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1. Introduction

In the past decades, stabilization problems of 1-d multi-link flexible structures (networks of strings and beams) have
been studied by many authors. For instance, [1-9] for networks of strings, [10-15] and more recent papers [16-19] for
networks of beams. All works mentioned above were done under constant coefficients. Especially, Nicaise, Pignotti and
Valein in [5,20] considered a 1-d wave network of the constant coefficients with the delay term in the nodal and boundary
feedbacks. Using the method of observability inequality, they showed that if the coefficient of the delayed damping term is
smaller than the one of the undelayed damping term, the observability implies the exponential decay of energy function of
the system. However, if the equations have variable coefficients and there exist a small delay term in the nodal feedbacks,
the stability analysis of the network becomes very complicated and difficult. The difficulty comes mainly from two aspects:
one is differential equation with variable coefficients, and the other is the existence of time-delay terms. This is because
there is no explicit solution such as D’Alembert’s formula for differential equations of variable coefficients; at the same
time the multiplier method fails to be applied for networks and small time-delay can induce some instabilities [21,22].
Even for a single differential equation of variable coefficients, its stability analysis also becomes more complex; for instance,
see [23]. Therefore, for a variable coefficient network with time-delays, the stability analysis has been a challenging topic.
In the present paper, we shall analyze stability of a generic tree network of variable coefficient wave equations with time
delay terms. As a base of our research, we first obtain the well-posedness of the system. To get more detailed property for
the system, we choose the spectral analysis method. We mainly adopt two steps: first we discuss the spectral distribution
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and basis properties of eigenfunction and generalized eigenfunctions, and second we analyze stability of the system based
on the basis property of eigenfunctions. To get a basic distribution of the spectrum of the system operator, we use the
Liouville transform to translate the variable coefficient equations into the equations in which the major terms are of
constant coefficients and calculate asymptotic values of the eigenvalues by the asymptotic technique. In short, we overcome
these obstacles using the Riesz basis approach and the asymptotic analysis technique of the spectrum of the system
operator.

We begin by recalling some notations. Let G = (V, E) be a simply connected graph, as defined by [24], where V =
{ao, a1, az, as} denotes the vertices set and E = {eq, e;, e3} denotes the edges set. The common vertex a, named interior
node of the graph G and the vertices a;, a, and as, each of them receiving only one edge, are called boundary nodes of
the graph G. Assume that one of the boundary nodes, say as, is fixed and the others are free. Suppose that each of the

edges e;(i = 1, 2, 3) has a finite arc length ¢;, which can be parameterized by its arc length by means of the function 7;
defined by
7 [0, 4] — e, i=1,2,3,

so that e; can be identified as a real interval [0, ¢;](i = 1, 2, 3), m;(0) = ag and 7;(¢;) = a;.

Suppose that the strings are expanded on G and coincide with G at rest. Denote by u;(x, t) (i = 1, 2, 3) the displacement
function of the ith string departing from the equilibrium position in position 77;(x) € e; at time t. Thus, the dynamic behavior
of the string networks is governed by the following partial differential equations

,ol(x) (x t) — — |:o,(x) (x t):| + qi(x)ui(x,t) =0, xe(0,¢),i=1,2,3,t>0,
U](O t) = uz(oa t) = U3(0, t)’

uq oy
Zo,<0> {0, = ap 5p 00+ o 20t —70),

ou u
m(zo <e1, £) = —a1— (L1, £) — 1 — (€1, t — T0),
at at (1.1)
7(52,0 =0, us(€s, t) =0,
9x
ou; .
ui(x, 0) = ujp(x), E(x, 0)=unx), i=1,2,3,

8u1
W(O’ t—1) = fo(t —7), 0<t <10,

u
a—tl(z],r— o) =filt—1), 0<t<t,

where p;(x) > 0 is the mass density of the ith string, o;(x) > 0 is the elastic modulus of the same string and the rigidity
coefficient q;(x) > 0; «;, B; > 0,i = 0, 1 are fixed real numbers such that 8; < «;,and 7; > 0,i = 0, 1 are time delays. In
the present paper, we shall study the exponential stability of the system (1.1).

The rest of the paper is organized as follows. In Section 2, we discuss the well-posedness of system (1.1). In Section 3, our
attention focus on the spectral distribution of the operator + determined by the system. Under certain conditions we prove
that the spectrum of 4 distributes in a strip parallel to the imaginary axis. In the final section, we discuss the generation of
Riesz basis and the exponential stability of the system.

2. Well-posedness of the system

In this section, we shall devote to the well-posedness of system (1.1) in an appropriate Hilbert space. Let H*(0, ¢;) (i =
1,2, 3,k =1, 2) be aSobolev space.

SetX .= {u= (u) 4 € ]_[l 1H (0, £)|u;(0) = u;(0), Vi, j = 1, 2, 3; u3(¢3) = 0}, equip it with an inner product

1
(. v)x = Z/ ( i(x )d” () @oo + g0, (x)v;(x)) Vi, v € X.

Assume that p;(x), 0i(x), qi(x) € H*>(0, £),i=1,2, 3.
We introduce the auxiliary functions z;(s, t) = 3”1 i, t—15),s € [0,1],t > 0,i =0, 1. Thus the function z;(s, t) satisfy
equation %(s, t)=—-tg 9 L (s, t). System (1.1) can be rewritten in the following form
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pl(X) ( t) — — [UI(X) Lx, t)} +qXui(x,t) =0, x€(0,¢),i=1,2,3,t>0,

ot?
0z; pa )
—(s,t)+r,-—(s,t):0, s€(0,1),i=0,1,t >0,
as at

U1(0 t) =u(0,t) =u3(0,t), t>0,

ZU,(O) f0.1) = aut](O,t)—l—/ngo(l,t), £>0,

duy 2.1
01(51) (51,0—— ™! — 4y, t) = B1z1(1, 1), t>0,

U3(£3, f) = 0, 7(£2, f) = 0, t > O,
X

oy .
zi(0,t) = —(6,, t), i=0,1,t>0,

s
ui(x, 0) = ujp(x), a—t'(x, 0 =un(®), xe(0,¢),i=123,

zi(s,0) = fi(~ts), se[0,1],i=0,1

We define the state space by # = X x ]_[13 ) LZ(O, £;) x [L?(0, 1)]? equipped with the norm

2\ [t wi(x) |°
||(u,v,Z)||2=Z/ [,()' ’
i=1 Y0

for any (u, v, z) € #. Obviously, (#, | - ||) is a Hilbert space.
Define the operator + in # by

1 1
+ a0 + pi(x)|vi<x>|2} dx+ " / |zi(s)|ds
i=0 Y0

v

u 1 dul
A<v>= {pzoo[ [ }_q’(")"’(")“,-_l : (22)
z 1dZi]
_{tids}izo

3
(u,v,z) €XN HHZ(O, €) x X x [H'(0, D]? :
i=1

D(A) = Za,<0>—(0>—aov1<o>+ﬁozo(1) (m—o : (2.3)

where

01(51)3(31) = —aqv1(€q) — B1z1(1), 20(0) = v1(0), z1(0) = v1(£y).
Then, we rewrite system (1.1) as an evolutionary equation in # as follows

YO _ uvw). t>0
a e (2.4)

Y(0) = Yo,

where Y (t) = (u(-, t), (-, 1), 2)", Y(0) = (U, Uy, {fi(—mi)}o)" € H#, U = {uio}l_;. U = {1}, are given.

To obtain the well-posedness of system (1.1), we shall show that 4 generates a Cyp-semigroup of contractions in #. To
this end, notice that 0 < B; < «;,i = 0, 1 and here similar to the method used in [5,20] we choose positive real scalars
b;,i = 0, 1 such that

B < b < wuai— ), i=0,1 (2.5)

We now introduce another inner product on # defined by

dx

+ Zbif zi(s)hi(s)ds
i=0 0

for any (u, v, z), (f, g, h) € #. Obviously, this inner product is equivalent to the old one.

d dfi(x)
(W, 0,2), (F,8, 1) = Z / [ ute) 4 +p,<x)v1(x>gz(x)+qz(x)u(x>fl(x>}
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Theorem 2.1. Let A be defined as (2.2)—(2.3). Then, 4 is a closed and densely defined linear dissipative operator in J¢.

Proof. Itiseasytocheckthat « is a densely defined and closed linear operator in #. Here, we only prove that -+ is dissipative.
For any (u, v, z) € D(+4), we have

R(AWU, v,2), U, V,2))5% = %[(A(u, v,2), (U, v,2)) 5 + (U, v,2), AW, V,2)) 4]

dx

d du;(x) b 1 dzi(s)—
x [& <ai(x) ™ ) - qi(x)u,-(x)] }dx — sn; ?,-/o L Zi()ds
1

1 b;
Z‘RZ[G,(K) (@) — o0 2 (O)UI(O)] 52 (M = 1z

i=0 !

3 4
9?2/ { oi(x )dvl(x) dut) + qi ()i (X ui(x) + vi(x)
i=1 Y0

= -0 {[am (0) + B1z1(1)1z1(0) + [ozo(0) + ﬁozoa)]zOTO)}
1

Z—’ lz(D* = 1z(0)*)
i=0 Ui
1

1 b;
—Zmlz:(ml + = Zﬁ, (DI + 1201 = 2 3 — (D = [z

i=0 i=0 !

1 b e BT e
_2;”2“' b fi]'z'(°)|+[,i ﬁ,]lz,(l)l}so

the last inequality is owed to (2.5). The desired result follows. O

IA

IA

The following theorem is necessary when we discuss the spectral distribution, which describes some basic properties of
A, whose proof is somewhat similar to the one used in [5,20].

Theorem 2.2. Let 4 be defined by (2.2)-(2.3). Then 0 € p(+4) and 4~ is compact in . Hence, 4 generates a Cy-semigroup of
contractions in F.

Proof. We first show that 4~! exists. To this end, let (u, v,z) € D(+4) such that A4(u, v,z) = 0. Thenv = 0,z = 0 and
u;(x) satisfies

d [ (x)d”( )} —Gu() =0, x€(0,6), i=1,23, (2.6)

u1(0) = uz(0) = u3(0), (2.7)
3 du,‘

> 60— (0 =0, (2.8)
P dx

ﬂ(15) 0, i=1,2, (2.9)

us(€3) = 0. (2.10)

Multiplying Eq. (2.6) by u;, integrating over the interval [0, ¢;] and sum them up for i = 1, 2, 3, utilizing the conditions
(2.7)-(2.10), we deduce

G d d
{/ [.() “()} 0 — q,-<x>|u,-<x)|2}dx
1 0
2
Z i) —— ’( Yo Z/ [m( )‘X)‘ +Qi(x)|ui(x)|2i| dx

f ®
—Zf [m()‘ ’ ’+q,-<x)|u,-<x>|2}dx
i=1 Y0

Since o;(x) > 0, g;(x) > 0, we deduce from above that u;(x) = 0,i = 1, 2, 3, which implies (u, v, z) = 0. So # is injective.

v
.

1

w |
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Next, we claim that 4 is surjective. Indeed, for any (f, g, h) € #, A(u, v, z) = (f, g, h) implies that
vi(X) :ﬁ(x) X e (Oa el‘)? i= 1’27 37
d du;(x)
¢ [oun

] — qui(x) = g pei(x), x€(0,¢£), i=1,2,3,

1 dz;(s)
Ti ds

= hi(s), se€(0,1),i=0,1,

Z ol<0> (0) = aof1(0) + Bizo(1),

dle
*(52) =0, us(€3) =0,

ol(md—;(e]) = —aifi(t1) — Biza (D),
20(0) = v1(0) = f1(0), 21(0) = v1(€y) = f1(£y).
From (2.14) and (2.17), we get

S

Z9(s) = f1(0) — To/ ho(s)ds, z1(8) = f1(&y) — T1/ hy(s)ds.
0 0

In what follows, we shall seek for a solution to (2.12) which meets (2.14)-(2.16).

731

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Multiply (2.12) by test functions ¢;(x) (i = 1, 2, 3), integrate them on the interval (0, ¢;) and use integration by parts in

X to get

3 ¢ 3 ¢ d
Z/ gi(%) pi(x)pi(x)dx = Z/ - [U,-(x)
i=1 Y0 = X

d do;
N _Z/ u)(:() i (X)d - Z/ qi(X)u;(x) i (x)dx

3

du;(x)
+ 0i(X) ———i(x
; dx

du;(x)

3 .
] LSS / GO () dx

For (u, v, z) € D(4), we have

3

d
3 o (x) 61(x

i=1

d 3 du;
m(&)%(wq&]w]) — $1(0) ;oi(md—iw)
— 1 () arfi (€1) + Brzr (D] — 1 (O)[erofu (0) + Bzo(D)].

Now we define a bilinear function B(w, z) on X by

4
Blw, z] Zf [ ()dw(x)dz'()+q,(x)w(x)z,(x)i| X, Yw.zeX.

Obviously,
[Blw, z]| < M|wllx - llzllx, w,z€X,

where M is a positive constant. Moreover, B is coercive since

3 a4
Bw.wi =Y [ o ‘ W)
i=1 Y0

+ g |wi®)*dx = |wllg, Yw € X.

(2.18)

If we choose ¢(x) = {¢,(x)} 1 € [P0, ¢ )1’ N X C X, then there exists a unique solution u € X of Eq. (2.18) by

Lax-Milgram’s lemma, where u = {u; (x)}f:] satisfies

d du;(x)
o |:Ui X ] = gi(x) pi(x) + g (X)u;(x).
X dx

(2.19)
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This implies thatu € ]_[?:1 H?(0, £;) and hence u € ]_[?:] H2(0, £;) NX. Again we select special ¢;(x), insert (2.19) into (2.18)
and observe that

Za,(O) ~(0) = —afi (0) — fozo (1),

d
ﬂ(e ) = enafi (€1) + Prza (1),

Up until now, we have found (u, v, z) = (u, f, z) € D(+) and (u, v, z) satisfies equation A (u, v, z) = (f, g, h).So, A isa
surjective operator. As a result of the Inverse Operator Theorem, 4~ is continuous, which indicates that 0 € p(+4). Hence,
the Lumer-Phillips Theorem (see [25]) asserts that -4 generates a Cy semigroup of contractions on #. Moreover, in view of
D(A) C ]_[,-3:1 H2(0, £;) x X x H'(0, 1)2, A~ ! is compact on # owing to Sobolev’s Embedding Theorem. O

The above two theorems together with semigroup theory yield the following results.
Corollary 2.1. System (2.4) is well-posed in J¢.

Corollary 2.2. The spectrum of 4 consists of all isolated eigenvalues of finite multiplicity [26].

3. Eigenvalue problem of A

In order to investigate the properties of the semigroup generated by +, we need to find out some spectral properties of
. In this section, we shall calculate the spectrum of 4. According to Corollary 2.2, the spectrum of A consists of all isolated
eigenvalues. Therefore, we only need to discuss the eigenvalue problem of .

Let 1 € C, we consider the existence of a nonzero solution to the equation

A —A)(U,v,2) =0, (U,v,2) € D(A).
From it we have Az; + 11 ‘ffs’ = 0,i =0, 1, which implies z;(s) = z;(0)e™*7*,
More precisely,
20(s) = v1(0)e "™, zy(s) = v1(£p)e ™, (3.1)

since zo(0) = v1(0) and z;(0) = v{(£1).
Again, from (Al — 4A) (u, v,z) = 0as well as (3.1), we have v = Auand u = (u) ~_, satisfies the following boundary
eigenvalue problem:

Azu,-(x) |: d ( (%) dui(x )> — qi(x)ui(x)] =0, xe€(0,¢),i=1,2,3, (3.2)

pi(x)

d
o (&)%(&) = —huy (€)[ony + Pre T, (3.3)
d&(llz) =0, (3.4)
u3(€3) = 0, (3.5)
u1(0) = uz(0) = u3(0), (3.6)
3

du; _
> 0102 (0) = hur (O)lato + foe ). (37)
i=1

Due to the variable coefficients in (3.2), we cannot get an explicit expression of its solution. Indeed, in our analysis we do
not need an exact expression of the solution and only need an asymptotic expression of the solution in A of (3.2)-(3.7).

To obtain an asymptotic expression of the solution, we will introduce some new functions to transform the family of
Egs. (3.2)-(3.7) into a standard form.

At first, we expand (3.2) to the following equation

2P 1 doi duix) dzu, G
1()‘() m(x)dx() dx > ® oi(x)

pi(6)
i (0)

—==V oixE))ui(x(&)), (3.9)

=0, i=1,2,3. (3.8)

Then we define a new independent variable &;(x) := f(;‘

dé, x € (0, £;) and a new function

wi(§) = m
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where x(§&;) is the inverse function of &;(x) and the prime denotes the derivative with respect to &;. Furthermore, we set

4 )

m; :=f G (3.10)
o \ oi®)

..-__E’.*Z'/421/.*1W.

$i(5) = 4(x &) (X" (&) +2(x &)~ X" (&), (3.11)

1%\ 1 (2g
bi(x) == — <d* ) L 2 PR O (G (3.12)
4\ oi(x) 2\ o oi(x) | pi(x)
After inserting (3.9), (3.11) and (3.12) into (3.8) as well as (3.3)-(3.7), we obtain the following desired forms
wi' (&) — Pwi&) = [bix(E)) — ¢iE)wiE), &€ 0,my), i=1,2,3, (3.13)
Y —1/2
o1 (Crwy(my) + clwl)ﬂ(pl( 1)) (@1 + Bre™*™) | wi(my) =0, (3.14)
o1(£1)

o2 (€2)wh(my) 4 2 (£2)w,(my) =0, (3.15)

ws(ms) =0, (3.16)

(p1(0)51(0)) " w1(0) = (02(0)02(0)) ™ w2(0) = (p3(0)03(0))~/* w3(0), (3.17)

3 3

> 10100 (0)]*wi(0) + Y di(0)wi(0) = A (p1(0)01(0)) " [atg + Boe ™ Jw1(0), (3.18)

i=1 i=1

where
1o\ oi 1 P\
ci(x) '_Z<p,~(x)> o,-(x)(pi)x(x)—zoix(x)<6i(x)> , 1=1,2, (3.19)
oo\ 4 /o

di(x) = 1ov(><)”2<@> <9> (x)_10'ix(x)(/)i(x)ai(x))_1/4s i=1,2,3. (3.20)

4 pi(X) Pi/x 2

Obviously, the eigenvalue problem of (3.2)-(3.7) is equivalent to that of (3.13)-(3.18).

We are now in a position to determine the eigenvalues of «. In other words, we will determine the eigenvalues of
(3.13)-(3.18). According to the theory of ordinary differential equations, there exist two linear independent solutions
Fi(A, &) and ¥; (1, &) to (3.13). The general solutions to (3.13) are of the form

wi®) = a"F0, &) + 4P %0, &), i=1,2,3.
Substituting them into (3.14)-(3.18) leads to an algebraic equation
(1)

A Ap O 0 0 0 a(12>
0 0 A23 A24 0 0 a]
0 0 0 0 Fkms ysms||d’ -0
Ay Ap Az Ay 0 0 a§2) -
61 As2 As3 Ass Ass Ass a%Z)

3

where

p1(£1)
o1(¢q)

p1(£1)
o1(¢1)
Axs = 02(L)Fy (A, M) 4+ 2 (€)Fa (M, my), Ags = 02 (L) Y5 (X, mp) + C2(€2) Y2 (A, my),
An = (01(01(0) 4F(1,0),  Ag = (01(0)51(0) 4y (1, 0),

A = —(02(0)02(0)) 1F(0, 0),  Asg = —(p2(0)02(0) 445 (, 0),

Ay = o1(€1)Fy (A, my) + |:C1(51) + A ( ) (aq + ﬁle_m):| Fi(A, my),

_1

) "+ me*ﬁ)] VG my),

Ay = o(E) Yy (A, my) + |:C1(51) + A (
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Ass = (02(0)02(0)) "F5 (A, 0),  Asq = (p2(0)02(0)) 495 (1, 0),
Ass = —(p3(0)03(0)) "4F5 (1, 0),  Ass = —(p3(0)a3(0)) "4 y3(A, 0),
As1 = (p1(0)01(0))4F|(%, 0) + [d1 (0) — A(p1(0)01(0)) "4 (ato + ﬁoe—“°>] F1(%, 0),

As2 = (p1(0)51(0)) 4 (1, 0) + [d1(0> — 2(p1(0)51(0) "3 (o + ﬁoe*“f’)] Y1(1, 0),

1 1
Asz = (02(0)02(0))Fy (%, 0) + d2(0)F>(2, 0),  Ass = (02(0)02(0)) 2915 (%, 0) + d2(0)¥2(2, 0),
1 1
Ass = (p3(0)03(0))4F3(x, 0) + d3(0)F3(2, 0),  Ass = (03(0)03(0))2¢r3(%, 0) + d3(0)¥r3(2, 0).
Denoting by §(A) the above coefficients matrix, we have the following result.
Proposition 3.1. A € C is an eigenvalue of A if and only if A is a zero point of the determinant of the coefficient matrix 5(1).

To analyze the asymptotic spectrum of A, we shall use the asymptotic analysis technique. For A € C with |A| > § >
0, Fi(%, &) and ¥;(A, &;) have the asymptotic expressions (see, [27, Theorem 1, p. 49]):

Fi(A, &) = e [1 +0 (i)] , Wi(r, &) = e [1 +0 (1)} , (3.21)

/ AE; 1 ’ —A& 1
Fi(A, &) =21 |14+0 WAk (A &) =re " | =140 ViR (3.22)
Therefore, the general solution of Eq. (3.13) can be asymptotically expressed as
wi(X, &) = AiMFQ, &) + Bi(MW(A, &)

= Ai(L)ei [1 +0 (1)} + Bi(M)e [1 +0 (;)} , (3.23)

with derivative

w](n, &) = Mi(A)e [1 +0 (i)} — ABj(M)e i [1 +0 (i)} ,

where A;(1) and B;()) are coefficients dependent on A. By using the notations

[allz"*‘)(l)’ k= YO O G mO) A, i=1.2.3,

A NI
h = 3\/Wpi(0)—0lo _ 3-0[0]2?
b 3.9/pi(0)0;(0) 3k
h'+::3\/m+a0:3+aol~<iz 193
’ 3Y01(0)0;(0) P e

we obtain the asymptotic expression A()L) to the coefficient matrix §(A) of those equations, which can be resulted from
inserting (3.23) into (3.14)-(3.18). In fact, A(\) =

A M8k 4+ AeM™ [aqk + o4 (£1) ] 0 N :
0 Aoa(£2)]1e™™ 0
0 0 e 1],
[k1]1 —[ko14 0
[’zl]l 0 —[ks]y
et |:1301~<1:| AT, e |:’Bol~<zi| +A[hy 11 —Aeto |:'30/~<3i| + Alhs
3 ] 34 .
AT [B1k]y + Ae MM ok — o1 (€)1 0 N 0
0 Al—02(£)]1e7 "™ 0
. 0 e "™[1],
I:klil] _[kZ]l 0
[f{l]] 0 ~[ks]s

— e 0 [%fq] — AlhTT4 —re "t [%TQ] — AlhS T4 —ke_“o[iofg] — Alhd T
1 1
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ap + bny 0 0 a4+ by 0 0
= (3.24)
ag1 +be1 s +bsr g3+ be3  Aes + bes  Ass + bes  ass + bes
Thereby, det A(A) = |AQ)|
a1 0 0 a4 0 0 aq 0 0 a4 0 0
Gs1 G52 Qg3 Gss Gss Ges| |bs1 bsx bss bes bes bes
b;;y O 0 by O 0 by O 0 by O 0
+ “e P P P ..+... P PR P
ds1 Os2 (3 GOes Udes dee bs1 bes bes bes bes bes
=: |Aq1| + |A2] + [B1] + |Ba].
A direct calculation gives
3 3
|A)| = —APeMrotT) |:k<72(62),80;31 I 121} (eA TLimi 4 emh X '"f) +o0 (xze—“m”l) cosh (k > mi)> ,
i=1 4 i—1
3 3. 3 3.
x| = =22 M1 ko, (62) By :eszﬁ m [Z [T &nf } +eh i [Z [] K } ]
i=1 j=1,ji 1 i=1 j=1,j£i ;
3
+o0 <)\Ze”1 cosh (A Z m,)) ,
i=1
3 ~ 3 3
Bi| = —ae o |:,30 k| {e 2R ik + oi€0)oa ()l + e X @ik = o1 (¢)oa ()
i=1
! 3
+o (Aze_“‘) cosh (A Z m,—)) ,
i=1
3 3 3 ~ 3
|By| = —a%e"Zi=1 ™[k + 01(£1)02(L2) ]y [Z I1 k,vh,»*} — e Tim M (ak — 01(£1))02(€2) ]y
i=1 j=1,ji
3003 3
x |:Z 1—[ kjhi:| +o (Az cosh (AZm,-)) ,
i=1 j=1,ji 1 i=1
where the expression in the form o(« (1)) means some function satisfying lim,| +o0 Of‘(%” = 0. Hence, we have
det A()) 3
lim <3—) = —koa(t2)pofr [ [ ki # 0. (3.25)
—A mi+to+11 i=1
33e \i=t
_ detA()) A
im0 = [k + 01(E0)]oz(62) ST &k ) #o. (3.26)
ih—>+o0 ¥ Y mg =1 j=1,ji
e i=1

Theorem 3.1. Let A be defined by (2.2)-(2.3). Then the spectrum of A distributes in a strip parallel to the imaginary axis.
Moreover, o (+4) is a union of finitely many separable sets.

Proof. The spectrum of 4 distributes in a strip parallel to the imaginary axis is a direct result of (3.25) and (3.26), which
implies that |A(X)] is a sine-type function in A. Then the conclusion follows from the Levin lemma [28]. O

4. The basis property and the exponential stability of the system

In this section, we shall establish the Riesz basis property and exponential stability of the system (2.4). To show the Riesz
basis property of system (2.4), verification of the completeness about generalized eigenvectors of 4 in # is necessary. The
following proposition gives a sufficient condition, which comes from [6].

Proposition 4.1. Let 4 be the generator of a Co-semigroup in a Hilbert space J¢. Assume that 4 is discrete and for A € p(A*) (A*
is the adjoint operator of A), R(\, A™) is of the form
G(A)x

R(A, A™)x = Fo)

e H,
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where for each x € ¥, G(A)x is a #¢-valued entire function with order less than or equal to p, and F (A) is a scalar entire function
of order p,. Let p = max{p;, p,} < ocoandn € Nsuchthatn—1 < p < n.Iftherearen+ 1raysy;,j=0,1,...,nonthe
complex plane satisfying

T 3
arg yo = 5 <argyy <argy; < --- < argyn = —

and
y .
argyjt1 —argy; = w 0<j=n-1
such that R(A, A*)x is bounded on eachray y;, 0 < j < nas [A| = 00, Vx € H, then Sp(A) = Sp(A™) = H, where Sp(A) is
the closed subspace spanned by all generalized eigenvectors of A.

Using Proposition 4.1, we can prove the following result.

Theorem 4.1. All (generalized) eigenvectors of 4 are complete in F.

Proof. We verify the assertion by three steps.
Step 1. Given arbitrary (f, g, p) € #, |R(A, A™) (f, g, p)| is bounded as . — —oo0.
We define an auxiliary operator 4Ag by 4Aq(u, v, z) := A(u, v, z), (U, v, z) € D(Ap) with domain

3
W, v.2) e XN[[H?(0. £) x X x H'(0, 1) :
D(Aq) = =
( 0) 3 dui dui .
> 0i(0)—(0) = 0; = (£) = 0; i =1,2; 2(0) = v1(0), z:(0) = vy(£y).
= dx dx
Then, +A, is a skew-adjoint operator in # and hence ||[R(A, AJ) || < ﬁ Y1 e R\ {0}.
Let A € p(A*) N p(A5) NR™ and (f, g, p) € H#, we write

W, v,2) =R, 45,2, D), (w,n, 1) =RMA, AN, g,p) — WU, v,2), (4.1)

where 4™ is given by

—v
1 d du; ’
A <3> - [_P'(X) [dx [Ui(x) ud)(:()] - qi(X)Ui(X)]}
= ; i=1
z 1dZ,' !
el

and
3

(u,v,z) €XN HHZ(O, €) x X x H2(0, 1)2 :
i=1

* > du; du
D(A") = 01(0) = (0) = —aov1(0) — Bozo(1), —> (62) =0,
; dx ov1 040 dx 2

d
01(51)%(51) = av1(£1) + B1z1(1), 20(0) = v1(0), 21 (0) = v1(£1)

Thus, we have

1
IR, A, g D) = (w0, 1)+ W v, D < [(w,n, D + I, v, D] < [[(w,n, NIl + mll(f,g,p)ﬂ,

which implies that the conclusion is true provided that || (w, n, r)|| is bounded as A — —o0.
A direct calculation shows that (w, n, r) satisfies the following differential equations

-1 = Aw,

L N DU TGO VR | R
{_,Oi(x) |:dX |:O',(X) dx ]—QI(X)wn(X)“i=l— n,

{ 1dr; }1
- = Ar(s),

Ti ds i=0
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with appropriate boundary conditions. Then,
RN (w, 0. N3 =R ((w, 0. 1), (w, 7,7))

B 1 [d dwi(x) . 3 1.dri(s) )"
- _"’{_pmx) [d (’() )_q'(")w'(")“f_l’{n ds }i_o (o)

3. rti dn; (%) dw d
=—Z/ [,<> i) d() (x)n,<x>w<x>+n,<x>[ (m() w”)—m(x)w,-(x)”dx

Lob 1 dri(s)—

d
27 ds ri(s)ds

3 G dn, dw, b b dw; dn; 1< by
=—Zj{fo o0 - dx+al<x> m(X) —/O o) dx 2y )P

0

i=

By [m

i=1

d i _— 1 ! bi
ni(6) — Ui(O);i(O)nf(O)] +3 Z ;(In‘(l)l2 — n ()%

1
= —11 =+ 512

We will calculate Iy and I,. According to (4.1), (w 4+ u, n + v, r + z) € D(A*) and (u, v, z) € D(Ag). Thus,
n = —Aw, v=—Au+f,

N
2o(s) = e*™" [Ul(o) - To/ e“o"po(h)dh:l , se(0,1);
0

zi(s) = '™ [m(&)—n/ e ip (h)dh] s€(0,1);
0

ro(s) = n(0)e™* = —Aw(0)e™”, se (0, 1);
ri(s) = m(€1)e™ = —aw(£1)e"™, se (0, 1),

where w = (w; (x))3 , satisfies the following equations

[ ( oi(x )dw (X)> - Qi(x)wi(x)] =0, x€(0,8),i=1,2,3,

dw, AT AT ! —At1h
Gl(zl)W(31)=(a1+ﬁle D{=Alw1(€1) + u1 (€] + fi(€)} — 1 Bre 1/(; e """py(h)dh,

—22w;(x) +

Pi (%)

d
ﬂ(fzz) =0,

w3(£3) =0,
w1(0) = wz(0) = w3(0),

0

i m@%w) = (a0 + Boe* ™) {A[w1(0) + u1(0)] — f1(0)} + ToB0e™™ f 1 e~ " po (h)dh.
I i [a, ni(l) — a,-(O)‘Z;"Kom(m}
= izzl(al + ﬁle“l)|w1(el)| + Ay + Bre ™) (6) — fi(€)Twi (1)
+ApiTiet /0 i, (Rt (6 + 22 (ap + Boe™") w1 (0)[?

1
+ Mao + Boe™)[Au1(0) — f1(0) w1 (0) + ABoToe™™ / e 4" po(h)dhw (0)
0

IA

[(a1+ ﬁle“1>+(oe1+ﬁ1efﬂ)+’31 ! “1]#|w1(e1)|2 [(@1 + Bie™™) + uipre’ ] I(f, g, ) II?

[(050 + Boe™™) + (g + Boe™) + ’3 °2° “O]ﬁwl(on + [(@0 + Boe™) + w0Boe* ] I(f. £, DI,

737

(4.2)
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1

b; b b
> (P = 1)) = = [ @) — 1) + = [y ()P = 1)
T; To 71

i=0 !

I

boA? bA2
‘;—|w1<0>|2(e2“° ~ D+ %m(zl)ﬁ(ez“l - 1.
0 1

Therefore,

l(w, n, )| =

> =

( I +712> <- [2<a1 + B ™) + ’31 ! “1]Mw1<el>|
l
[(@1+ Bie"™) + ti i ] I(F, g, P)II?

— | 2(ap + Boe’™) + B2 ’3" 0 “O}Mwl(on

>"\'—*|—|>’\

[(@o + Boe™™) + Toﬂoeho] (. g pI?
+ 2 PE@ — 1) + 2 @) 2@ — 1), (4.9)
270 27

Inequality (4.9) indicates that the assertion will be verified if |w;(0)|? and |w;(£;)|? can be estimated appropriately. Define

hi(&) = v pi(x(E))oi(x(&)) wi (x(§)), (4.10)
where x(&;) is the inverse function of &;(x) and &;(x) := fox g ig; dt. Then we only need to estimate the values of h; (&) at the

two endpoints since p;(x) and o7 (x) are known functions. To this end, the main idea is to obtain the asymptotic expression
of h1(&;) by applying the asymptotic analysis technique that used in Section 3 and then utilize the Cramer’s rule.
Inserting (4.10) into (4.3)-(4.8), we get

h (&) — AMhi(&) = [bi(&) — ¢iEDIi(&), & € (0,my), i=1,2,3, (4.11)
hy(my) + [E(€1) + Al + 1€ ™)1 (€1)o1 (€)1 V?] hy(my)
1
= [p1 (L))o (L] [(051 + B ™M[fi(L1) — Aur(£1)] — Biriet™ / e“l"pl(h)dh:l , (4.12)
0
h(my) + &, (€3)hy(my) = 0, (4.13)
h3(m3) = 0, (4.14)
[£1(0)31(0)]~/*h1(0) = [02(0)32(0)]~/*h2(0) = [p3(0)a3(0)]~"/*h3(0), (4.15)

3 3
> OOk + Y [d10) = (@0 + Boe )10 @)1 hi(0)
i=1 i=1

1
= —(ao + Bo€™)[—Au;1(0) + f1(0)] + 7o fo€*™ / e *™""py(h)dh, (4.16)
0

where b;(x(§))), ¢i(&;) and m; are given by (3.12), (3.11) and (3.10) respectively, and

N 1 12 (@)xpi — pi(0)x .
Gkx) = [01(X)] [oi(x) pi(X)]~ —4a,~ O i=1,2,
~ (oxpi — pi(oD)x .
) — — I 1/4 NVxFL FIVEUX _
di(x) = 2[0:(X)] x[oi(X) pi(X)]™ Ao i=1,2,3.

Again applying the theorem in [27, p. 49] to Eq. (4.11), we get the asymptotical expression of the general solution h;(A, &;)

to (4.11)
. A 1) . =i <1>
Ai(M)e |:1 +0 (A + Bi(A)e 14+0 3

= AWM 1], + B (e Mi[1];, &€ O,my), i=1,2,3, (4.17)

hi(A, &)

where [1]; =140 (%)
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Substitute (4.17) into (4.12)-(4.16), then apply the Cramer’s rule to A;(A) and B;(A). A complicated calculation gives

010’22’23111(0)

M) = -5 +o(D),
Olol_[kj—Zk,' H
i=1 =1 j=1ji
ko1 ™y (€
B1(A) KO 1€ u1( 1)+ (e)‘ml)
—l—}—a]k
Consequently,
hi1(0) = Ai(M)[1]1 + Bi(W)[1]
aokaksug (0 korye*™uy (€
_ _ okaksuy(0) +om by + 1 1(1)_'_(1,”1) (11,
3 . 3 —1+0{1k
aol_lk —Zk H
i=1
agky ks (0 kare*™iuy (£
- bl )3 + 11 0 (0>+e*'"1u1<e1>10< >+o(e““1)
M-k [ & 17T
i= i=1 j=1,j#i

hi(my) = Aj(LD)er™ 1]y + Bi(Me ™ [1]

kaoksuy (0 ko ™y (2
_ _ g ko 3u1( )3 +o(1) e M 1], + { Ka1€ +ul(] 1) +o(€}‘m1)} e M1,
—14 a1k
H Z ﬂ !
i=1 i=1 j=1,j
aokakze*™ (0 koyuy (€ 1 1
- b PO B ) puenio () +o () +o,
Olol_[f{j—Zf{j l_[ f{j —ltak
i=1 =1 j=1ji
Up until now, for A < 0, we obtain
I (0)] < aokaks|ug(0)] ’<011|U1(51)J
3. 3 | — 14k
ao [Tki—X ki T1 K
i=1 i=1 j=1j#i
1 1
+ [lu1(0)| + |u1(€1)|]0( ) + 0( > +o(1)
aokak kot 1
< 2 el —2 . Lyggpl
3 3 [A] | — 14 ark] 12
ao [Tk — Zk, 1 K
i=1 i=1 j=1j#i
1 1
+o +0 1(f, g, p)II + o(1)
1
= (1+m> ( )Il(f g, p)II—O( )II(f g.nl, (4.18)
agl~<21~<3em1 1 ’2051
[hi(my)| < . &l + — *Il(f g ol
3. 3. 3 _| Al | — 14 aik] 12l
(M()]_[I(,‘—Zk,‘ l_[ kj
i=1 =1 j=1,ji
1 1
+o0 +0 I(f, g, p)Il +o(1)
— 1 Amq ol = .8,
< e +m) <A>||(fgp)||
1
= O(X) £, g pl- (4.19)
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By inserting Eqs. (4.18)-(4.19) into Eq. (4.9), we get

T A A 1
l(w, n, N> < |:—2(051 + pre™) — %eln + ;(GZMI - 1)] Ak|hy (my)[* — X [(a1 + B1€*™) + 111"
1

T A
xI(f. g pII° + [—Z(Oto + Boe™™) — %e“" + o

(e¥70 — 1)] AR? R (0)]?
To

1
-3 [(@0 + Bo) + T0Boe™™]

A 1 1
= | =201 + 0(e"™) — ]AO( )Il(f g.pI° _X[O” +0E™M] I, 8. pI?

A 1 1
+ [—2% +0(e"™) — TJ 20 (ﬁ) I, g DI - n [0 +0E™)] II(f, g, pII?

_ c+o( )] 1.8 P)I.

where C is a positive constant. Therefore,

IRG, A, &, DI = [[(w, n, )]l + IR(A, Ag) (. &, D)

< {[c+o<i)]m m}ll(f gl

which implies ||[R(A, A*) (f, g, p)|| is bounded as . — —oo.
Step 2.

H:f.8,p)
RO, A, g, p) = ————,
( )(f.g.p) MGh)
where H(}; f, g, p) is a #-value entire function of exponential type of finite order at most 1 and M(}) is a scalar entire
function of order 1.
In fact, let A € p(A*),A # 0. For any (f,g,p) € H, denote (ii,v,Z) = (Al — A*)"!(f, g, p), which indicates
(i, v,Z) € D(A*) and

v;i(x) = fi(x) — Al(x), x€(0,¢4),i=1,2,3,
- 1 du;(x) - .
AVi(x) + ) [— ( i(%) ) —q.-(X)u,-(x)} =g®, xe€(0,¢),i=1,2,3,

Vs
) =~ Zdi)

=pi, s€(0,1),i=0,1

Setting
(&) = (pio)V* (x(E)) i (x(§)),
where &;,i = 1, 2, 3 is defined as before, we can change above equations into the following forms in a more precise way.

h (&) — A?hi(&) + bixE)Ri(E) = [pxEN) T (xEN g (x(E)) — MxE)], & € (0,my), i=1,2,3, (420)
R, (my) + [E1(€1) + A(100) "2 (€1) (a1 + Bre*™)Thi(my)

1
= (p101)” () [(al + Bie"™fi(£1) + pre*™ f m(n)e“mdn} , (4.21)

0
R,y (my) + & (£2)ha(my) = 0, (4.22)
hs(ms3) = 0, (4.23)
(01(0)01(0))™*h1(0) = (p2(0)02(0)) ™ *h,(0) = (p3(0)03(0))~/*h3(0), (4.24)

3 1/4 3 3 —1/4
pi(0)\ 7+, SIS A £i(0) -
; (Ui (0)) hj(0) + ; di(0)hi(0) + 5 (oo + fo) ; (m (0)) hi(0)

1
— (a0 + )i (0) — Tfo / pr(me 1 dy, (4.25)
0
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where
- 5 1 _ .
bi(x) = E(piai)79/4(x)(pi0‘i)§ (%) — Z(Pioi)75/4(x)(pi0'i)xx(x) + qi(x) (oio1) " (0 (), i=1,2,3,

- 1 _ .
60 = =7 (o) 32 (x) (pioy), W)oi(x), i=1,2,

N\ —o/4 )
a0 = (ﬁ) (X010 (ﬁ) (0~ 5 (o) W0, 1=1,2,3.

Two linearly independent solutions F(, &), ¥i(A, &) of Eq. (4.20) satisfy the Volterra integral equations:

E(h, &)

1 &
cosh() + - / Sinh(A (& — n) oo ()17 8:(7) — Afi(n)ldn
0
1 & » "
- / Sinh(A(& — ) Bi(n)Fs s m)dn
0

1 1 (& ..
=: cosh(A§;) + XQ(A, &)+ T, &) — X/ sinh(A (& — m)bi(n)Fi(A, n)dn, (4.26)
0

Wi(r, &) = sinh(h&) + % /0 " sinh(A(& — n)[pi(moi(m]"*1gi(n) — Afi(m]1dn
s /O " Sinh(h (& — )b ih, mn
= Sinh(&) + Q0. £) + T0, &) + /0 " sinh(u (& — B, i, (427)
where
Q0. &) = /0 " sinh(u(& — M) a1 g dn,
TG &) = - /0 " sinh(i(& — M) a1 .

Furthermore, F;, ¥ are determined uniquely by (4.26) and (4.27), respectively, using [29, Theorem 3.10, p. 36].

Since the kernel I~<,<(n) of integral equations (4.26) and (4.27) are entire functions in A, the solutions F:, ; obtained by the
method of successive approximation are also entire functions with respect to A. Thereby, the general solution of Eq. (4.20)
has the form

(&) = AMWEQ, &) + B, &) (4.28)

for any constants A;(A), Bi (1) dependent on A and is an entire function with respect to A.
By combining (4.21)-(4.26), a straightforward but complicated calculation gives

. H(f,g.p)
R(A ==
(A, A, 2, D) det A0

where A()) is the coefficient matrix obtained by inserting (4.26) into (4.21)-(4.25), which is a scalar entire function of
finite exponential type. H(; f, g, p) is a #-valued entire function of finite exponential type, because H(}; f, g) is the linear
combination of sinh(A§;), cosh()\&;), some constants dependent on the values of o;(x), p;(x) and g;(x) at endpoint O or ¢; as
well as F¢-valued functions f (x), g(x).

Step 3. The sequence of generalized eigenvectors of + is complete in the state Hilbert space #.

Obviously, o, = p1 = p = 1. Wetake yy = =N +1iy,y1 = =N —y,y, = —N —iyfory € (0, o0) and sufficiently
large positive real number N in Proposition 4.1. Steps 1 and 2 show that all the conditions in Proposition 4.1 are fulfilled.
The desired result follows from Proposition 4.1. O

To prove the Riesz basis property of system (2.4), we need the notion of a Riesz basis with parentheses and another
proposition.

A sequence {f;}2, is called a Riesz basis with parentheses if there is a method in parentheses; for instance, there is a
sequence of integersng = 1 <n; < -.. < n, < ---such that the following conditions hold:
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(1) {fi}2, is complete in #,
(2) there exist two positive constants ¢ and C such that for any integer p and any finite scalars 71, . .., fny, Mng+15 - - - » My
n 2
k p Nk p ng
CZZMZZMﬂZDw (429)
=1 |i=ng_q k=1 |[i=ng_q k=1 |i=ng_q

3)f = Zf‘il (Zl ne Lf) converges in # (see [30]).

Proposition 4.2 ([31]). Let A be the generator of a Co-semigroup T(t) (t > 0) on a separable Hilbert space #. Suppose that the
following conditions are satisfied:

(1) the spectrum of A has a decomposition o (A) = o1(A) | 02(A);
(2) there exists a real number « € R such that

SUP{RA|L € 01(A)} < @ < Inf{RA|X € or(A)};
(3) the set o5 (A) = {Ar}ken consists of isolated eigenvalues of 4 and is a union of finitely separated sets.
Then there exist two T (t)-invariant closed subspaces #; and F¢, with

={f € H|E(A, A)f =0,VX € 02(A)},

m
Hy = span{ Y "EQu, A)f : A € 0(A), Vm €N, Vf € #
k=1

such that 3, () 3¢, = {0} with property that o (A|z,) = 01(+4) and o (A|z,) = o2(A). Moreover, there exists a finite collection
£2), of elements in o, (A) such that {E($2y, #)H>}ren forms a subspace Riesz basis for #¢,, where E($2y, #A) = ZAer E(A, A)is
the Riesz projector corresponding to $2y.

Theorem 4.2. Let A be defined by (2.2)-(2.3). There exists a sequence of generalized eigenvectors of A that forms a Riesz basis
with parentheses for #.

Proof. We take o1(4) = {—00}, 02(A) = 0,(A) in Proposition 4.2, then o (4) = o1(A) U o(A). Condition (1) is satisfied.
Theorem 3.1 ensures that the spectrum of »4 distributes in a strip parallel to the imaginary axis and o () is a union of finitely
separable sets, which together with Corollary 2.2 imply that Conditions (2) and (3) are fulfilled. Hence, there exists T(t)-
invariant closed subspace #, such that the sequence of generalized eigenvectors of 4 forms a subspace Riesz basis (i.e. the
Riesz basis with parentheses) for #¢, by Proposition 4.2. Furthermore, Theorem 4.1 shows that the sequence of generalized
eigenvectors of the system operator + is complete in #¢, which implies that #, = #. Hence, we complete the proof. O

Now, we are in a position to discuss the stability of the closed loop system (2.4). First we consider the following two
eigenvalue problems of ordinary differential equations

d duz( )
( 02(%) ) + @ u(x) = upa(Xux(x), x € (0, £y), (4:30)
Uz(O) =0, uz(fz) =0
and
d d
- ( o300 22 )) + 30U () = upsus(x). X € (0, £3), s
u3(0) =0, U3(€3) =0.
Let ¥;(x, ) be a solution to the following equation
(,(x) v )> T GRUX = LY, xe .6,
%(0) =0, Y0 =1
Then the eigenvalues of (4.30) and (4.31) are given respectively by
Ty = {un > 0y (€2, ) = 0}, X3 = {vn > 0|Y3(L3, vy) = O} (4.32)

Theorem 4.3. If X, N X3 # (), then system (2.4) (or system (1.1)) is unstable.
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Proof. If ¥, N X3 # (J, we take u € ¥, N X3 and define functions as follows
eV e

X, L), us(x,t) = —

,(0) Ya(x, ) 3(x, t) 5(0)

A direct verification shows that {u;(x, t)}j3=1 satisfy (1.1). Therefore the system is unstable. O

u(x,t) =0, Up(x, t) = Y3 (x, @).

Note that the eigenvalue problems (4.30) and (4.31) correspond to different physical systems, from the physical point
of view, different physics systems have different eigenvalues. Therefore, we can assume that X, N X3 = . In the case of
constant coefficients, for instance, o3 (x) = 03(X) = 1, p2(x) = p3(X) = 1and q;(x) = q3(x) = 0, the condition X, N X3 = @
is equivalent to request that

Ez 2m =+ 1
£3 2k

, Vk, meN.

In what follows, we discuss the asymptotic stability and the exponential stability of system (2.4) under the condition
>N Xy =0

Theorem 4.4. Let X, and X5 be defined by (4.32). Suppose that X, N X3 = (J, then the following statements are true.

(1) System (2.4) is asymptotically stable.
(2) Let my and ms be defined by (3.17), then system (2.4) is exponentially stable if and only if m, and mjs satisfy the condition

m, 2ny + 1 my 2m
— e —,n,Nnp N} or —€{——,n1,n, €N}
ms 2n2+1

Proof. As a direct result of Theorems 4.2 and 3.1, we have that the spectrum-determined growth condition w(A) =
sup{HA|L € o ()} holds. Obviously, if

sup{MA|r € o (A)} <O, (4.33)

then system (2.4) is stable exponentially.

First, we show that the system is asymptotically stable. Since the operator 4 generates a Cy-semigroup of contractions
on # by Theorem 2.1 and o (A) C {A € C|MA < 0}, we only need to show that there is no eigenvalue on the imaginary
axis by Corollary 2.2. In fact, if o (A) N iR # @, we take A € o () NiR, A # 0 such that A(u, v,z) = A(u, v, z), where
(u, v, z) € D(+4) and is a nonzero vector. From the relation

1 .
RANW. v, 2)? = WA, v, 2), (U, v,2)) < 12”% Bi — }| (O +[l:—ﬂ,-] |zi(1)|2} <0

i=0

we get z(0) = z(1) = 0,i = 0, 1. Using A(u, v, z) = A(u, v, z), we have z;(x) = z(0)e ™™ = 0,i = 0,1, v = Auand
u = {u;} satisfy the equations

d [ du; (x)} 5 )

i(%) — qi(ui(x) = A7 pi(ui(x), x€(0,¢), i=1,2,3, (4.34)
u1(0) = ux(0) = u3(0) (4.35)

3 dui

Z 0i(0)(0) = o1 (0) + fozo(1) = 0, (4.36)
dle
*(52) =0, usz(€3) =0 (4.37)
oy “”T;(“ = —ahui (&) — frzi1(1) =0, (4.38)
20(0) = )\U](O) =0, 21 (O) = )\U](f]) =0. (439)

Egs. (4.39) and (4.35) show that u;(0) = u3(0) = u3(0) = 0 and u;(¢;) = 0, which together with (4.38) indicate that
u7(x) = 0. Hence, u, (x) and u3(x) satisfy (4.30) and (4.31) for . = A?, respectively. We assert that u,(x) = u3(x) = 0 by the
assumption X, N X5 = @. Therefore, (u, v, z) = 0; this is a contradiction. So, there is no eigenvalue on the imaginary axis.

Next, we prove that the imaginary axis is not an asymptote of o (). Indeed, we only need to show that the imaginary
axis is not an asymptote of the zeros of det A(A). From (3.25) and (3.26), we know that demm is an entire function of sine

det A()») ]/

type, so is [dem(”] which implies that [=—5**]" is bounded in the strip parallel to the i 1mag1nary axis (see, [32]).
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By contradictory, assume that there is a sequence A, C o (4) with A, — 0 and |A,] — oo such that det A(A,) =
0,Vn € N. Let A, = a, + iy, then there exist 6, € («y, 0) such that
det A(X,) det A(iBn) det A'(0, +iBn) |
3 - 3 = 3 an, Oy € (an, 0).
A (B (6n + i)

dem(’“] and o, — 0, we get

By the boundedness of [

detA0n) _ i, 92t 405

=0. 4.40
n—00 Ag n—00 (iIBn)3 ( )
On the other hand, denote the main part of A(A) by Ag(X), i.e. Ag(A) =
1M Bk + AeM™ [onk + 01(€1)] 0 0
0 roa (£2)er™ 0
0 0 eMm
kl _k2
ki 0 —ks
At [@ } + AhT —aeto0 [5%2] +Ahy  —he Tt [ﬁ" k3} + Ahy
ABrke* T 4 Yo M gk — oy (£1)] 0 0
0 — oy (Ly)e™ 0
0 0 e~Mm3
k; —ka 0 . (4.41)
ki 0 —ks
re o [’3" ] — Akt —Ae~HT0 [’630122] — Ahf —re [’10123] — Ahy
A direct calculation gives
det Ao(}»)
S =5
0 0 1/4
- ( £30)o3(0) ) Fy(W)F, (L) cosh Ams
£1(0)01(0)02(0)02(0)
sinh Am; (m (0)01(0) ) 4 (,02 (0)0(0) ) v
+ EMGA) + | ———= Fi(M)Ga(A)
(3(0)3(0)) /4 [ P00 P00/ T
p1<0>m(0>)”4
20 R (VB |,
(,02(0)02(0) o

where

p1(£1)
o1(4y)
p1(£1)

o1(£1)
F,(A) = cosh Am,, Gy (L) = sinh Am,

-1/2
Fi1(A) = 01(£1) coshim; + ( ) Cq sinh Amq,

G1(A) = o1(£1) sinhAm; + ( ) . Cqy coshamy,

and
Co = Boe "™ + ao, C1=pre " +ay.

Since; > B;,i =0, 1, forany A = ix € iR, |G| > «; — B; > 0, it is easy to check that
igﬂgm (ix)] >0 and igﬂg|(}1(ix)| > 0.

Thus we have

S(ix) =< p3(0)03(0) )”“msxm cosxm _( p2(0)02(0)
Fi(ix)  \ p1(0)01(0)02(0)02(0) 2 >\ 01(0)01(0) p3(0)03(0)

1/4
) sin xms sin xm,
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0)a(0 /4 ¢ 1
— ( 1)1 (0) ) <a12(£1) — alt 1)C2> sin Xms CoS XMy Sin xmy cos xm;

02(0)02(0) p3(0)03(0) p1(€1) 1) |Fy(ix) |2
) p1(0)a1(0) Rl I pr(€)\ .
_I(P2(0)02(0)03(0)03(0)) |F1(ix)|2“‘“1)<m(z1)> Ci+ Co | sinxms cosxmy.

Obviously, if there is an x € R such that sinxm3 = cos xm; = 0, then S(ix) = 0. In this case, there are infinitely many points
{x,} on R such that S(ix,;,) = 0.

If cos xm, = 0 and sinxms # 0, then x = % n € N, we have
S _ ( p2(0)5(0) )‘/“ . @n+ Drms
Fy(ix) £1(0)01(0) p3(0)03(0) 2m, '

If cos xm, # 0 and sinxms3 = 0, thenx = ;—’;, n € N, we have

Fi(ix) £1(0)01(0) p2(0)02(0) ms
If cos xm, = 0 and sin xm3 # 0, we write
S(ix) _5 S(ix) i S(ix)
F; (ix) F; (ix) F; (ix)
S Sx) ( p1(0)o1(0) )1/4 { (B cosxty + a1)

S(x) _ i( p3(0)03(0) )”“cosnm

N F@)  \ p2(0)02(0)03(0)03(0) |F1(ix) |2
(m(&)) . . (al(m)”z .
X B1sinxty sin2xmy + o1(£1) + Bo COSXTy + og ¢ Sin xm3 COS Xm;.
p1(£1) p1(£1)

Note that

¢ )\ "?
|:<2253> B1sinxtq sin2xmy + o1(£1) (ngé;) ] >0,

if B1 < a1, Bo < ap and B7 < o1(£1) p1(£1).
Therefore, when

my 2n1 +1 my 2111
—€ej—,n,np €N or — —— nq,Np € N, (4.42)
ms 2n; +1 ms 2ny + 1
we always have infycr )fl((ig) > 0 and in the other case it holds that inf,cg Fsl(g;)) = 0. So, if the condition (4.42) holds we
get
det A(ix)
XeR (ix)3

This contradicts to (4.40). Thus, we can conclude that sup{RA|A € o(4)} < 0.The desired result follows. O

5. Concluding remarks

With the help of the Riesz basis approach and the asymptotic analysis technique, the exponential stability problem for
variable coefficient wave network with small time-delay in nodal feedbacks has been solved under certain conditions in
this paper. The key point in stability analysis is to replace checking uniform boundedness of the resolvent R(X, 4) on the
imaginary axis by verifying infycr ‘de‘tié(li")' > 0. Hence we get the exponential stability of the network system. Although
this method has a tedious computation, it can be used to discuss the variable coefficient differential equation.
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