every x ∈ A0, the maps a 	→ ax, a 	→ xa are continuous in A[τ ];

(iii) A0 is τ -dense in A.

Let now D be a dense subspace of a Hilbert space H. We denote by L†(D, H) the set of all (closable) linear operators X
such that D(X) = D, D(X∗) ⊇ D, where D(X) denotes the domain of X .

The set L†(D, H) is a partial ∗-algebra with respect to the following operations: the usual sum X1 + X2, the scalar
multiplication λX , the involution X 	→ X† = X∗ � D and the (weak) partial multiplication X1 � X2 = X1

†∗
X2. The latter is

defined whenever X2 is a weak right multiplier of X1 (we shall write X2 ∈ Rw(X1) or X1 ∈ Lw(X2)), that is, if and only if
X2 D ⊂ D(X1

†∗
) and X†

1 D ⊂ D(X∗
2).

Let L†(D) be the subspace of L†(D, H) consisting of all its elements which leave, together with their adjoints, the
domain D invariant. Then L†(D) is a ∗-algebra with respect to the usual algebraic operations.



1182 M. Fragoulopoulou et al. / J. Math. Anal. Appl. 388 (2012) 1180–1193
Example 2.3. Let L†(D)b denote the bounded part of L†(D); i.e.,

L†(D)b = {
X ∈ L†(D): X ∈ B(H)

}
.

If L†(D, H) is endowed with the strong ∗-topology ts∗ , defined by the set of seminorms

pξ (X) = ‖Xξ‖ + ∥∥X†ξ
∥∥, ξ ∈ D, X ∈ L†(D, H),

then (L†(D, H)[ts∗ ], L†(D)b) is a locally convex quasi ∗-algebra or, more precisely, a locally convex quasi C∗-normed algebra.
If L†(D, H) is endowed with the weak topology tw defined by the set of seminorms

pξ,η(X) = ∣∣〈Xξ |η〉∣∣, ξ,η ∈ D, X ∈ L†(D, H),

then, again, (L†(D, H)[tw ], L†(D)b) is a locally convex quasi ∗-algebra.

Definition 2.4. Let (A,A0) be a quasi ∗-algebra and Dπ a dense domain in a certain Hilbert space Hπ . A linear map π
from A into L†(Dπ , Hπ ) is called a ∗-representation of A, if the following properties are fulfilled:

(i) π(a∗) = π(a)†, ∀a ∈ A;
(ii) for a ∈ A and x ∈ A0, π(a) � π(x) is well defined and π(a) � π(x) = π(ax).

Moreover, if

(iii) π(A0) ⊂ L†(Dπ ),

then π is said to be a ∗-representation of the quasi ∗-algebra (A,A0). If (A,A0) has a unit e ∈ A0, we assume π(e) = I , where
I is the identity operator on Dπ .

If π is a ∗-representation of (A,A0), then the closure π̃ of π is defined, for each x ∈ A, as the restriction of π(x) to the
domain D̃π , which is the completion of Dπ under the graph topology tπ [12] defined by the seminorms ξ ∈ Dπ → ‖π(a)ξ‖,
a ∈ A. If π = π̃ the ∗-representation is said to be closed.

The adjoint of a ∗-representation π of a quasi ∗-algebra (A,A0), denoted by π∗ , is defined as follows; see [2,12]:

Dπ∗ ≡
⋂
x∈A

D
(
π(x)∗

)
and π∗(x) = π

(
x∗)∗ � Dπ∗ , x ∈ A.

The ∗-representation π is said to be self-adjoint if π = π∗ .
The ∗-representation π is said to be ultra-cyclic if there exists ξ0 ∈ Dπ such that Dπ = π(A0)ξ0, while is said to be cyclic

if there exists ξ0 ∈ Dπ such that π(A0)ξ0 is dense in Dπ with respect to the graph topology tπ .
The following proposition, proved in [18, p. 53], extends the GNS construction to quasi ∗-algebras.

Proposition 2.5. Let ω be a linear functional on A satisfying the following requirements:

(L1) ω(a∗a) � 0, for all a ∈ A0;
(L2) ω(b∗x∗a) = ω(a∗xb), for all a,b ∈ A0 , x ∈ A;
(L3) ∀x ∈ A there exists γx > 0 such that |ω(x∗a)| � γxω(a∗a)1/2 , for all a ∈ A0 .

Then there exists a triple (πω,λω, Hω) such that:

• πω is an ultra-cyclic ∗-representation of A with ultra-cyclic vector ξω;
• λω is a linear map of A into Hω with λω(A0) = Dπω , ξω = λω(e) and πω(x)λω(a) = λω(xa), for every x ∈ A, a ∈ A0;
• ω(x) = 〈πω(x)ξω|ξω〉, for every x ∈ A.

The ∗-representation πω satisfies the following properties:

πω(x)λω(a) = λω(xa), x ∈ A, a ∈ A0,

π∗
ω(a)λω(x) = λω(ax), x ∈ A, a ∈ A0, (2.1)

where π∗
ω is the adjoint of πω .
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Definition 2.6. A linear functional ω on A satisfying (L1)–(L3) will be called representable.

If ω is representable, (πω,λω, Hω) will be called, as usual, the GNS construction for ω. The set of all representable
functionals on (A,A0) will be denoted by R(A,A0). Note that R(A,A0) is a wedge. Moreover, given ω ∈ R(A,A0) and
b ∈ A0, we define the functional ωb by ωb(x) = ω(b∗xb), x ∈ A. It follows easily that ωb is a representable functional on A.
Thus,

ω ∈ R(A,A0) and b ∈ A0, imply ωb ∈ R(A,A0). (2.2)

When (A[τ ],A0) is a locally convex quasi ∗-algebra, let

Rc(A,A0) = {
ω ∈ R(A,A0) such that ω is continuous

}
.

We say that a functional ω ∈ R(A,A0) is continuous if there exists a continuous seminorm p on A, such that |ω(a)| � p(a),
for every a ∈ A.

Let ϕ be a positive sesquilinear form defined on A0 × A0. We say that ϕ is closable if for a net {xδ}δ∈� in A0, one has

xδ
τ−→ 0 and ϕ(xδ − xγ , xδ − xγ ) → 0 ⇒ ϕ(xδ, xδ) → 0.

Then, |ϕ(xδ − xδ)
1/2 − ϕ(xγ − xγ )1/2| � ϕ(xδ − xγ , xδ − xγ )1/2 → 0, therefore {ϕ(xδ, xδ)}δ∈� is a Cauchy net. Thus, if ϕ is

closable, then it can be extended to a positive sesquilinear form ϕ defined on D(ϕ) × D(ϕ) by

ϕ(a,a) = lim
δ

ϕ(xδ, xδ),

where

D(ϕ) = {
a ∈ A: ∃{xδ} ⊂ A0 with xδ

τ−→ a, and ϕ(xδ − xγ , xδ − xγ ) → 0
}
.

This definition extends in obvious way to pairs (a,b) with a,b ∈ D(ϕ). If ω is a positive linear functional on A0 then we
can define a positive sesquilinear form ϕω on A0 × A0 by

ϕω(x, y) := ω
(

y∗x
)
, x, y ∈ A0.

Now we prove the following

Proposition 2.7. Let ω ∈ Rc(A,A0). Then ϕω is closable.

Proof. Let xδ
τ−→ 0 with ϕω(xδ − xγ , xδ − xγ ) → 0. Then y∗xδ → 0, for every y ∈ A0, since the multiplication is continuous.

The continuity of ω then implies that ω(y∗xδ) → 0, y ∈ A0. Put

Nω = {
x ∈ A0: ω

(
x∗x

) = 0
}
.

Then A0/Nω is a pre-Hilbert space under the well defined inner product〈
λω(x)|λω(y)

〉 = ω
(

y∗x
)
, x, y ∈ A0,

where λω(z) := z + Nω , z ∈ A0. Let Hω denote the Hilbert space completion of A0/Nω . The net {λω(xδ)} is Cauchy, since∥∥λω(xδ) − λω(xγ )
∥∥2 = ϕω(xδ − xγ , xδ − xγ ) → 0.

Hence it converges to some ξ ∈ Hω and〈
λω(xδ)|λω(y)

〉 → 〈
ξ |λω(y)

〉
, ∀y ∈ A0.

Moreover,〈
λω(xδ)|λω(y)

〉 = ω
(

y∗xδ

) → 0, ∀y ∈ A0.

Thus 〈ξ |λω(y)〉 = 0, for every y ∈ A0. This implies that ξ = 0. Therefore

ϕω(xδ, xδ) → 0. �
Note that representability of ω is not used in the proof of Proposition 2.7.
Consider now the set

AR :=
⋂

ω∈Rc(A,A0)

D(ϕω).

If Rc(A,A0) = {0}, we put AR = A. Note that, if for every ω ∈ Rc(A,A0), ϕω is jointly continuous with respect to τ ,
we get AR = A.
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Proposition 2.8. AR is a vector subspace of A and A0 ⊂ AR . Moreover, if a ∈ AR and x ∈ A0 , then xa ∈ AR . Hence, if AR is
∗-invariant, then (AR,A0) is a quasi ∗-algebra.

Proof. We show that a ∈ AR and x ∈ A0 imply xa ∈ AR . Indeed, if ω ∈ Rc(A,A0) then also ωx ∈ Rc(A,A0), by (2.2). This
implies that a ∈ D(ϕωx ) or, equivalently, xa ∈ D(ϕω). Since ω is arbitrary, the statement is proved. �
3. Order structure

Given a locally convex quasi ∗-algebra (A[τ ],A0), we recall the concept of a positive element of A (see e.g.,
[12, pp. 21–22]). This notion defines an order on the set Ah of all self-adjoint elements of A. The condition A+ ∩ (−A+) =
{0}, on the positive elements A+ of A, implies that every non-zero element in A+ gives rise to a non-trivial continu-
ous positive linear functional on A[τ ] (Theorem 3.2). The preceding condition is characterized in Proposition 3.8 and it
itself, together with another condition that forces an element of A to be positive, show that (A[τ ],A0) attains enough
(τ , tw)-continuous ∗-representations to separate its points (Corollary 3.11).

Coming back to the given locally convex quasi ∗-algebra, set

A
+
0 :=

{
n∑

k=1

x∗
k xk, xk ∈ A0, n ∈ N

}
.

Then A
+
0 is a wedge in A0 and we call the elements of A

+
0 positive elements of A0. We call positive elements of A the

members of A
+
0

τ and we denote by A+ . That is, A+ := A
+
0

τ .
The set A+ is a qm-admissible wedge (generalization of m-admissible wedge given by Schmüdgen [12, p. 22]), in the

following sense:

(1) e ∈ A+ , if (A,A0) has a unit e;
(2) x + y ∈ A+ , ∀x, y ∈ A+;
(3) λx ∈ A+ , ∀x ∈ A+ , λ � 0;
(4) a∗xa ∈ A+ , ∀x ∈ A+ , a ∈ A0.

Clearly, A+ defines an order on the real vector space Ah = {x ∈ A: x = x∗} by x � y ⇔ y − x ∈ A+ . For x ∈ A+ , we shall
often use the notation x � 0.

The following proposition is straightforward.

Proposition 3.1. If x � 0, then π(x) � 0, for every (τ , tw)-continuous ∗-representation of (A[τ ],A0).

The theorem that follows, shows that if the set A+ is “proper”, then (A[τ ],A0) attains non-trivial continuous positive
linear functionals, in the sense of Definition 3.3, below.

Theorem 3.2. Assume that A+ ∩ (−A+) = {0}. Let a ∈ A+ , a �= 0. Then there exists a continuous linear functional ω on A with the
properties:

(i) ω(x) � 0, ∀x ∈ A+;
(ii) ω(a) > 0.

Proof. Consider the real vector space Ah and a ∈ A+ \ {0}. The set {a} is obviously convex and compact and does not
intersect (−A+). Hence by [8, Ch. 2, §5, Proposition 4], there exists a closed hyperplane separating these two sets. Let
g(x) = 0 be the equation of this hyperplane. Then, either g(a) > 0 and g(−A+) < 0 (in which case we take ω = g), or the
contrary (in this case we take ω = −g). �

Theorem 3.2 leads to the following

Definition 3.3. A linear functional ω on A is called positive if ω(x) � 0, ∀x ∈ A+ .

The next Proposition 3.4, provides conditions under which continuous linear functionals on (A[τ ],A0) are positive and
hermitian.

Proposition 3.4. Assume that AR = A and that (A[τ ],A0) has a unit. Then, every continuous linear functional ω on A such that
ω(a∗a) � 0, for every a ∈ A0 , is positive and hermitian on A.
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Proof. Since ω is positive on A0, it is hermitian on A0. Thus, by continuity of ω and continuity of the involution (see
Definition 2.2) we are done. �
Definition 3.5. (See [3, p. 5].) Let A be a partial ∗-algebra. A positive sesquilinear form ϕ is called invariant and, for brevity,
we shall say that ϕ is an ips-form, if there exists a subspace B(ϕ) of A (called a core for ϕ) with the following properties:

(i) B(ϕ) ⊂ RA;
(ii) λϕ(B(ϕ)) is dense in Hϕ (where Hϕ is the completion of the pre-Hilbert space A/N(ϕ), with N(ϕ) and inner product

defined as in the proof of Proposition 3.6, below);
(iii) ϕ(ax, y) = ϕ(x,a∗ y), ∀a ∈ A and x, y ∈ B(ϕ);
(iv) ϕ(a∗x,by) = ϕ(x, (ab)y), ∀a ∈ L(b) and x, y ∈ B(ϕ).

In particular, an ips-form is an everywhere defined biweight in the sense of [2].
The following proposition provides an ips-form on A.

Proposition 3.6. Assume that AR = A. Then, for every ω ∈ Rc(A,A0), ϕω is an ips-form on A with core A0 .

Proof. Let N(ϕω) = {x ∈ A: ϕω(x, x) = 0} and Hϕω the Hilbert space obtained by completing A/N(ϕω) with respect to the
(well defined) inner product〈

λϕω(x)|λϕω(y)
〉 = ϕω(x, y), x, y ∈ A,

where λϕω(x) := x + N(ϕω). According to Definition 3.5 and the definition of ϕω ’s, we need to show that λϕω(A0) is
dense in Hϕω . Assume, on the contrary, that there exists x ∈ A such that 〈λϕω(a)|λϕω(x)〉 = 0 for every a ∈ A0. Since
x ∈ ⋂

ω∈Rc(A,A0) D(ϕω) = A, there exists a net {xδ} ⊂ A0 such that xδ
τ−→ x and ϕω(xδ − x, xδ − x) → 0. Hence,

ϕω(x, x) = lim
δ

ϕω(xδ, xδ) = 0.

Consequently λϕω(x) = 0. The proof in now complete according to [18, Proposition 2.2]. �
Definition 3.7. A family of positive linear functionals F on (A[τ ],A0) is called sufficient if for every x ∈ A+ , x �= 0, there
exists ω ∈ F such that ω(x) > 0.

Proposition 3.8. Let (A[τ ],A0) be a locally convex quasi ∗-algebra. The following statements are equivalent:

(i) A+ ∩ (−A+) = {0}.
(ii) Rc(A,A0) is sufficient.

Proof. (i) ⇒ (ii) This is Theorem 3.2.
(ii) ⇒ (i) Let x ∈ A+ ∩ (−A+) and ω ∈ Rc(A,A0). Then ω is a continuous positive linear functional on A, therefore

ω(x) � 0 and ω(−x) = −ω(x) � 0. Thus ω(x) = 0. Since ω is arbitrary, we finally get x = 0. �
It is clear from Theorem 3.2 and Definition 3.7 that if A+ ∩ (−A+) = {0}, then the family of all continuous positive linear

functionals on (A[τ ],A0) is sufficient.

Proposition 3.9. Let (A[τ ],A0) be a locally convex quasi ∗-algebra with Rc(A,A0) sufficient.
Assume that the following condition (P) holds:

(P) y ∈ A and ω(a∗ ya) � 0, for every ω ∈ Rc(A,A0) and a ∈ A0 , imply y ∈ A+ .

Then, for an element x ∈ A, the following statements are equivalent:

(i) x ∈ A+;
(ii) ω(x) � 0, for every ω ∈ Rc(A,A0);

(iii) π(x) � 0, for every (τ , tw)-continuous ∗-representation π of (A[τ ],A0).

Proof. (i) ⇒ (ii) is an easy consequence of the definition of positive elements and the continuity of the elements of
Rc(A,A0) with respect to τ .
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(ii) ⇒ (iii) Let π be a (τ , tw)-continuous ∗-representation of (A[τ ],A0). Define ωξ (x) := 〈π(x)ξ |ξ〉, x ∈ A, with ξ ∈ D,
‖ξ‖ = 1. Then ωξ ∈ Rc(A,A0), since∣∣ωξ (x)

∣∣ = ∣∣〈π(x)ξ |ξ 〉∣∣ � p(x), ∀x ∈ A,

for some τ -continuous seminorm p on A. Thus, if x satisfies (ii), 〈π(x)ξ |ξ〉 � 0, for every ξ ∈ D, which proves (iii).
(iii) ⇒ (i) Let ω ∈ Rc(A,A0) and let πω be the corresponding GNS representation. Then, πω is (τ , tw)-continuous.

Indeed, due to the continuity of ω and that of multiplication, we get (see also (2.1))∣∣〈πω(x)λω(a)|λω(b)
〉∣∣ = ∣∣ω(

b∗xa
)∣∣ � p(x), ∀x ∈ A, a,b ∈ A0,

for some τ -continuous seminorm p on A. Applying (iii) we have πω(x) � 0. This implies that ω(a∗xa) � 0, for every a ∈ A0.
The statement now follows from the assumption (P). �
Remark 3.10. (1) If (A[τ ],A0) has a unit, then the equivalence of (ii) and (iii) does not depend on (P). In this case, (P) is
equivalent to the following

(P′) If y ∈ A and ω(y) � 0, for every ω ∈ Rc(A,A0), then y ∈ A+ .

Indeed, since we have unit (P) implies (P′). On the other hand, by (2.2) for any ω ∈ Rc(A,A0) and a ∈ A0 we have that
ωa ∈ Rc(A,A0), where ωa(y) := ω(a∗ ya), y ∈ A, so that (P′) implies (P).

(2) The condition (P) together with A+ ∩ (−A+) = {0} implies that for every 0 �= x ∈ A there exists ω ∈ Rc(A,A0) such
that ω(x) �= 0. Indeed, if ω(x) = 0, for every ω ∈ Rc(A,A0), then (Proposition 3.9) x ∈ A+ and −x ∈ A+; hence x = 0,
a contradiction.

From Remark 3.10(2) and the proof of Proposition 3.9 we now have the following

Corollary 3.11. Let (A[τ ],A0) be a locally convex quasi ∗-algebra with a unit e. Suppose that Rc(A,A0) is sufficient and that condi-
tion (P) of Proposition 3.9 is fulfilled. Then for every 0 �= x ∈ A, there is a (τ , tw)-continuous ∗-representation π of (A[τ ],A0), namely
π = πω , ω ∈ Rc(A,A0), such that π(x) �= 0.

4. Fully representable quasi ∗-algebras

In Section 3, given a locally convex quasi ∗-algebra (A[τ ],A0), we have seen that the sufficiency of the set Rc(A,A0)

and the condition AR = A equip the given algebra with important properties (cf., for instance, Theorem 3.2, Proposition 3.4
and Corollary 3.11) that are very close to the properties that C∗-algebras enjoy and offer to them their rich structure. All
these lead us to the following

Definition 4.1. A locally convex quasi ∗-algebra (A[τ ],A0) is called fully representable if Rc(A,A0) is sufficient and AR = A.

Example 4.2. Let I = [0,1]. Consider the normed quasi ∗-algebra (L p(I), L∞(I)). Then every ω ∈ Rc(L p(I), L∞(I)) has the
form

ω( f ) =
1∫

0

f (x)w(x)dx, f ∈ Lp(I),

with w ∈ L p(I), w � 0, 1
p + 1

p = 1. One readily checks that ω satisfies (L1) and (L2). It is easily seen that, if p � 2 and

w ∈ L p/p−2(I), then (L3) is fulfilled. Conversely, assume that (L3) is satisfied; i.e., for every f ∈ L p(I) there exists γ > 0 such
that

∣∣ω(
f ∗α

)∣∣ =
∣∣∣∣∣

1∫
0

f (x)α(x)w(x)dx

∣∣∣∣∣ � γ

( 1∫
0

∣∣α(x)
∣∣2

w(x)dx

)1/2

, ∀α ∈ L∞(I).

This implies that f ∈ L2(I, w dx) and γ = ‖ f ‖2,w . Hence, in order that (L3) be satisfied for every f ∈ L p(I), we must have
w ∈ L p/p−2(I). Hence, if p � 1, ω is representable if, and only if, w ∈ L p/p−2(I). If w ∈ L p/p−1(I) \ L p/p−2(I), then ω is
continuous but not representable.

If 1 � p < 2, the condition L p(I) ⊂ L2(I, w dx) is not satisfied for every non-zero w . In this case there are no continuous
representable functionals.
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Let us now come back to the case p � 2. Let w ∈ L p/p−2(I). We want to determine ϕω , where

ϕω(α,β) =
1∫

0

α(x)β(x)w(x)dx, α,β ∈ L∞(I).

Let f ∈ D(ϕω). Then there exists {αn} ⊂ L∞(I) such that

αn
p−→ f and

1∫
0

∣∣αn(x) − αm(x)
∣∣2

w(x)dx → 0.

Hence there exists v ∈ L2(I, w dx) such that αn → v in the L2(I, w dx)-norm. This, in turn, implies that f = v almost
everywhere. Thus, D(ϕω) = L p(I) ∩ L2(I, w dx). Therefore,

Lp(I)R =
⋂

ω∈Rc(L p ,L∞)

D(ϕω) = Lp(I) ∩
( ⋂

w∈L p/p−2(I)

L2(I, w dx)

)
.

But f ∈ L2(I, w dx), for every w ∈ L p/p−2(I) if and only if f ∈ L p(I).
In conclusion, for p � 2, L p(I)R = L p(I) and (L p(I), L∞(I)) is fully representable.

Example 4.3. The space S ′(R) of tempered distributions may be regarded as a locally convex quasi ∗-algebra over the
∗-algebra S(R). S ′(R) is the dual of S(R) when the latter is endowed with the locally convex topology t defined by the
family of seminorms

pk,r( f ) = sup
x∈R

∣∣xk Dr f (x)
∣∣, f ∈ S(R); k, r ∈ N.

The (partial) multiplication in S ′(R) is defined by

(F · f )(g) = ( f · F )(g) = F ( f g), F ∈ S ′(R), f , g ∈ S(R).

The space S ′(R) is endowed with the strong dual topology t′ . Since S ′(R)[t′] is reflexive, every continuous functional ω
on S ′(R)[t′] has the form ω(F ) = ω f (F ) := F ( f ), for some f ∈ S(R). Also in this case there are no non-trivial continuous
representable functionals on S ′(R). Indeed, (L3) is never satisfied by non-zero positive functionals ω f , f � 0, since, if for
every F ∈ S ′(R) there exists γF > 0 such that

ω f
(

F ∗ · g
)
� γF ω f

(
g∗g

)1/2
, ∀g ∈ S(R),

then ∣∣F ∗(g f )
∣∣ � γF

(∫
R

g∗(x)g(x) f (x)dx

)1/2

= γF ‖g‖2, f ,

where ‖ · ‖2, f denotes the norm of L2(R, f dx). This implies that there exists h ∈ L2(R, f dx) such that

F ∗(g f ) =
∫
R

h(x)g(x) f (x)dx, ∀g ∈ S(R).

Hence F restricted to the linear subspace {g f : g ∈ S(R)} acts as a function. This is a contradiction if f (and then ω f ) is
non-zero.

Example 4.4 (Quasi ∗-algebras of operators). Let (L†(D, H), L†(D)b) be the locally convex quasi ∗-algebra of Example 2.3.
Let ξ ∈ D. Then the positive linear functional

ωξ (X) = 〈Xξ |ξ〉, X ∈ L†(D, H)

is representable. The corresponding sesquilinear form ϕωξ on L†(D)b × L†(D)b is jointly continuous with respect to the

topology τs∗ , so that D(ϕωξ ) = L†(D, H).
The same is true in the more general case where

ω(X) =
n∑

i=1

〈Xξi|ξi〉, ξi ∈ D, i = 1, . . . ,n.

Let us now consider (L†(D, H), L†(D)b), where L†(D, H) is endowed with the weak topology tw . Then, the following
statements hold [3,19]:
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(i) Every weakly continuous (or strongly ∗-continuous) linear functional ω on L†(D, H) has the form

ω(X) =
n∑

i=1

〈Xξi |ηi〉, ξi, ηi ∈ D, i = 1, . . . ,n. (4.1)

(ii) Every weakly continuous positive linear functional ω on L†(D, H) has the form

ω(X) =
n∑

i=1

〈Xζi |ζi〉, ζi ∈ D, i = 1, . . . ,n. (4.2)

Note that for both the locally convex quasi ∗-algebras (L†(D, H)[ts∗ ], L†(D)b) and (L†(D, H)[tw ], L†(D)b), the equality
L†(D, H)R = L†(D, H) holds, and therefore both (L†(D, H)[ts∗ ], L†(D)b) and (L†(D, H)[tw ], L†(D)b) are fully repre-
sentable.

Indeed, let ω be ts∗ -continuous and representable. If X ∈ L†(D, H), there exists a net {Xδ} of elements of L†(D)b such

that Xδ
ts∗−−→ X . Then, using the representation (4.2) we have,

ϕω(Xδ − Xγ , Xδ − Xγ ) = ω
(
(Xδ − Xγ )∗(Xδ − Xγ )

)
=

n∑
i=1

〈
(Xδ − Xγ )ζi|(Xδ − Xγ )ζi

〉
=

n∑
i=1

∥∥(Xδ − Xγ )ζi
∥∥2 → 0.

This proves that every X ∈ L†(D, H) is in the domain of the closure of ϕω with respect to the topology ts∗ . The statement
for the weak topology follows by observing that if ω is weakly continuous, then it is automatically ts∗ -continuous.

Note that in Examples 4.2 and 4.4 the condition (P) is satisfied, while for Example 4.3 it is meaningless. We do not know
whether (P) holds in any case when Rc(A,A0) is sufficient.

5. Bounded elements

The concept of a bounded element in a locally convex algebra was first introduced by G.R. Allan (1965), in [1], for build-
ing a spectral theory for this kind of algebras. Bounded elements in the context of quasi ∗-algebras and partial ∗-algebras
have been considered by the second named author and jointly with some of his collaborators, for studying the structure
of these algebras (see, for instance, [3,15,17]). K. Schmüdgen has considered Allan’s bounded elements in his research on
the unbounded operator algebras called O ∗-algebras and recently (2005), the same author considered bounded elements in
a purely algebraic sense (see also [21]) and studied the structure of the set of the introduced bounded elements, in order
to use them for proving “A strict Positivstellensatz for the Weyl algebra” [13]. Motivated from this, and having in hands the
results of Section 3, we introduce the concept of “order boundedness” and what is interesting, is that this concept coincides
under some conditions with the usual notion of boundedness (see, e.g., [3]), which one gets when the ∗-algebra under
consideration admits ∗-representations (see, for instance, Proposition 5.4, Theorem 5.5, and Corollary 5.8). Furthermore, for
suitable fully representable locally convex quasi ∗-algebras (A[τ ],A0), considering the set Ab of all order bounded elements
of A[τ ], we prove that Ab becomes either a partial C∗-algebra or a C∗-algebra (Theorem 5.16).

Let (A[τ ],A0) be an arbitrary locally convex quasi ∗-algebra. As we have seen in Section 3, (A[τ ],A0) has a natural
order related to the topology τ . This order can be used to define bounded elements. In what follows, we will assume that
(A,A0) has a unit e.

Let x ∈ A; put �(x) = 1
2 (x + x∗), �(x) = 1

2i (x − x∗). Then �(x),�(x) ∈ Ah and x = �(x) + i�(x).

Definition 5.1. An element x ∈ A is called order bounded if there exists γ � 0 such that

±�(x) � γ e, ±�(x) � γ e.

We denote by Ab the set of all order bounded elements of A[τ ].

In this regard, we have
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Proposition 5.2. The following statements hold:

(1) αx + β y ∈ Ab, ∀x, y ∈ Ab, α,β ∈ C.
(2) x ∈ Ab ⇔ x∗ ∈ Ab.
(3) x ∈ Ab, a ∈ Ab ∩ A0 ⇒ xa ∈ Ab.
(4) a ∈ Ab ∩ A0 ⇔ aa∗ ∈ Ab ∩ A0 .

Hence, (Ab,Ab ∩ A0) is a quasi ∗-algebra.

Proof. The proof is similar to that of [13, Lemma 2.1]. �
For x ∈ (Ab)h , put

‖x‖b := inf{γ > 0: −γ e � x � γ e}.
Then ‖ · ‖b is a seminorm on the real vector space (Ab)h .

Lemma 5.3. If A ∩ (−A+) = {0}, ‖ · ‖b is a norm on (Ab)h.

Proof. Put E = {γ > 0: −γ e � x � γ e}. If inf E = 0, then for every ε > 0 there exists γε ∈ E such that γε < ε. This implies
that −εe � x � εe. If ω ∈ Rc(A,A0), we get −εω(e) � ω(x) � εω(e) (we may suppose ω(e) > 0, for every ω ∈ Rc(A,A0),
since from (L3) of Proposition 2.5, if ω(e) = 0, then ω ≡ 0). Hence, ω(x) = 0. By the sufficiency of Rc(A,A0) (Definition 3.7),
it follows that x = 0. �
Proposition 5.4. If x ∈ Ab, then π(x) is a bounded operator, for every (τ , tw)-continuous ∗-representation π of (A,A0). Moreover, if
x = x∗ , then ‖π(x)‖ � ‖x‖b.

Proof. It follows easily from Proposition 3.1 and the very definitions. �
Theorem 5.5. Let (A[τ ],A0) be fully representable and assume that condition (P) holds. Then for x ∈ A, the following statements are
equivalent:

(i) x is order bounded.
(ii) There exists γx > 0 such that∣∣ω(

a∗xa
)∣∣ � γxω

(
a∗a

)
, ∀ω ∈ Rc(A,A0), a ∈ A0.

(iii) There exists γx > 0 such that∣∣ω(
b∗xa

)∣∣ � γxω
(
a∗a

)1/2
ω

(
b∗b

)1/2
, ∀ω ∈ Rc(A,A0), a,b ∈ A0.

Proof. It is sufficient to consider the case x = x∗ . Also, as in the proof of Lemma 5.3, we suppose ω(e) > 0, for every
ω ∈ Rc(A,A0).

(i) ⇒ (ii) If x = x∗ is bounded, there exists γ > 0 such that −γ e � x � γ e. Hence from Proposition 3.9, for every
ω ∈ Rc(A,A0), ω(γ e − x) � 0. It follows that ω(a∗(γ e − x)a) � 0. Thus, ω(a∗xa) � γω(a∗a), for every a ∈ A0. Similarly we
can show that −γω(a∗a) � ω(a∗xa), for every a ∈ A0.

(ii) ⇒ (i) Assume now that there exists γx > 0 such that∣∣ω(
a∗xa

)∣∣ � γxω
(
a∗a

)
, ∀ω ∈ Rc(A,A0), a ∈ A0.

Define

γ̃ := sup
{∣∣ω(

a∗xa
)∣∣: ω ∈ Rc(A,A0), a ∈ A0, ω

(
a∗a

) = 1
}
.

Then (see Proposition 3.9 and Remark 3.10(1)), for an arbitrary ω′ ∈ Rc(A,A0), we get,

ω′(γ̃ e ± x) = γ̃ ω′(e) ± ω′(x) = ω′(e)
(
γ̃ ± ω′(u∗xu

))
� 0,

where u = e
ω′(e)1/2 .

Hence, ω′(γ̃ e ± x) � 0, for every ω′ ∈ Rc(A,A0). Then, by Remark 3.10(1), −γ̃ e � x � γ̃ e; i.e., x is order bounded.
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(i) ⇒ (iii) The GNS representation πω is (τ , tw)-continuous, hence if x = x∗ ∈ A, by Proposition 5.4, πω(x) is bounded.
Thus, ∣∣ω(

b∗xa
)∣∣ = ∣∣〈πω(x)λω(a)|λω(b)

〉∣∣ �
∥∥πω(x)

∥∥∥∥λω(a)
∥∥∥∥λω(b)

∥∥
� ‖x‖bω

(
a∗a

)1/2
ω

(
b∗b

)1/2
, ∀ω ∈ Rc(A,A0), a,b ∈ A0.

(iii) ⇒ (ii) is obvious. �
Remark 5.6. The proof above shows that for x = x∗ ,

‖x‖b � sup
{∣∣ω(

a∗xa
)∣∣: ω ∈ Rc(A,A0), a ∈ A0, ω

(
a∗a

) = 1
}
.

Corollary 5.7. Let (A[τ ],A0) be fully representable. If x is order bounded, there exists γx > 0 such that∣∣ϕω(xa, z)
∣∣ � γxω

(
a∗a

)1/2
ϕω(z, z)1/2, ∀ω ∈ Rc(A,A0), a ∈ A0, z ∈ A.

Proof. Let x ∈ A be order bounded. Since
⋂

ω∈Rc(A,A0) D(ϕω) = A, for every z ∈ A there exists a net {zδ} ⊂ A0 such that
zδ

τ−→ z and ϕω(z − zδ, z − zδ) → 0. Then, by Theorem 5.5(iii), we get∣∣ϕω(xa, z)
∣∣ = lim

δ

∣∣ϕω(xa, zδ)
∣∣ � γxω

(
a∗a

)1/2
lim

δ
ϕω(zδ, zδ)

1/2

= γxω
(
a∗a

)1/2
ϕω(z, z)1/2, ∀a ∈ A0. �

Corollary 5.8. Let (A[τ ],A0) be fully representable and x ∈ A. Then, x is order bounded if, and only if, there exists γx > 0 such that

ϕω(xa, xa) � γ 2
x ω

(
a∗a

)
, ∀ω ∈ Rc(A,A0), a ∈ A0.

Proof. The necessity follows by putting z = xa in the inequality of Corollary 5.7. The sufficiency is clear. �
Let x be order bounded. Define

q(x) := sup
{∣∣ω(

b∗xa
)∣∣: ω ∈ Rc(A,A0), a,b ∈ A0; ω

(
a∗a

) = ω
(
b∗b

) = 1
}
.

Then we have

Lemma 5.9. q(x) = ‖x‖b, for every x = x∗ ∈ Ab.

Proof. The inequality ‖x‖b � q(x) follows from Remark 5.6. Let γ > 0 such that −γ e � x � γ e. Then by the proof of
Theorem 5.5, we have, q(x) � γ ; whence the statement follows. �

Lemma 5.9 shows that q extends ‖ · ‖b . For this reason, we will use the symbol ‖ · ‖b for q too. It is easily seen that ‖ · ‖b
is a norm on Ab .

An easy consequence of the above statements is now the following

Proposition 5.10. For every x ∈ Ab,

‖x‖b = sup
{
ϕω(xa, xa): ω ∈ Rc(A,A0): a ∈ A0, ω

(
a∗a

) = 1
}
.

5.1. Partial multiplication

If (A[τ ],A0) is fully representable we can introduce on A a partial multiplication which makes it into a partial ∗-algebra.

Definition 5.11. Let (A[τ ],A0) be fully representable. The weak product x � y of two elements x, y ∈ A is well defined if
there exists z ∈ A such that

ϕω

(
ya, x∗b

) = ϕω(za,b), ∀ω ∈ Rc(A,A0), ∀a,b ∈ A0.

In this case we put x � y := z.

Since Rc(A,A0) is sufficient, the element z is unique.

Proposition 5.12. (A[τ ],A0) endowed with the weak multiplication � is a partial ∗-algebra with A0 ⊂ RA.
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Proposition 5.13. Let x, y be order bounded elements of A. The following statements hold:

(i) x∗ is order bounded too, and ‖x∗‖b = ‖x‖b;
(ii) If x � y is well defined, then x � y is order bounded and

‖x � y‖b � ‖x‖b‖y‖b.

Proof. (i) The first part of (i) is given by Proposition 5.2(2). The second part follows from the property (L2) (Proposition 2.5)
of every ω ∈ Rc(A,A0), by Corollary 5.8 and the definition of ‖ · ‖b .

(ii) If x � y, x, y ∈ A, is well defined, then for every ω ∈ Rc(A,A0), Corollary 5.7 implies∣∣ϕω

(
(x � y)a,b

)∣∣ = ∣∣ϕω

(
ya, x∗b

)∣∣ � ϕω(ya, ya)1/2ϕω

(
x∗b, x∗b

)1/2

� ‖x‖b,‖y‖bϕω(a,a)1/2ϕω(b,b)1/2, ∀a,b ∈ A0.

Taking now sup on the left-hand side (see Proposition 5.10), we get the desired inequality. �
We recall that an unbounded C∗-seminorm p on a partial ∗-algebra A is a seminorm defined on a partial ∗-subalgebra

D(p) ⊆ A, the domain of p, with the properties:

• p(x · y) � p(x)p(y) whenever x · y is well defined;
• p(x∗ · x) = p(x)2, whenever x∗ · x is well defined

(see, e.g., [7,16,2]).

Proposition 5.14. ‖ · ‖b is an unbounded C∗-norm on A with domain Ab.

Proof. This can be deduced from [20, Proposition 2.6]. �
It is worth of mentioning here that certain unbounded C∗-seminorms give rise to “well-behaved” (unbounded)

∗-representations (for more details, see [2, Chapter 8] and [7,16]).
Now having (A[τ ],A0) to be fully representable, we can endow A with the strong and strong∗ topology, where both are

defined in a natural way through the elements of Rc(A,A0). Indeed:

• The strong topology τs , is defined by the family of seminorms

x ∈ A → ϕω(x, x)1/2, ω ∈ Rc(A,A0).

• The strong∗ topology τs∗ , is defined by the family of seminorms

x ∈ A → max
{
ϕω(x, x)1/2, ϕω

(
x∗, x∗)1/2}

, ω ∈ Rc(A,A0).

The sufficiency of Rc(A,A0) guarantees that these topologies are Hausdorff. Thus, A[τs], A[τs∗ ] are locally convex spaces.

Definition 5.15. Let A be a partial ∗-algebra. We say that A is a partial C∗-algebra if A is a Banach space under a norm ‖ · ‖
satisfying the following properties:

(i) ‖x∗‖ = ‖x‖, ∀x ∈ A;
(ii) ‖x · y‖ � ‖x‖‖y‖, whenever x · y is well defined;

(iii) ‖x∗ · x‖ = ‖x‖2, whenever x∗ · x is well defined.

The theorem that follows, shows that the quasi ∗-algebra (Ab,Ab ∩ A0) (see Proposition 5.2), under certain conditions
achieves a very rich structure.

Theorem 5.16. Let (A[τ ],A0) be a fully representable locally convex quasi ∗-algebra with unit e. Assume that A is τs∗ -complete. Then
Ab is a partial C∗-algebra with the weak multiplication � and the norm ‖ · ‖b.

Assume, in addition, that

(R) If x, y ∈ A and πω(x)�πω(y) is well defined for every ω ∈ Rc(A,A0), then there exists z ∈ A such that πω(x)�πω(y) = πω(z),
for every ω ∈ Rc(A,A0).

Then Ab is a C∗-algebra with the weak multiplication � and the norm ‖ · ‖b.
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Proof. Since ‖ · ‖b satisfies (i)–(iii) of Definition 5.15 on Ab (see e.g., Proposition 5.13), we need only to prove the complete-
ness of Ab .

Let {xn} be a Cauchy sequence with respect to the norm ‖ · ‖b . Then {x∗
n} is Cauchy too. Hence, for every ω ∈ Rc(A,A0)

and a ∈ A0 we have

ϕω

(
(xn − xm)a, (xn − xm)a

) → 0, as n,m → ∞
and

ϕω

((
x∗

n − x∗
m

)
a,

(
x∗

n − x∗
m

)
a
) → 0, as n,m → ∞.

Therefore, {xn} is also Cauchy with respect to τs∗ . Then, since A is τs∗ -complete, there exists x ∈ A such that xn
τs∗−−→ x.

Moreover,

ϕω(xa, xa) = lim
n→∞ϕω(xna, xna) � lim sup

n→∞
‖xn‖2

bϕω(a,a), ∀a ∈ A0,

with lim supn→∞ ‖xn‖2
b < ∞ (by the boundedness of the sequence {‖xn‖b}), so by Corollary 5.8, we conclude that x is order

bounded. Finally, by the Cauchy condition, for every ε > 0, there exists nε ∈ N such that, for every n,m > nε , ‖xn − xm‖b < ε.
This implies that

ϕω

(
(xn − xm)a, (xn − xm)a

)
< εϕω(a,a), ∀ω ∈ Rc(A,A0), a ∈ A0.

Then if we fix n > nε and let m → ∞, we obtain

ϕω

(
(xn − x)a, (xn − x)a

)
� εϕω(a,a), ∀ω ∈ Rc(A,A0), a ∈ A0.

This, in turn, implies that ‖xn − x‖b � ε, for n � nε . So completeness of Ab[‖ · ‖b] is proved.
Now, assume that condition (R) holds. By Proposition 5.4 it follows that if x, y ∈ Ab , then the operators πω(x), πω(y) are

bounded, therefore, πω(x) � πω(y) is well defined, hence (Proposition 5.13) bounded. Thus, by (R), there exists z ∈ A such
that πω(x) � πω(y) = πω(z), for every ω ∈ Rc(A,A0). Now, for every ω ∈ Rc(A,A0) and a,b ∈ A0, we have

ϕω

(
ya, x∗b

) = 〈
πω(y)λω(a)|πϕ

(
x∗)λω(b)

〉
= 〈

πω(x) � πω(y)λω(a)|λω(b)
〉

= 〈
πω(z)λω(a)|λω(b)

〉
= ϕω(za,b).

Hence x � y is well defined (Definition 5.11). Thus (see also Proposition 5.14) Ab is a C∗-algebra. �
Example 5.17. Let us consider again the locally convex quasi ∗-algebra (L†(D, H), L†(D)b) of Example 4.4. As proved there,
this quasi ∗-algebra is fully representable and from (4.2) it follows that the topology τs∗ defined before Definition 5.15
coincides with the strong∗ topology ts∗ of L†(D, H). One can prove easily that an element X ∈ L†(D, H) is order bounded
if and only if X ∈ B(H). So that(

L†(D, H)
)

b = {
X ∈ L†(D, H): X is a bounded operator

}
.

This is clearly a C∗-algebra as expected by Theorem 5.16.
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