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Considered herein is the well-posedness problem of the periodic two-component Dullin–
Gottwald–Holm (DGH) system on the circle, which can be derived from Euler’s equation
with constant vorticity in shallow water waves moving over a linear shear flow. The result
of blow-up solutions for certain initial profiles in a manner which corresponds to wave-
breaking is established.
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1. Introduction

Studied here is the following periodic two-component Dullin–Gottwald–Holm (DGH) system on the circle⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

mt − Aux + umx + 2uxm + γ uxxx + ρρx = 0, m = u − uxx, t > 0, x ∈R,

ρt + (uρ)x = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

ρ(0, x) = ρ0(x), x ∈R,

u(t, x + 1) = u(t, x), t � 0, x ∈R,

ρ(t, x + 1) = ρ(t, x), t � 0, x ∈R.

(1.1)

When ρ = 0, (1.1) becomes the DGH equation, that is

mt − Aux + umx + 2uxm + γ uxxx = 0. (1.2)

This equation was derived using asymptotic expansions directly in the Hamiltonian for Euler’s equation in the shallow water
regime, and it is completely integrable with a bi-Hamiltonian as well as a Lax pair, see [18].

Using the notation m = u − α2uxx , (1.2) can be rewritten as

ut − α2utxx − Aux + 3uux + γ uxxx = α2(2uxuxx + uuxxx), (1.3)

where A and α are two positive constants. Eq. (1.3) is connected with two separately integrable soliton equations for shallow
water waves, which are the Korteweg–de Vries (KdV) equation and the Camassa–Holm (CH) equation [5,22].
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When α2 = 0, (1.3) becomes the well-known KdV equation

ut − Aux + 3uux + γ uxxx = 0,

which describes the unidirectional propagation of waves at the free surface of shallow water under the influence of gravity.
Bourgain [1] proved that the solutions to the KdV equation are global as long as the initial data is square integrable [31,35].
Another remarkable property is that it is integrable and the solitary waves are nonlinearly stable. It is observed that the KdV
equation does not accommodate wave-breaking (which means the wave profile remains bounded while its slope becomes
unbounded in finite time [36]).

When γ = 0, (1.3) turns into the standard CH equation

ut − Aux − α2utxx + 3uux = α2(2uxuxx + uuxxx), (1.4)

modeling the unidirectional propagation of shallow water waves over a flat bottom [5,12,22], where the variable u(t, x)
represents the horizontal velocity of the fluid, and the parameter A characterizes a linear underlying shear flow. The CH
equation is also a model for the propagation of axially symmetric waves in the hyperelastic rods [17]. Its solitary waves are
smooth if A > 0 and peaked in the limiting case A = 0 [5–7]. Recently, it was claimed in [32] that the CH equation might be
relevant to the modeling of tsunami. Some satisfactory results have been obtained for this shallow water equation recently.
The CH equation has global strong solutions and also solutions which blow up in finite time, for instance, see [8–10,13,33]
and references therein, with a different class of initial profiles in the Sobolev spaces Hs(R), s > 3/2. It is shown in [2]
and [3] that solution of the CH equation can be uniquely continued after breaking as either global conservative or global
dissipative weak solution.

The advantage of the CH equation in comparison with the KdV equation lies in the fact that the CH equation has peaked
solitons and models wave-breaking. Wave-breaking is one of the most intriguing long-standing problems of water wave
theory [36]. The peaked solitons are the presence of solutions in the form of peaked solitary waves or “peakons” [5–7,19]
u(t, x) = ce−|x−ct|, c �= 0, which are smooth except at the crests, where they are continuous, but have a jump discontinuity in
the first derivative. The peakons replicate a feature that is characteristic for the waves of great height-waves of the largest
amplitude that are exact solutions of the governing equations for water waves. These peakons are shown to be stable
[14,15].

The interest in the CH equation inspired the search for various generalizations of this equation. The following two-
component integrable CH system was first derived in [34] and can be viewed as a model in the context of shallow water
theory [11,28],⎧⎨

⎩
mt − Aux + umx + 2uxm + ρρx = 0,

m = u − uxx,

ρt + (uρ)x = 0,

(1.5)

where ρ(t, x) is related to the free surface elevation from equilibrium(or scalar density), and the parameter A characterizes
a linear underlying shear flow. Obviously, if ρ = 0, then (1.5) becomes the CH equation. Many recent works are devoted to
studying (1.5) (see, for instance, [11,20,23–28,37] and references therein).

In the presence of a linear shear flow and nonzero vorticity, we will follow Ivanov’s approach [28] to derive (1.1). System
(1.1) can also be rewritten as the following equivalent form of the system in terms of u and ρ , that is,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut − utxx − Aux + γ uxxx + 3uux − 2uxuxx − uuxxx + ρρx = 0, t > 0, x ∈R,

ρt + (uρ)x = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

ρ(0, x) = ρ0(x), x ∈R,

u(t, x + 1) = u(t, x), t � 0, x ∈R,

ρ(t, x + 1) = ρ(t, x), t � 0, x ∈R.

(1.6)

It is very interesting that not only the DGH equation but also the DGH system is completely integrable. The DGH system
can be written as a compatibility condition of two linear systems (Lax pair) with a spectral parameter ξ , that is

Ψxx =
(

−ξ2ρ2 + ξ

(
m − A

2
+ γ

2

)
+ 1

4

)
Ψ,

Ψt =
(

1

2ξ
− u + γ

)
Ψx + 1

2
uxΨ.

Moreover, this system has the following two Hamiltonians

E(u,ρ) = 1
∫ (

u2 + u2
x + (ρ − 1)2)dx
2
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and

F (u,ρ) = 1

2

∫ (
u3 + uu2

x − Au2 − γ u2
x + 2u(ρ − 1) + u(ρ − 1)2)dx.

The goal of this paper is to derive the two-component DGH system by the shallow water theory, then to establish a
result of blow-up solutions corresponding to only wave-breaking with certain initial profiles for this system. Our main tool
to investigate the question of the wave-breaking for this system is due to Constantin and Escher [8,11]. However, since the
system has two characteristics (see (3.2)–(3.3) in Section 3), we cannot just follow their approaches. In fact we will make
use of the diffeomorphism of the trajectory q2 defined in (3.3), which captures the maximum/minimum of ux , therefore the
transport equation for ρ can coincide with the equation for u.

The rest of the paper is organized as follows. In Section 2, we will follow the modeling approach in the shallow water
theory [28] to derive the DGH system. The local well-posedness result (Theorem 3.1) is presented in Section 3 and the proof
of it was enclosed in Appendix A. In Section 4, the wave-breaking phenomena of solutions for the system is analyzed in
details.

Notation. Throughout this paper, we identity periodic functions with function spaces over the unit circle S in R
2, i.e.

S= R/Z.

2. Derivation of the model

In this section, we will follow Ivanov’s approach in [28] to derive the DGH system. Consider the motion of an inviscid
incompressible fluid with a constant density � governed by the Euler equations

�vt + (�v · ∇)�v = − 1

�
∇ P + �g,

∇ · �v = 0,

where �v(t, x, y, z) is the velocity of the fluid, P (t, x, y, z) is the pressure and �g = (0,0,−g) is the gravity acceleration.
Using the shallow water approximation and non-dimensionalization, the above equations can be written as

ut + ε(uux + wuz) = −px,

δ2(wt + ε(uwx + w wz)
) = −pz,

ux + wz = 0,

w = ηt + εuηx, p = η on z = 1 + εη,

w = 0 on z = 0,

where �v = (u,0, w), p(x, z, t) is the pressure variable measuring the deviation from the hydrostatic pressure distribution
and η(t, x) is the deviation from the mean level z = h of the water surface. ε = a/h and δ = h/λ are the two dimensionless
parameters with a being the typical amplitude of the wave and λ being the typical wavelength of the wave.

In the presence of an underlying shear flow, the horizontal velocity of the flow becomes u + Ũ (z). We take the simplest
case Ũ (z) = Az in which A > 0 is a constant. Notice that the Burns condition gives the shallow water limit of the dispersion
relation for the waves with vorticity, hence determines the speed of propagation of the linear waves. From Burns condition
[4] one has the following expression for the speed c of the traveling waves in linear approximation,

c = 1

2

(
A ±

√
4 + A2

)
. (2.1)

In the case of the constant vorticity ω = A, we obtain the following equations for u0 and η by ignoring the terms of
O (ε2, δ4, εδ2),(

u0 − 1

2
δ2u0,xx

)
t
+ εu0u0,x + ηx − A

3
δ2u0,xxx = 0, (2.2)

ηt + Aηx +
(

(1 + εη)u0 + A

2
εη2

)
x
− 1

6
δ2u0,xxx = 0, (2.3)

where u0 is the leading order approximation for u (see the details in [28]). Let both of the parameters ε and δ go to 0.

Then by Eqs. (2.2) and (2.3), we have the following system of linear equations

u0,t + ηx = 0,

ηt + Aηx + u0,x = 0.
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This in turn implies that ηtt + Aηtx − ηxx = 0. Introducing a new variable

ρ = 1 + εαη + ε2βη2 + εδ2μu0,xx,

for some constants α,β and μ satisfying

μ

α
= 1

6(c − A)
,

α = 1 + Ac

2
+ β

α
,

then Eqs. (2.2) and (2.3) become

⎧⎨
⎩mt + Amx − Au0,x − 1

6c2(c − A)
δ2u0,xxx + ε

(
1 − α2 + 2β

α
c2

)
u0u0,x + 1

2εα

(
ρ2)

x = 0,

ρt + Aρx + αε(ρu0)x = 0,

(2.4)

where m = u0 − 1
2 δ2u0,xx . Since

3u0u0,x = 2mu0,x + u0mx,

(2.4) can be reformulated at the order of O (ε, δ2) as

mt + Amx − Au0,x − 1

6c2(c − A)
δ2u0,xxx + ε

3

(
1 − α2 + 2β

α
c2

)
(2mu0,x + u0mx) + 1

2εα

(
ρ2)

x = 0.

Using the scaling u0 → 1
αε u0, x → δx and t → δt , then (2.4) becomes

⎧⎪⎪⎨
⎪⎪⎩

mt + Amx − Au0,x − 1

6c2(c − A)
u0,xxx + 1

3α

(
1 − α2 + 2β

α
c2

)
(2mu0,x + u0mx) + 1

2εα

(
ρ2)

x = 0,

m = u0 − u0,xx,

ρt + Aρx + (ρu0)x = 0.

Now if we choose

1

3α

(
1 − α2 + 2β

α
c2

)
= 1

and denote γ = − 1
6c2(c−A)

, then we arrive at

⎧⎨
⎩

mt + Amx − Au0,x + 2mu0,x + u0mx + γ u0,xxx + ρρx = 0,

m = u0 − u0,xx,

ρt + Aρx + (ρu0)x = 0.

(2.5)

Thus the constants α, β , μ and c satisfy

α = 1

3(c2 + 1)
+ c2

3
,

β = α2 − α

(
1 + Ac

2

)
,

μ = α

6(c − A)
,

c2 − Ac − 1 = 0.

With a further Galilean transformation x → x − ct, t → t , we can drop the terms Aρx and Amx in (2.5) and obtain (1.1)
or (1.6).
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3. Local well-posedness and preliminaries

To study the wave-breaking problem, we first recall the local existence theory for the periodic DGH system. We will
apply Kato’s theory to obtain the local well-posedness of (1.6) with initial data (u0,ρ0) ∈ Hs(S) × Hs−1(S), s � 2.

It is noted that the periodic DGH system can be written as the “transport” type, that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + (u − γ )ux = −∂xG ∗
(

u2 + 1

2
u2

x + (γ − A)u + 1

2
ρ2

)
, t > 0, x ∈R,

ρt + (uρ)x = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

ρ(0, x) = ρ0(x), x ∈R,

u(t, x + 1) = u(t, x), t � 0, x ∈R,

ρ(t, x + 1) = ρ(t, x), t � 0, x ∈R,

(3.1)

where

G(x) = cosh(x − [x] − 1/2)

2 sinh(1/2)
, x ∈ S,

(1 − ∂2
x )−1 f = G ∗ f for all f ∈ L2(S), u = G ∗ m and m = u − uxx . The system in (3.1) is suitable for applying Kato’s theory

[29] to obtain the local well-posedness. Therefore we have the following theorem.

Theorem 3.1. Given an initial data (u0,ρ0) ∈ Hs(S) × Hs−1(S), s � 2, there exists a maximal T = T (‖(u0,ρ0)‖Hs(S)×Hs−1(S)) > 0
and a unique solution

(u,ρ) ∈ C
([0, T ); Hs(S) × Hs−1(S)

) ∩ C1([0, T ); Hs−1(S) × Hs−2(S)
)

of (1.6). Moreover, the solution (u,ρ) depends continuously on the initial value (u0,ρ0) and the maximal time of existence T > 0 is
independent of s.

Since the proof of this theorem is similar to Theorem 2.2 in [20], we enclose it as Appendix A for completeness.
In order to pursue our goal for wave-breaking solutions, we state here some previously known results which are needed

for our proofs.
We consider the following two associated Lagrangian scales of (3.1){

∂q1

∂t
= u(t,q1) − γ , 0 < t < T ,

q1(0, x) = x, x ∈R,

(3.2)

and {
∂q2

∂t
= u(t,q2), 0 < t < T ,

q2(0, x) = x, x ∈R,

(3.3)

where u ∈ C1([0, T ), Hs−1(S)) is the first component of the solution (u,ρ) to (1.6).

Lemma 3.2. (See [16,11].) Let (u,ρ) be the solution of (1.6) with initial data (u0,ρ0) ∈ Hs(S) × Hs−1(S), s � 2, and T the maximal
time of existence. Then (3.2) has a unique solution q1 ∈ C1([0, T ) × R,R) and (3.3) has a unique solution q2 ∈ C1([0, T ) × R,R).
These two solutions satisfy qi(t, x + 1) = qi(t, x) + 1, i = 1,2. Moreover, the maps q1(t, ·) and q2(t, ·) are increasing diffeomorphisms
of R with

q1x(t, x) = exp

( t∫
0

ux
(
τ ,q1(τ , x)

)
dτ

)
> 0, (t, x) ∈ [0, T ) ×R,

q2x(t, x) = exp

( t∫
0

ux
(
τ ,q2(τ , x)

)
dτ

)
> 0, (t, x) ∈ [0, T ) ×R.

The above lemma indicates that q1(t, ·) : R → R and q2(t, ·) : R → R are diffeomorphisms of the line for each t ∈ [0, T ).
Hence, the L∞ norm of any function v(t, ·) ∈ L∞(S) is preserved under the family of diffeomorphisms q1(t, ·) and q2(t, ·)
with t ∈ [0, T ), that is∥∥v(t, ·)∥∥ ∞ = ∥∥v

(
t,q1(t, ·)

)∥∥ ∞ = ∥∥v
(
t,q2(t, ·)

)∥∥ ∞ , t ∈ [0, T ). (3.4)
L (S) L (S) L (S)
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Similarly, we have

inf
x∈S v(t, x) = inf

x∈S v
(
t,q1(t, x)

) = inf
x∈S v

(
t,q2(t, x)

)
, t ∈ [0, T ), (3.5)

sup
x∈S

v(t, x) = sup
x∈S

v
(
t,q1(t, x)

) = sup
x∈S

v
(
t,q2(t, x)

)
, t ∈ [0, T ). (3.6)

Lemma 3.3. (See [20].) Let (u,ρ) be the solution of (1.6) with initial data (u0,ρ0) ∈ Hs(S) × Hs−1(S), s � 2, and T the maximal
time of existence. Then we have

ρ
(
t,q2(t, x)

)
q2x(t, x) = ρ0(x), (t, x) ∈ [0, T ) × S. (3.7)

Moreover if there exists a x0 ∈ S such that ρ0(x0) = 0, then ρ(t,q2(t, x0)) = 0 for all t ∈ [0, T ).

Lemma 3.4. (See [9].) Let T > 0 and v ∈ C1([0, T ); H2(R)). Then for every t ∈ [0, T ), there exists at least one point ξ(t) ∈R with

m(t) := inf
x∈R

(
vx(t, x)

) = vx
(
t, ξ(t)

)
.

The function m(t) is absolutely continuous on (0, T ) with

dm(t)

dt
= vtx

(
t, ξ(t)

)
a.e. on (0, T ).

Then, we give the useful conservation law of the strong solutions to (1.6).

Lemma 3.5. Let (u,ρ) be the solution of (1.6) with initial data (u0,ρ0) ∈ Hs(S) × Hs−1(S), s � 2, and T the maximal time of
existence. Then for all t ∈ [0, T ), we have∫

S

(
u2(t, x) + u2

x(t, x) + ρ2(t, x)
)

dx =
∫
S

(
u2

0(0, x) + u2
0x(0, x) + ρ2

0 (0, x)
)

dx.

Proof. Multiplying the first equation of (1.6) by 2u and integrating by parts, we have

d

dt

∫
S

(
u2(t, x) + u2

x(t, x)
)

dx = d

dt

∫
S

ux(t, x)ρ2(t, x)dx.

Multiplying the second equation of (1.6) by 2ρ and integrating by parts, we get

d

dt

∫
S

ρ2(t, x) = − d

dt

∫
S

ux(t, x)ρ2(t, x)dx.

Adding the above two equalities, we obtain

d

dt

∫
S

(
u2(t, x) + u2

x(t, x) + ρ2(t, x)
)

dx = 0.

This implies the desired result in this lemma. �
Lemma 3.6. (See [21].) For all u ∈ H1(S), the following inequality holds

G ∗
(

u2 + 1

2
u2

x

)
� κu2(x),

with

κ = 1

2
+ arctan(sinh(1/2))

2 sinh(1/2) + 2arctan(sinh(1/2)) sinh2(1/2)
≈ 0.869.

Moreover,

κ = min
1

G ∗ (u2 + 1
2 u2

x)

u2(x)
,

u∈H ,u �=0
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which is the optimal constant obtained by the function

u1 = 1 + arctan(sinh(x − [x] − 1/2)) sinh(x − [x] − 1/2)

1 + arctan(sinh(1/2)) sinh(1/2)
.

Lemma 3.7. (See [9].) Let g be a monotone function on [a,b], and f be a real continuous function on [a,b]. Then there exists a ξ ∈ [a,b]
such that

b∫
a

f (s)g(s)ds = g(a)

ξ∫
a

f (s)ds + g(b)

b∫
ξ

f (s)ds.

4. Wave-breaking

In this section, we establish a result of a wave-breaking solution (i.e. the wave profile remains bounded while its slope
becomes unbounded in finite time) with certain initial profiles for the periodic DGH system (1.6).

Firstly, in order to obtain the precise blow-up mechanism of the DGH system, we recall the following lemma derived
in [26].

Lemma 4.1. Let 0 < s < 1. Suppose that f0 ∈ Hs(S), g ∈ L1([0, T ]; Hs(S)), v, vx ∈ L1([0, T ]; L∞(S)) and that f ∈ L∞([0, T ];
Hs(S)) ∩ C([0, T ]; S ′(S)) solves the one-dimensional linear transport equation{

ft + v fx = g,

f (0, x) = f0(x),

then f ∈ C([0, T ]; Hs(R)). More precisely, there exists a constant C depending only on s such that the following estimate holds,

∥∥ f (t)
∥∥

Hs � ‖ f0‖Hs + C

( t∫
0

∥∥g(τ )
∥∥

Hs dτ +
t∫

0

∥∥ f (τ )
∥∥

Hs V ′(τ )dτ

)
.

Hence,

∥∥ f (t)
∥∥

Hs � eC V (t)

(
‖ f0‖Hs + C

t∫
0

∥∥g(τ )
∥∥

Hs dτ

)
,

where

V (t) =
t∫

0

(∥∥v(τ )
∥∥

L∞ + ∥∥vx(τ )
∥∥

L∞
)

dτ .

The above lemma was proved using the Littlewood–Paley analysis for the transport equation and the Moser-type esti-
mates. Using this result and performing the same argument as in [26], we can obtain the following blow-up criterion (up
to a slight modification, the proof is omitted).

Lemma 4.2. Let (u,ρ) be the solution of (4.1) with initial data (u0,ρ0) ∈ Hs(S) × Hs−1(S), s � 2, and T the maximal time of
existence. Then

T < ∞ ⇒
T∫

0

∥∥ux(τ )
∥∥

L∞(S)
dτ = ∞.

Based on the above results, let us state the following precise blow-up mechanism of (1.6).

Proposition 4.3 (Wave-breaking criterion). (See [38].) Let (u,ρ) be the solution of (1.6) with initial data (u0,ρ0) ∈ Hs(S)× Hs−1(S),
s � 2, and T the maximal time of existence. Then the solution blows up in finite time if and only if

lim inf
t→T −

0

{
inf
x∈Sux(t, x)

} = −∞.
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Using Proposition 4.3, we study the wave-breaking phenomena for (1.6). We set

m1(t) := min
x∈S

(
ux(t, x)

)
, m2(t) := max

x∈S
(
ux(t, x)

)
.

Theorem 4.4. Let (u0,ρ0) ∈ Hs(S) × Hs−1(S), s � 2 satisfy

m1(0) + m2(0) < −4|γ − A|cosh(1/2) − 1

sinh(1/2)
− 2

√
2C1, (4.1)

where

C0 =
∫
S

(
u2

0(0, x) + u2
0x(0, x) + ρ2

0 (0, x)
)

dx, C1 =
(

(1 − κ) cosh(1/2)

2κ sinh(1/2)
C0

) 1
2

,

and κ = 1
2 + arctan(sinh(1/2))

2 sinh(1/2)+2arctan(sinh(1/2)) sinh2(1/2)
. If there are some x1, x2 ∈ S such that

ρ0(x1) = 0, u0,x(x1) = inf
x∈Su0,x(x), (4.2)

and

ρ0(x2) = 0, u0,x(x2) = sup
x∈S

u0,x(x), (4.3)

then the solution of (1.6) blows up in finite time.

Proof. Let T > 0 be the maximal time of existence of the corresponding solution (u,ρ) to (1.6). By Theorem 3.1, we need
only to prove this theorem for s � 3. According to Lemma 3.4, we can define ξ(t) ∈ S as

m1(t) = ux
(
t, ξ(t)

) = inf
x∈Sux(t, x), t ∈ [0, T ). (4.4)

Since q2(t, ·) defined by (3.3) is a diffeomorphism of the circle for any t ∈ [0, T ), we obtain there exists a x1(t) ∈ S such that

q2
(
t, x1(t)

) = ξ(t), t ∈ [0, T ). (4.5)

Then (4.2) and (4.4) imply that

m1(0) = ux
(
0, ξ(0)

) = inf
x∈Su0,x(x) = u0,x(x1).

Therefore we can choose ξ(0) = x1 and

ρ0
(
ξ(0)

) = ρ0(x1) = 0.

Using Lemma 3.3, we have

ρ
(
t,q2

(
t, x1(t)

)) = ρ
(
t, ξ(t)

) = 0, ∀t ∈ [0, T ). (4.6)

On the other hand, since supx∈S(vx(t, x)) = − infx∈S(−vx(t, x)), we similarly define

m2(t) = ux
(
t, η(t)

) = sup
x∈S

ux(t, x), t ∈ [0, T ), (4.7)

then there exists a x2(t) ∈ S such that q2(t, x2(t)) = η(t), t ∈ [0, T ). Moreover, we have

ρ
(
t,q2

(
t, x2(t)

)) = ρ
(
t, ξ(t)

) = 0, ∀t ∈ [0, T ). (4.8)

Now, differentiating the first equation in (3.1) with respect to the x, we have

utx + (u − γ )uxx = −1

2
u2

x + u2 + 1

2
ρ2 − (γ − A)∂2

x G ∗ u − G ∗
(

u2 + 1

2
u2

x + 1

2
ρ2

)
.

In view of the definitions of mi(t) (i = 1,2) in (4.4) and (4.7), let x = xi(t), (t = 1,2), we obtain that

dm1

dt
= −1

2
m2

1 + u2 − (γ − A)∂2
x G ∗ u − G ∗

(
u2 + 1

2
u2

x + 1

2
ρ2

)

= −1

2
m2

1 + u2 − (γ − A)

1∫
G(y)uxx

(
t, ξ(t) − y

)
dy −

1∫
G
(
ξ(t) − y

)(
u2 + 1

2
u2

x + 1

2
ρ2

)
dy (4.9)
0 0
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and

dm2

dt
= −1

2
m2

2 + u2 − (γ − A)∂2
x G ∗ u − G ∗

(
u2 + 1

2
u2

x + 1

2
ρ2

)

= −1

2
m2

2 + u2 − (γ − A)

1∫
0

G(y)uxx
(
t, η(t) − y

)
dy −

1∫
0

G
(
η(t) − y

)(
u2 + 1

2
u2

x + 1

2
ρ2

)
dy. (4.10)

In view of 1
2 sinh(1/2)

� G(y) � cosh(1/2)
2 sinh(1/2)

and thanks to Lemma 3.6, we have

u2 −
1∫

0

G(x − y)

(
u2 + 1

2
u2

x + 1

2
ρ2

)
dy � 1

κ

1∫
0

G(x − y)

(
u2 + 1

2
u2

x

)
dy −

1∫
0

G(x − y)

(
u2 + 1

2
u2

x + 1

2
ρ2

)
dy

� 1 − κ

κ

cosh(1/2)

2 sinh(1/2)

1∫
0

(
u2 + 1

2
u2

x

)
dy − 1

2

1∫
0

G(x − y)ρ2 dy

� (1 − κ) cosh(1/2)

2κ sinh(1/2)

1∫
0

(
u2 + u2

x + ρ2)dy = C2
1 . (4.11)

The function G(y) is continuous, decreasing on [0, 1
2 ] and increasing on [ 1

2 ,1], with G( 1
2 ) = 1

2 sinh(1/2)
and G(0) = G(1) =

cosh(1/2)
2 sinh(1/2)

. So that we choose the function

g(y) = G(y) − 1

2 sinh(1/2)
, y ∈ S,

which is continuous, decreasing on [0, 1
2 ] and increasing on [ 1

2 ,1], with g( 1
2 ) = 0 and g(0) = g(1) = cosh(1/2)−1

2 sinh(1/2)
. Note the

periodicity of uxx , we find for i = 1,2, that∣∣∣∣∣
1∫

0

G(y)uxx(t, xi − y)dy

∣∣∣∣∣ =
∣∣∣∣∣

1∫
0

g(y)uxx(t, xi − y)dy

∣∣∣∣∣

�
∣∣∣∣∣

1
2∫

0

g(y)uxx(t, xi − y)dy

∣∣∣∣∣ +
∣∣∣∣∣

1∫
1
2

g(y)uxx(t, xi − y)dy

∣∣∣∣∣. (4.12)

Using Lemma 3.7, we have

∣∣∣∣∣
1
2∫

0

g(y)uxx(t, xi − y)dy

∣∣∣∣∣ =
∣∣∣∣∣g(0)

ϕ∫
0

uxx(t, xi − y)dy + g

(
1

2

) 1
2∫

ϕ

uxx(t, xi − y)dy

∣∣∣∣∣
=

∣∣∣∣cosh(1/2) − 1

2 sinh(1/2)

(
ux(t, xi) − ux(t, xi − ϕ)

)∣∣∣∣
� cosh(1/2) − 1

2 sinh(1/2)

(
m2(t) − m1(t)

)
. (4.13)

In the same way, we obtain∣∣∣∣∣
1∫

1
2

g(y)uxx(t, xi − y)dy

∣∣∣∣∣ � cosh(1/2) − 1

2 sinh(1/2)

(
m2(t) − m1(t)

)
. (4.14)

Substituting (4.13) and (4.14) into (4.12), we deduce that∣∣∣∣∣
1∫

G(y)uxx(t, xi − y)dy

∣∣∣∣∣ � cosh(1/2) − 1

sinh(1/2)

(
m2(t) − m1(t)

)
. (4.15)
0
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In view of (4.9), (4.10), (4.11) and (4.15), we obtain for a.e. t ∈ (0, T ) that

dm1

dt
� −1

2
m2

1 + |γ − A|cosh(1/2) − 1

sinh(1/2)
(m2 − m1) + C2

1, (4.16)

dm2

dt
� −1

2
m2

2 + |γ − A|cosh(1/2) − 1

sinh(1/2)
(m2 − m1) + C2

1 . (4.17)

Summing up the above two equations gives

d(m1 + m2)

dt
� −1

2

(
m2

1 + m2
2

) + 2|γ − A|cosh(1/2) − 1

sinh(1/2)
(m2 − m1) + 2C2

1

= −1

2

(
m2

1 + m2
2

) + 2|γ − A|cosh(1/2) − 1

sinh(1/2)
(m2 + m1) − 4|γ − A|cosh(1/2) − 1

sinh(1/2)
m1 + 2C2

1 . (4.18)

Let

C2 = |γ − A|cosh(1/2) − 1

sinh(1/2)
. (4.19)

Then (4.16) and (4.18) become the following equations

dm1

dt
� −1

2
m2

1 + C2(m2 − m1) + C2
1, (4.20)

and

d(m1 + m2)

dt
� −1

2

(
m2

1 + m2
2

) + 2C2(m2 + m1) − 4C2m1 + 2C2
1 . (4.21)

Since (m1 + m2)(0) < −4|γ − A| cosh(1/2)−1
sinh(1/2)

− 2
√

2C1 = −4C2 − 2
√

2C1, there is δ ∈ (0, 1
2 ] such that (m1 + m2)(0) �

−α − 2
√

2(1 + δ)C1 with α = 4C2 + δ, α > 4C2.
We first claim that there holds for all t ∈ (0, T ],

(m1 + m2)(t) � −α − 2
√

2(1 + δ)C1. (4.22)

Let m =: (m1 + m2)(t) + α + 2
√

2(1 + δ)C1. Then we claim that m(t) � 0. It is observed that m is continuous on [0, T ). If
(4.22) does not hold, we can find a t0 ∈ (0, T ) such that m(t) > 0. Denote

t1 = max
(
t < t0: m(t0) = 0

)
.

Then

m(t1) = 0, m′(t1) � 0. (4.23)

Thanks to

m1(t1) � 1

2
(m1 + m2)(t1) = −1

2
α − √

2(1 + δ)C1

and

m2(t1) = −α − 2
√

2(1 + δ)C1 − m1(t1),

using (4.21) and (4.23), we get

m′(t1) = (m1 + m2)
′(t1)

� −1

2
m2

1(t1) − 1

2
m2

2(t1) + 2C2(m2 + m1)(t1) − 4C2m1(t1) + 2C2
1

= −1

2
m2

1(t1) − 1

2

(−α − 2
√

2(1 + δ)C1 − m1(t1)
)2 + 2C2

(−α − 2
√

2(1 + δ)C1
) − 4C2m1(t1) + 2C2

1

= −m2
1(t1) − m1(t1)

(
α + 2

√
2(1 + δ)C1 + 4C2

) − 1

2

(
α + 2

√
2(1 + δ)C1

)2

− 2C2
(
α + 2

√
2(1 + δ)C1

) + 2C2
1

= −
(

m1(t1) + 1 (
α + 2

√
2(1 + δ)C1 + 4C2

))2

− 1 (
α + 2

√
2(1 + δ)C1

)2 + 4C2
2 + 2C2

1, (4.24)

2 4
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which together with the fact α > 4C2 implies

m′(t1) � −1

4

(
α + 2

√
2(1 + δ)C1

)2 + 4C2
2 + 2C2

1 < 0.

This yields a contradiction with (4.23).
Putting (4.22) and m1(t) � 1

2 (m1 + m2)(t) < −2C2 − √
2(1 + δ)C1 back to (4.20), we have

d(m1(t) + 2C2)

dt
= dm1

dt
� −1

2
m2

1(t) + C2(m2 − m1)(t) + C2
1

= −1

2
m2

1(t) + C2(m2 + m1)(t) − 2C2m1(t) + C2
1(t)

� −1

2
m2

1(t) + C2
(−α − 2

√
2(1 + δ)C1

) − 2C2m1(t) + C2
1

= −1

2

(
m1(t) + 2C2

)2 − C2α − 2
√

2(1 + δ)C1C2 + 2C2
2 + C2

1

= −1

2

(
m1(t) + 2C2

)2 + C2
1 − C2

(
α − 2C2 + 2

√
2(1 + δ)C1

)
< − δ(δ + 2)

2(1 + δ)2

(
m1(t) + 2C2

)2
. (4.25)

Since m1(t) is locally Lipshitz on (0, T ), we have that 1
m1(t)+2C2

is also locally Lipshitz on (0, T ). Being locally Lipshitz,
1

m1(t)+2C2
is absolutely continuous on (0, T ), it is then inferred from (4.22) that

d

dt

(
1

m1(t) + 2C2

)
>

δ(δ + 2)

2(1 + δ)2
, t ∈ (0, T ).

Consequently,

m1(t) <
2(1 + δ)2(m1(0) + 2C2)

(m1(0) + 2C2)δ(δ + 2)t + 2(1 + δ)2
− 2C2, t ∈ (0, T ).

Using Proposition 4.3, the above equation implies that T < − 2(1+δ)2

(m1(0)+2C2)δ(δ+2)
. Therefore, the proof of the theorem is com-

plete. �
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Appendix A

In this appendix, we will apply Kato’s semigroup theory to establish the local well-posedness for the periodic initial
value problem to (3.1). For convenience, we present here Kato’s theorem in a form suitable for our purpose. Consider the
abstract quasilinear evolution equation{ dv

dt
+ A(v)v = f (v), t � 0,

v(0) = v0.

(A.1)

Let X and Y be two Hilbert spaces such that Y is continuously and densely embedded in X , let Q : Y → X be a topological
isomorphism, and let ‖ ·‖X and ‖ ·‖Y be the norms of the Banach spaces X and Y , respectively. Let L(Y , X) denote the space
of all bounded linear operators from Y to X . In particular, it is denoted by L(X) if X = Y . If A is an unbounded operator,
we denote the domain of A by D(A). [A, B] denotes the commutator of two linear operators A and B . The linear operator
A belongs to G(X,1, β) where β is a real number, if −A generates a C0-semigroup such that ‖e−sA‖L(X) � eβs . The inner
product in Hs is denoted by 〈· , ·〉s , particularly the L2 inner product is 〈· , ·〉.

We make the following assumptions, where μi (i = 1,2,3,4) are constants depending only on max{‖y‖Y ,‖z‖Y }:

(i) A(y) ∈ L(Y , X) for y ∈ X with∥∥(
A(y) − A(z)

)
w

∥∥
X � μ1‖y − z‖X‖w‖Y , y, z, w ∈ Y

and A(y) ∈ G(X,1, β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets in Y .
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(ii) Q A(y)Q −1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on bounded sets in Y . Moreover,∥∥(
B(y) − B(z)

)
w

∥∥
X � μ2‖y − z‖Y ‖w‖X , y, z ∈ Y , w ∈ X .

(iii) f : Y → Y extends to a map from X into X , is bounded on bounded sets in Y , and satisfies∥∥ f (y) − f (z)
∥∥

Y � μ3‖y − z‖Y , y, z ∈ Y

and ∥∥ f (y) − f (z)
∥∥

X � μ4‖y − z‖X , y, z ∈ Y .

Lemma A.1. (See [29].) Assume the conditions (i), (ii) and (iii) hold. Given v0 ∈ Y , there is a maximal T > 0 depending only on ‖v0‖Y

and a unique solution v to (A.1) such that

v = v(·, v0) ∈ C
([0, T ); Y

) ∩ C1([0, T ); X
)
.

Moreover, the map v0 �→ v(·, v0) is a continuous map from Y to C([0, T ); Y ) ∩ C1([0, T ); X).

To prove Theorem 3.1, we will apply Lemma A.1 with

U =
(

u
ρ

)
,

A(U ) =
(

(u − γ )∂x 0
0 u∂x

)
, (A.2)

f (U ) =
(−∂x(1 − ∂2

x )−1(u2 + 1
2 u2

x + (γ − A)u + 1
2ρ2)

−uxρ

)
, (A.3)

Y = Hs × Hs−1, X = Hs−1 × Hs−2, Λ = (1 − ∂2
x )1/2 and

Q =
(

Λ 0
0 Λ

)
. (A.4)

Obviously, Q is an isomorphism of Hs × Hs−1 onto Hs−1 × Hs−2. Thus, to derive Theorem 3.1, we only need to check that
A(U ) and f (U ) satisfy the conditions (i)–(iii), and this can be formulated through several lemmas.

The following lemmas in [29] (Lemma A1) and [30] (Lemma 2.6) are useful in our proof.

Lemma A.2. Let r, t be two real numbers such that −r < t � r. Then,

‖ f g‖t � c‖ f ‖r‖g‖t, if r >
1

2
(A.5)

and

‖ f g‖r+t− 1
2

� c‖ f ‖r‖g‖t, if r <
1

2
, (A.6)

where c is a positive constant depending on r and t.

Lemma A.3. Let f ∈ Hr for some r > 3
2 . Then∥∥Λ−s̄[Λs̄+t̄+1, M f

]
Λ−t̄

∥∥
L(L2)

� c‖∂x f ‖r−1, |s̄|, |t̄| � r − 1, (A.7)

where M f is the operator of multiplication by f and c is a constant depending only on s̄ and t̄.

Lemma A.4. With U ∈ Hs × Hs−1(s � 2), the operator A(U ) ∈ G(Hs−1 × Hs−2,1, β).

Proof. Taking the Hs−1 × Hs−2 inner product with W = (w1
w2

)
on both sides of the equation dW

dt + A(U )W = 0 gives

1

2

d

dt
‖W ‖2

Hs−1×Hs−2 = −〈
W , A(U )W

〉
(s−1)×(s−2)

= −
〈(

w1
w2

)
,

(
(u − γ )∂x w1

u∂x w2

)〉

(s−1)×(s−2)
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= −〈
w1, (u − γ )∂x w1

〉
s−1 − 〈w2, u∂x w2〉s−2

= −〈
Λs−1 w1,Λ

s−1((u − γ )∂x w1
)〉 − 〈

Λs−2 w2,Λ
s−2(u∂x w2)

〉
= −〈

Λs−1 w1,
[
Λs−1, u − γ

]
∂x w1

〉 − 〈
Λs−1 w1, (u − γ )∂xΛ

s−1 w1
〉

− 〈
Λs−2 w2,

[
Λs−2, u

]
∂x w2

〉 − 〈
Λs−2 w2, u∂xΛ

s−2 w2
〉

= −〈
Λs−1 w1,

[
Λs−1, u − γ

]
∂x w1

〉 − 1

2

〈
Λs−1 w1, ∂xuΛs−1 w1

〉
− 〈

Λs−2 w2,
[
Λs−2, u

]
∂x w2

〉 − 1

2

〈
Λs−2 w2, ∂xuΛs−2 w2

〉
�

∥∥Λs−1 w1
∥∥2

L2

∥∥[
Λs−1, u − γ

]
Λ2−s

∥∥
L(L2)

+ 1

2
‖ux‖L∞

∥∥Λs−1 w1
∥∥

L2

+ ∥∥Λs−2 w2
∥∥2

L2

∥∥[
Λs−2, u

]
Λ3−s

∥∥
L(L2)

+ 1

2
‖ux‖L∞

∥∥Λs−2 w2
∥∥

L2

� c
(‖U‖Hs + |γ |)(‖w1‖2

Hs−1 + ‖w2‖2
Hs−2

)
= c

(‖U‖Hs + |γ |)‖W ‖2
Hs−1×Hs−2 .

By integrating both of sides in the above the estimate, it follows that A(U ) ∈ G(Hs−1 × Hs−2,1, c(‖U‖Hs + γ )). �
Lemma A.5. The operator A(U ) defined by (A.2) belongs to L(Hs × Hs−1, Hs−1 × Hs−2). Moreover∥∥(

A(U ) − A(V )
)
W

∥∥
Hs−1×Hs−2 � μ1‖U − V ‖Hs×Hs−1‖W ‖Hs×Hs−1 , U , V , W ∈ Hs × Hs−1. (A.8)

Proof. In view of (A.2), we have

(
A(U ) − A(V )

)
W =

(
(u − γ )∂x − (v1 − γ )∂x 0

0 u∂x − v1∂x

)(
w1
w2

)

=
(

(u − v1)∂x w1
(u − v1)∂x w2

)
.

Since Hs−1 (s � 2) is a Banach algebra, taking r = s − 1, t = s − 2 in Lemma A.2, we have∥∥(
A(U ) − A(V )

)
W

∥∥
Hs−1×Hs−2 �

∥∥(u − v1)∂x w1
∥∥

Hs−1 + ∥∥(u − v1)∂x w2
∥∥

Hs−2

� c
∥∥u − v1

∥∥
Hs−1

(‖∂x w1‖Hs−1 + ‖∂x w2‖Hs−2

)
� c‖U − V ‖Hs−1×Hs−2‖W ‖Hs−1×Hs−2 .

Taking V = 0 in (A.8), we deduce that A(U ) ∈ L(Hs × Hs−1, Hs−1 × Hs−2). �
Lemma A.6. (See [20].) Let B(U ) = Q A(U )Q −1 − A(U ), for U ∈ Hs × Hs−1 (s � 2). Then B(U ) ∈ L(Hs−1 × Hs−2) and∥∥(

B(U ) − B(V )
)
W

∥∥
Hs−1×Hs−2 � μ2‖U − V ‖Hs×Hs−1‖W ‖Hs−1×Hs−2 , U , V ∈ Hs × Hs−1, W ∈ Hs−1 × Hs−2.

Lemma A.7. (See [20].) Let U ∈ Hs × Hs−1 (s � 2). Then the operator defined by (A.3) is bounded on bounded sets in Hs × Hs−1 , and
satisfies

(a) ‖ f (U ) − f (V )‖Hs×Hs−1 � μ3‖U − V ‖Hs×Hs−1 , U , V ∈ Hs × Hs−1 ,

(b) ‖ f (U ) − f (V )‖Hs−1×Hs−2 � μ4‖U − V ‖Hs−1×Hs−2 , U , V ∈ Hs × Hs−1 .

Proof of Theorem 3.1. The result follows from the combination of Lemmas A.4–A.7. �
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