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a b s t r a c t

Sampling theory is concerned with the problem of reconstructing a signal f in a Hilbert
space from a given a collection of sampled values of f . If a certain decomposition of the
Hilbert space is possible (in terms of the sampling and reconstruction subspaces) then
a consistent reconstruction can be obtained. In this paper we treat the case in which
such a decomposition cannot be found. For this situation, we study the quasi-consistent
reconstructions which are an extension of the consistent reconstructions. We relate the
previous concepts to generalized inverses.We also present some new results and problems
regarding consistent sampling.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Sampling theory is a topic with applications in several fields such as signal and image processing, communication
engineering, and information theory, among others. The central idea of this theory is to recover a continuous-time function
from a discrete set of samples. One of the first results in this direction was proved by Cauchy in [1]. Nevertheless, the result
that has had the most impact in this area is the classical Whittaker–Kotel’nikov–Shannon theorem [2–4] which provides
conditions on a function on R such that it can be reconstructed from its sampled values at integer points. More precisely,
for every f ∈ L2(R) whose Fourier transform is supported in [−

1
2 ,

1
2 ], it holds that f (t) =


n∈Z f (n) sinc(t − n) with L2 and

uniform convergences and where sinc(t) :=
sin(π t)

π t .
A more general approach to sampling in an arbitrary Hilbert space is to consider the samples of the original signal

f as the inner product of f with a set of sampling vectors, which span the sampling subspace S (see [5–7]). Hence a
reconstruction of f , f̃ , is obtained as a linear combination of a set of reconstruction vectors that span the reconstruction
subspace W . We assume that the coefficients of such a reconstruction are obtained by a bounded linear transformation
of the samples. This bounded linear operator will be called a filter. Observe that this framework includes the classical
Whittaker–Kotel’nikov–Shannon theorem. Therefore, the sampling problem consists in selecting an appropriate filter such
that the reconstruction obtained verifies some optimal criterion.

A common criterion suggested by Unser and Aldroubi in [8] is to design a reconstruction f̃ which is consistent with the
samples, i.e., f̃ yields the same samples as f when it is re-injected into the system. The existence of consistent reconstructions
in an arbitrary Hilbert space H was studied by Eldar and Werther in [9]. They proved that there exists a consistent
reconstruction for every f ∈ H if and only if H = W + S⊥. If in addition W ∩ S⊥

= {0} then the consistent reconstruction
is unique. In [10], Corach and Giribet related the consistent sampling condition to oblique projections. In this work, we
characterize the consistent filters bymeans of generalized inverses. Moreover, since the fact that f , f̃ have the same samples
does not imply that they are close, we seek among the consistent reconstructions the onewhich is closest to f in the squared-
norm sense. We shall note that this ideal reconstruction can be computed from the sequence of samples if and only if the
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original signal lies in a convenient subspace ofH . In this article, we also propose and study a new sampling problem. Namely,
we consider the case inwhich two sequences of samples of the original signal are known. A natural question that arises is that
of whether there exist simultaneous consistent reconstructions for the two samples. We provide necessary and sufficient
conditions that guarantee the existence. In addition, we present the general form of such recovered signals.

Another goal of this paper is to study a reconstruction-sampling scheme for the case where consistent reconstructions
cannot be obtained, i.e., H ≠ W + S⊥. We define the quasi-consistent reconstructions as those reconstructed signals
such that if they are re-injected into the system, then their samples are as close as possible to the original samples. This
concept is a generalization of consistent sampling. A first study of reconstructions of this kind can be found in [11]. Here, we
characterize the quasi-consistent filters by means of generalized inverses. Furthermore, we obtain conditions for assuring
that a quasi-consistent reconstruction minimizes the squared-norm error. Moreover, if there exist infinite quasi-consistent
reconstructions, then we provide two criteria for selecting a convenient one. These criteria are motivated by a work of Eldar
and Dvorkind [12]. We recommend this article for simulation results in problems of speech and image processing.

The paper is organized as follows: Section 2 contains a survey of results and notation used throughout the article.
In Section 3 we relate the notion of consistent reconstructions to generalized inverses. Furthermore, we determine the
consistent reconstruction that minimizes the squared-norm error. In Section 4, the problem related to two samples is
presented. To conclude, Section 5 is devoted to quasi-consistent reconstructions.

2. Preliminaries

In this sectionwepresent someof the results and terminology thatwe shall need in this paper. Throughout, Hilbert spaces
are denoted by H, F , K, G, whereas vectors in these spaces are denoted by lower-case letters. By L(H, K) we denote the
space of all bounded linear operators from H to K and the algebra L(H, H) is abbreviated as L(H). For any T ∈ L(H, K)
the range is denoted by R(T ), the kernel by N(T ) and the adjoint by T ∗. In what follows, S+̇T denotes the direct sum of
the closed subspaces S and T . In addition, if H = S+̇T then QS∥T denotes the projection with range S and kernel T . In
particular, PS indicates QS∥S⊥ .

Given A ∈ L(H, K)with closed range theMoore–Penrose inverse of A, denoted by AĎ, is defined to be the unique operator
X satisfying the four Penrose equations:

1. AXA = A;
2. XAX = X;
3. (AX)∗ = AX;
4. (XA)∗ = XA.

Clearly, AAĎ = PR(A) and AĎA = PN(A)⊥ . An operator X is called a generalized inverse of A, denoted by A−, if it satisfies
Eq. (1). In the sequel, A[i, j, k, l] stands for the set of operators that verify conditions i, j, k, l. Furthermore, it holds that
A[1] = {AĎ + T − AĎATAAĎ, T ∈ L(K, H)}. For details of these matters we refer the reader to the books [13,14] among
many other sources.

We shall study sampling problems which are expressed as operator equations of the form AXB = C with A, B, C bounded
linear operators defined in convenient Hilbert spaces. In what follows the next result, which provides conditions for the
solubility of equations of this kind, will play a relevant role (see [15,16]). We shall say that the equation AXB = C is solvable
if there exists a bounded linear operator X̃ such that AX̃B = C .

Theorem 2.1 ([15, Theorem 3.1]; [16, Theorem 2]). Let A ∈ L(H, K), B ∈ L(F , G) and C ∈ L(F , K). If R(A), R(B) or R(C) is
closed then the following conditions are equivalent:

(1) The equation AXB = C is solvable.
(2) R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗).

Moreover, if A, B have closed ranges and AXB = C is solvable then the general solution is given by

X = AĎCBĎ + T − AĎATBBĎ, (1)

for arbitrary T ∈ L(G, H).

Finally, the concept of frames is a useful tool for studying sampling problems [17–19]. For a complete survey on frame
theory and its applications, the reader is referred to [20].

3. Consistent sampling

Now, we are ready to construct a precise formulation of the sampling problem in abstract Hilbert spaces. Let f be the
original input signal which is assumed to belong to a Hilbert space H . We consider two closed subspaces of H, S and W ,
called the sampling and reconstruction subspaces, respectively. Given FS = {sn}n∈N a frame of S with synthesis operator
S ∈ L(l2, H), S∗f = {⟨f , sn⟩}n∈N are the samples of f . We point out that we can ensure that the samples have finite energy
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because we are working with frames. On the other hand, we consider a frame of W, FW = {wn}n∈N, with synthesis operator
W ∈ L(l2, H). Hence, a reconstruction of f has the form

f̃ =


n

cnwn,

for some coefficients {cn}n∈N ∈ l2 obtained from the samples S∗f under some optimality criterion. Note that the reconstruc-
tion is well-defined, i.e. the sum converges, because {wn}n∈N is a frame of W . That is, sampling problems consist in finding
a suitable X ∈ L(l2) (called the filter) such that the reconstruction

f̃ = WXS∗f , (2)

has good (in some sense) approximation properties. We note that both operators, S,W , have closed ranges.
A well-known criterion of reconstruction is to require that the reconstructed signal be consistent. Consistency was

proposed in [8] as follows: a reconstruction of f , f̃ ∈ W , is said to be a consistent reconstruction (c.r.) if and only if it
yields exactly the same samples if it is re-injected into the system. Using the formulation introduced above this is expressed
as

S∗ f̃ = S∗f .

Clearly, the existence of a consistent reconstruction for every f ∈ H is equivalent to the solubility of the equation
S∗WXS∗

= S∗. Following the notation used in [10] we define

CS(W , S) := {X ∈ L(l2) : WXS∗f is a c.r. for every f ∈ H}

= {X ∈ L(l2) : S∗WXS∗
= S∗

}. (3)

Observe that CS(W , S) is not empty if and only if H = R(W ) + N(S∗). Indeed, by Theorem 2.1, the equation S∗WXS∗
= S∗

is solvable if and only if R(S∗) ⊆ R(S∗W ), i.e., if and only if H = R(W ) + N(S∗). In the next theorem, we relate the filters in
CS(W , S) to the generalized inverses of S∗W .

Theorem 3.1. Let H = R(W ) + N(S∗). Then CS(W , S) = (S∗W )[1].

Proof. Consider X ∈ CS(W , S). Then, S∗WXS∗
= S∗ and so S∗WXS∗W = S∗W , i.e., X ∈ (S∗W )[1]. For the converse, consider

T a closed subspace of H such that H = R(W )+̇T and T ⊆ N(S∗) (for example, T := N(S∗) ∩ (R(W ) ∩ N(S∗))⊥). By
Theorem 2.1, the equationWX = QR(W )∥T is solvable. LetW− be a solution of this equation. Then,WW−W = QR(W )∥T W =

W , i.e.,W−
∈ W [1]. Therefore, if X ∈ (S∗W )[1] then S∗WXS∗WW−

= S∗WW− and so, since T ⊆ N(S∗), S∗WXS∗
= S∗, i.e.,

X ∈ CS(W , S). �

Given f ∈ H we shall define

CW ,S(f ) := {WXS∗f : X ∈ CS(W , S)},

i.e., CW ,S(f ) is the set of consistent reconstructions in W of f . Under the assumption that H = R(W ) + N(S∗), CW ,S(f ) is
not empty for every f ∈ H . Since in general the consistent reconstruction differs from the original signal, we devote the
rest of this section to seeking the element in CW ,S(f ) which is closest to f in the squared-norm sense. As we shall see, the
solution of this problem can be calculated if extra hypotheses about the original signal are given. For this purpose, the next
statement which provides a total description of CW ,S(f ) will be useful.

Theorem 3.2 ([21, Theorem 1]). Let H = R(W ) + N(S∗). Then, CW ,S(f ) = F ĎPR(S)f + N(F), where F = I − PN(S∗)PR(W ).

Note that F ĎPR(S)f = F ĎS(S∗S)Ď(S∗f ), i.e. F ĎPR(S)f canbe obtained from the samples S∗f .Moreover, since F ĎPR(S)f ∈ N(F)⊥,
then F ĎPR(S)f is the element inCW ,S(f )withminimal norm. The filter of thisminimal reconstructionwas described by Corach
and Giribet in [10, Theorem 4.2].

Proposition 3.1. Let H = R(W ) + N(S∗). Then

arg min
f̃∈CW ,S (f )

∥f − f̃ ∥2
= F ĎPR(S)f + PN(F)f . (4)

Proof. Let us start by noting that R(F) = R(W )⊥ + R(S) and N(F) = R(W ) ∩ N(S∗), i.e., N(F) = R(F)⊥. By Theorem 3.2,
minf̃∈CW ,S (f )

∥f − f̃ ∥2
= minv∈N(F) ∥f − F ĎPR(S)f − v∥

2. Now, since F ĎPR(S)f ∈ R(F Ď) = N(F)⊥ and v ∈ N(F) then

min
v∈N(F)

∥f − F ĎPR(S)f − v∥
2

= min
v∈N(F)

∥PN(F)⊥ f − F ĎPR(S)f ∥2
+ ∥PN(F)f − v∥

2,

and so the assertion follows. �
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The main inconvenience of expression (4) is that, in general, PN(F)f cannot be obtained from the samples S∗f by using a
bounded linear operator. Indeed, PN(F) = CS∗ for some operator C ∈ L(l2, H) if and only if N(F) = R(W ) ∩ N(S∗) ⊆ R(S)
(by Theorem 2.1), i.e., R(W ) ∩ N(S∗) = {0} or, equivalently, if the consistent reconstruction is unique. However, as we shall
see in the next proposition, if we consider the case in which f is known to lie in an appropriate subspace then the optimal
reconstruction (4) can be computed from the samples. The following result can also be found in [10, Theorem 5.1]. The proof
presented here differs from that of Corach and Giribet since we do not use the notion of oblique projections.

Proposition 3.2. Let T be a closed subspace of H . For every f ∈ T the consistent reconstruction (4) can be obtained from the
samples S∗f if and only if PT (R(W ) ∩ N(S∗)) ⊆ PT (R(S)).

Proof. Observe that PT (R(W ) ∩ N(S∗)) ⊆ PT (R(S)) if and only if, by Theorem 2.1, there exists Z ∈ L(l2, H) such that
PN(F)PT = ZS∗PT . Hence, for every f ∈ T we have PN(F)f = ZS∗f and so (4) can be obtained from the samples of f . �

4. Consistent reconstructions for two samples

This section is devoted to studying the situation in which two sequences of samples of the original signal are known.
We focus our attention on determining conditions for the existence of simultaneous consistent reconstructions for the
two samples. In addition, we provide the expression for such recovered signals. We point out that we consider the same
reconstruction subspace for both sampling procedures. More precisely, we consider a reconstruction subspace W with
synthesis operator W and two sampling subspaces S, S′

⊆ H with synthesis operators S, S ′
∈ L(l2, H), respectively. For

simplicity of notation, we define N = N(S ′∗) ∩ N(S∗).
First, we are interested in finding necessary and sufficient conditions for CW ,S(f ) = CW ,S′(f ) for every f ∈ H .

Proposition 4.1. If CW ,S(f ) andCW ,S′(f ) are not empty thenCW ,S(f ) = CW ,S′(f ) for every f ∈ H if and only if N(S∗) = N(S ′∗).

Proof. Suppose CW ,S(f ) = CW ,S′(f ) for all f ∈ H and let f ∈ N(S∗). Then, f̃ = 0 ∈ CW ,S(f ). Thus, f̃ = 0 ∈ CW ,S′(f ) and
so S ′∗f = S ′∗ f̃ = 0, i.e., f ∈ N(S ′∗). Conversely, suppose that N(S∗) = N(S ′∗) and let f̃ ∈ CW ,S(f ). Then, S∗f = S∗ f̃ , i.e.,
f̃ − f ∈ N(S∗) = N(S ′∗). Hence, S ′∗ f̃ = S ′∗f and so f̃ ∈ CW ,S′(f ). �

The following theorem provides different criteria for CW ,S(f ) ∩ CW ,S′(f ) to be not empty. Moreover, we present a full
description of this set.

Theorem 4.1. The following conditions are equivalent:

(1) CW ,S(f ) ∩ CW ,S′(f ) is not empty for every f ∈ H ;
(2) H = R(W ) + N ;
(3) for every f ∈ H,W Ď(f̃S − f̃S′) ∈ N(S∗W ) + N(S ′∗W ) where f̃S ∈ CW ,S(f ); and f̃S′ ∈ CW ,S′(f ).

Moreover, if one of the previous conditions holds then

f̃S,S′ = f̃S + WPN(S∗W )GĎS ′∗(f̃S′ − f̃S) ∈ CW ,S(f ) ∩ CW ,S′(f ), (5)

where f̃S ∈ CW ,S(f ), f̃S′ ∈ CW ,S′(f ) and G = S ′∗WPN(S∗W ). Furthermore,

CW ,S(f ) ∩ CW ,S′(f ) = {f̃S,S′ + WPN(S∗W )(I − G−G)h, h ∈ H}. (6)

Proof. 1 ⇔ 2 Suppose that CW ,S(f ) ∩ CW ,S′(f ) is not empty for every f ∈ H and consider f ∈ H . Then, there exists
f̃ ∈ CW ,S(f ) ∩ CW ,S′(f ). Clearly, f̃ ∈ R(W ). Moreover, since S∗f = S∗ f̃ and S ′∗f = S ′∗ f̃ , then z := f − f̃ ∈ N . Then,
f = f̃ + z ∈ R(W ) + N .

Conversely, suppose thatH = R(W )+N . Note that this implies thatCW ,S(f ) andCW ,S′(f ) are not empty for every f . Now,
given f ∈ H let f = f̃ +w with f̃ ∈ R(W ) and w ∈ N . Hence, S∗f = S∗ f̃ and S ′∗f = S ′∗ f̃ . Therefore, f̃ ∈ CW ,S(f )∩CW ,S′(f ).

1 ⇔ 3 Let f ∈ H, f̃S ∈ CW ,S(f ) and f̃S′ ∈ CW ,S′(f ). Observe that W Ď f̃S is a solution of S∗Wx = S∗f . Now, let
f̃ = Wξ ∈ CW ,S(f ) ∩ CW ,S′(f ) for some ξ ∈ l2. Note that ξ is also a solution of S∗Wx = S∗f . Then, W Ď f̃S − ξ ∈ N(S∗W ).
Analogously,W Ď f̃S′ − ξ ∈ N(S ′∗W ). So,W Ď(f̃S − f̃S′) = (W Ď f̃S − ξ) − (W Ď f̃S′ − ξ) ∈ N(S∗W ) + N(S ′∗W ).

Conversely, suppose that W Ď(f̃S − f̃S′) = µ − ν with µ ∈ N(S ′∗W ), ν ∈ N(S∗W ). Then, W Ď f̃S + ν = W Ď f̃S′ + µ and,
from this, f̃S + Wν = f̃S′ + Wµ. Let f̃ := f̃S + Wν ∈ R(W ). Now, since µ ∈ N(S ′∗W ), ν ∈ N(S∗W ), then S∗ f̃ = S∗f and
S ′∗ f̃ = S ′∗f , i.e., f̃ ∈ CW ,S(f ) ∩ CW ,S′(f ).

Now, let us see that f̃S,S′ = f̃S + WPN(S∗W )GĎS ′∗(f̃S′ − f̃S) ∈ CW ,S(f ) ∩ CW ,S′(f ). Clearly, f̃S,S′ ∈ R(W ), so it only remains to
show that S∗ f̃S,S′ = S∗f and S ′∗ f̃S,S′ = S ′∗f . Now,

S∗ f̃S,S′ = S∗ f̃S + S∗WPN(S∗W )GĎS ′∗(f̃S′ − f̃S) = S∗ f̃S = S∗f ,
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because f̃S ∈ CW ,S(f ). On the other hand, S ′∗ f̃S,S′ = S ′∗ f̃S + GGĎS ′∗(f̃S′ − f̃S). Thus, if we show that S ′∗(f̃S′ − f̃S) ∈ R(G)

then the result is obtained. Now, by item 3, there exist ν ∈ N(S∗W ), µ ∈ N(S ′∗W ) such that W Ď(f̃S′ − f̃S) = ν + µ. Then,
S ′∗(f̃S′ − f̃S) = S ′∗W (W Ď(f̃S′ − f̃S)) = S ′∗Wν ∈ R(G).

Finally, let us prove that equality (6) holds. First, note that f̃ := f̃S,S′ +WPN(S∗W )(I − G−G)h ∈ R(W ), S∗ f̃ = S∗ f̃S,S′ = S∗f
and S ′∗ f̃ = S ′∗ f̃S,S′ + S ′∗WPN(S∗W )(I − G−G)h = S ′∗ f̃S,S′ + G(I − G−G)h = S ′∗ f̃S,S′ = S ′∗f . Hence, f̃ ∈ CW ,S(f ) ∩ CW ,S′(f ).

On the other hand, let f̃ ∈ CW ,S(f )∩CW ,S′(f ). Then, f̃−f̃S,S′ = Wh for someh ∈ H .Moreover, sinceh ∈ N(S∗W )∩N(S ′∗W )
then it follows that h ∈ N(G). So, h = PN(S∗W )(I − G−G)h and the result follows. �

Remark 4.2. We highlight that a characterization of the set CS(W , S) ∩ CS(W ′, S ′) is equivalent to studying simultaneous
solutions of a systemof operator equations.We recommend [22] for a treatment on this topic formatrix equations.Moreover,
we suggest [10] for a relationship between CS(W , S) and CS(W ′, S ′) under some range hypotheses.

Proposition 4.3. The set CW ,S(f ) ∩ CW ,S′(f ) has a unique reconstruction for every f ∈ H if and only if H = R(W )+̇N .

Proof. Let us suppose that CW ,S(f ) ∩ CW ,S′(f ) = {f̃S,S′}. Then, by (6), WPN(S∗W )(I − G−G)h = 0, for every h ∈ H , where
G = S ′∗WPN(S∗W ). Now, let v ∈ R(W ) ∩ N . Thus, v = Wz for some z ∈ N(S∗W ). So, v = WPN(S∗W )z. On the other hand,
0 = S ′∗v = S ′∗WPN(S∗W )z = Gz, i.e., z ∈ N(G) and so z = (I − G−G)z. Summarizing, v = WPN(S∗W )(I − G−G)z = 0.

Conversely, suppose that H = R(W )+̇N . Now, consider f̃S,S′ ,
˜̃f S,S′ ∈ CW ,S(f ) ∩ CW ,S′(f ). Then, f̃S,S′ −

˜̃f S,S′ ∈ R(W ).

Furthermore, 0 = S∗(f̃S,S′ −
˜̃f S,S′) = S ′∗(f̃S,S′ −

˜̃f S,S′). Hence, f̃S,S′ −
˜̃f S,S′ ∈ R(W ) ∩ N = {0}. �

Motivated by Theorem 1 in [21], we obtain two new descriptions of the consistent reconstructions for the two samples.

Proposition 4.4. Let H = R(W ) + N . Then,
(1) CW ,S(f ) ∩ CW ,S′(f ) = {QL∥N f : L ⊆ R(W )}.
(2) CW ,S(f ) ∩ CW ,S′(f ) = {JĎPN ⊥ f + ν : ν ∈ R(W ) ∩ N }, where J = I − PN PR(W ).

Furthermore, JĎPN ⊥ f is the reconstruction in CW ,S(f ) ∩ CW ,S′(f ) with minimal norm.

Proof. Observe that, since H = R(W ) + N , then CW ,E(f ) is not empty for every f ∈ H where E ∈ L(H, l2) is such that
N(E∗) = N . Then, it is straightforward that CW ,E(f ) = CW ,S(f ) ∩ CW ,S′(f ) for every f ∈ H .

(1) The proof follows from the fact that f̃ ∈ CW ,E(f ) if and only if f̃ = QL∥N(E∗)f with L ⊆ R(W ).
(2) The proof follows by Theorem 1 in [21].

Finally, since N(J) = R(W ) ∩ N , it is clear that JĎPN ⊥ f is the reconstruction with minimal norm. �

In the previous propositionwe obtained the simultaneous consistent reconstructionwithminimal norm, namely JĎPN ⊥ f .
What is still lacking is an explicit description of this optimal recovered signal in terms of the samples.

5. Quasi-consistent reconstructions

In this sectionwe treat the case inwhichH ≠ R(W )+N(S∗), i.e., when it is not possible to find a consistent reconstruction
for every f ∈ H . Hence, we are interested in finding a reconstruction f̃ ∈ W such that if it is re-injected into the system
then the samples obtained are as close as possible to the original samples.

Therefore, we shall say that f̃ = WXS∗f is a quasi-consistent reconstruction (q-c.r.) of f if

∥S∗ f̃ − S∗f ∥ ≤ ∥S∗ f̂ − S∗f ∥, (7)

for every reconstruction f̂ ∈ W of f . In the sequel we shall use the notation

QC(W , S) := {X ∈ L(l2) : WXS∗f is q-c.r. for every f ∈ H}.

Clearly, ifH = R(W )+N(S∗) thenCS(W , S) = QC(W , S). Fromnowonwemake the following assumptions: R(W )+N(S∗)
is a closed subspace and S∗W ≠ 0. The first condition is equivalent to S∗W having closed range (see [23, Theorem 22]). We
note that if S∗W = 0 then QC(W , S) = L(l2).

The following theorem is an analogue of the characterization of CS(W , S) given in (3).

Theorem 5.1.

QC(W , S) = {X ∈ L(l2) : S∗WXS∗
= PR(S∗W )S∗

}.

The resulting quasi-consistent reconstructions are

f̃ = [W (S∗W )Ď + WPN(S∗W )T ]S∗f , (8)

with T ∈ L(l2). Moreover, there exists a unique q-c.r for every f ∈ H if and only if R(W ) ∩ N(S∗) = {0}.
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Proof. Let f̂ = WXS∗f be a reconstruction of f . Then,

∥S∗ f̂ − S∗f ∥2
= ∥S∗WXS∗f − S∗f ∥2

= ∥S∗WXS∗f − PR(S∗W )S∗f − (S∗f − PR(S∗W )S∗f )∥2

= ∥S∗WXS∗f − PR(S∗W )S∗f − PR(S∗W )⊥S
∗f ∥2

= ∥S∗WXS∗f − PR(S∗W )S∗f ∥2
+ ∥PR(S∗W )⊥S

∗f ∥2
≥ ∥PR(S∗W )⊥S

∗f ∥2. (9)

Now, since the equation S∗WXS∗
= PR(S∗W )S∗ is solvable then the minimum in (9) is achieved. Moreover, this minimum

will be attained in those reconstructions f̃ = WXS∗f such that S∗ f̃ = S∗WXS∗f = PR(S∗W )S∗f . Hence, in order to prove the
equality (8) we shall prove that S∗WXS∗

= PR(S∗W )S∗ if and only ifWXS∗
= W (S∗W )ĎS∗

+ WPN(S∗W )TS∗ for some T ∈ L(l2).
Thus, let us suppose that S∗WXS∗

= PR(S∗W )S∗. Then, by Theorem 2.1,

X = (S∗W )ĎS∗(S∗)Ď + T − (S∗W )ĎS∗WTS∗(S∗)Ď, (10)

for some T ∈ L(l2). Therefore,WXS∗
= W (S∗W )ĎS∗

+WTS∗
−W (S∗W )ĎS∗WTS∗

= W (S∗W )ĎS∗
+W (I−(S∗W )ĎS∗W )TS∗

=

W (S∗W )ĎS∗
+ WPN(S∗W )TS∗. The converse is trivial.

The unicity of the q-c.r follows from the fact that f̃ is a quasi-consistent reconstruction of f if and only if S∗ f̃ =

PR(S∗W )S∗f . �

The fact that a q-c.r. of f , f̃ , yields the samples closest to the original ones does not necessarily imply that f̃ is close to f .
In the next proposition, we study this problem for the case where there exists a unique q-c.r. The first part of the next result
can also be found in [11]. We include the proof for completeness.

Proposition 5.1. Let R(W ) ∩ N(S∗) = {0}. Then, the unique q-c.r. of f is given by Qf where Q := W (S∗W )ĎS∗ is a projection
with R(Q ) = R(W ). Moreover, Q = PR(W ) if and only if N(S∗) ⊆ R(W )⊥ ⊆ N(PR(S∗W )S∗).

Proof. Assume that R(W ) ∩ N(S∗) = {0}. Thus, as a consequence of Theorem 5.1, the unique q-c.r. of f is given by Qf
where Q := W (S∗W )ĎS∗. Now, it is clear that Q 2

= Q . We claim that R(Q ) = R(W ). Indeed, given Wz ∈ R(W ) we get
QWz = W (S∗W )ĎS∗Wz = WPN(S∗W )⊥z. Now, since N(S∗W ) = N(W ), we get QWz = WPN(W )⊥z = Wz, so R(W ) = R(Q ).

Finally, suppose that Q = PR(W ). Then, N(S∗) ⊆ N(Q ) = N(PR(W )) = R(W )⊥. On the other hand, let x ∈ R(W )⊥ = N(Q ).
Then, 0 = Qx = W (S∗W )ĎS∗x and so 0 = S∗Qx = S∗W (S∗W )ĎS∗x = PR(S∗W )S∗x, i.e., x ∈ N(PR(S∗W )S∗). Conversely,
in order to prove that Q = PR(W ) we shall prove that N(PR(W )) = R(W )⊥ ⊆ N(Q ). For this, it is sufficient to show that
N(PR(S∗W )S∗) ⊆ N(Q ). Hence, given y ∈ N(PR(S∗W )S∗) we have that 0 = PR(S∗W )S∗y = S∗W (S∗W )ĎS∗y = S∗Qy. Therefore,
Qy = W (S∗W )ĎS∗y ∈ R(W ) ∩ N(S∗) = {0} and the result is proved. �

Remark 5.2. Note that if N(S∗) ⊆ R(W )⊥ then there exists X ∈ L(l2) such that PR(W )f = WXS∗f for every f ∈ H . Thus,
PR(W )f is the reconstruction of f thatminimizes the squared error ∥f − f̃ ∥2. Now, by the preceding proposition, the additional
condition R(W )⊥ ⊆ N(PR(S∗W )S∗) guarantees that the optimal reconstruction PR(W )f is also quasi-consistent.

By means of Theorem 5.1, we establish now how the notion of quasi-consistent reconstruction is related to generalized
inverses.

Theorem 5.2. The following inclusions hold:

(S∗W )[1, 3] ⊆ QC(W , S) ⊆ (S∗W )[1].

Moreover,

(1) QC(W , S) = (S∗W )[1] if and only if H = R(W ) + N(S∗).
(2) QC(W , S) = (S∗W )[1, 3] if and only if S∗ is surjective.

Proof. If X ∈ (S∗W )[1, 3] then S∗WXS∗
= PR(S∗W )S∗. So, X ∈ QC(W , S). On the other hand, if X ∈ QC(W , S) then

S∗WXS∗
= PR(S∗W )S∗. Thus, S∗WXS∗W = PR(S∗W )S∗W = S∗W , i.e., X ∈ (S∗W )[1].

(1) If QC(W , S) = (S∗W )[1] then X = (S∗W )Ď + T − (S∗W )ĎS∗WTS∗W (S∗W )Ď ∈ QC(W , S) for every T ∈ L(l2). Therefore,
by Theorem 5.1,

PR(S∗W )S∗
= S∗WXS∗

= S∗W (S∗W )ĎS∗
+ S∗WTS∗

− S∗WTS∗W (S∗W )ĎS∗

= PR(S∗W )S∗
+ S∗WT (I − PR(S∗W ))S∗.

Hence, for every T ∈ L(l2), S∗WTPR(S∗W )⊥S
∗

= 0. So, we get that PR(S∗W )⊥S
∗

= 0 or, what is equivalent, H =

R(W ) + N(S∗).
Conversely, if H = R(W ) + N(S∗) then QC(W , S) = CS(W , S) and the assertion follows by Theorem 3.1.
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(2) Suppose QC(W , S) = (S∗W )[1, 3]. Then by (10), for every T ∈ L(l2),

X = (S∗W )ĎS∗(S∗)Ď + T − (S∗W )ĎS∗WTS∗(S∗)Ď ∈ (S∗W )[1, 3].

Then

PR(S∗W ) = S∗WX = S∗W (S∗W )ĎS∗(S∗)Ď + S∗WT − S∗WTS∗(S∗)Ď

= PR(S∗W )PR(S∗) − S∗WTPR(S∗)⊥ .

Therefore, for every T ∈ L(l2), S∗W (T − (S∗W )Ď)PR(S∗)⊥ = 0. Hence, we obtain that PR(S∗)⊥ = 0 and so S∗ is surjective.
The converse is immediate. �

As we havementioned, if R(W )∩N(S∗) ≠ {0} then there exist infinite quasi-consistent reconstructions for every f ∈ H .
For this situation, we present two criteria for selecting a convenient quasi-consistent reconstruction. These criteria are
motivated by the work of Eldar and Dvorkind in [12].

The first method consists in minimizing the worst error between the quasi-consistent reconstructions. That is,

min
X∈QC(W ,S)

max
∥f ′∥≤α

∥WXS∗f ′
− f ′

∥
2

= α2 min
X∈QC(W ,S)

∥WXS∗
− I∥2.

In the second method we seek the quasi-consistent reconstruction that minimizes the worst regret, i.e.,

min
X∈QC(W ,S)

max
∥f ′∥≤α

∥WXS∗f ′
− PR(W )f ′

∥
2

= α2 min
X∈QC(W ,S)

∥WXS∗
− PR(W )∥

2.

In order to solve the previous problems we shall use the following results.

Lemma 5.3 ([24, Corollary 7]). If A, B ∈ B(H) such that R(A)⊥R(B), then

max{∥A∥
2, ∥B∥2

} ≤ ∥A + B∥2
≤ max{∥A∥

2, ∥B∥2
} + ∥AB∗

∥.

If in addition, R(A∗)⊥R(B∗) thenmax{∥A∥, ∥B∥} = ∥A + B∥.

Theorem 5.3. Let A ∈ L(H, K), B ∈ L(F , G) with closed ranges and C ∈ L(F , K). If R((BĎB − I)C∗AAĎ)⊥R(C∗(AAĎ − I))
then, for every X ∈ L(G, H),

∥AAĎCBĎB − C∥ ≤ ∥AXB − C∥,

with equality if X = AĎCBĎ + T − AĎATBBĎ for all T ∈ L(G, H).

Proof. Observe that AXB−C = (AXB−AAĎC)+ (AAĎC −C). Now, since R(AXB−AAĎC)⊥ R(AAĎC −C) then by the previous
lemma,

∥AXB − C∥ ≥ max{∥AXB − AAĎC∥, ∥AAĎC − C∥}.

On the other hand, AXB− AAĎC = (AXB− AAĎCBĎB) + (AAĎCBĎB− AAĎC). As R((AXB− AAĎCBĎB)∗)⊥ R((AAĎCBĎB− AAĎC)∗)
then

∥AXB − AAĎC∥ ≥ max{∥AXB − AAĎCBĎB∥, ∥AAĎCBĎB − AAĎC∥}.

Summarizing, ∥AXB−C∥ ≥ max{∥AXB−AAĎCBĎB∥, ∥AAĎCBĎB−AAĎC∥, ∥AAĎC−C∥}. From R(AAĎCBĎB−AAĎC)⊥ R(AAĎC−C)
and the hypothesis we have

∥AAĎCBĎB − C∥ = max{∥AAĎCBĎB − AAĎC∥, ∥AAĎC − C∥}.

Finally, ∥AXB − C∥ ≥ max{∥AXB − AAĎCBĎB∥, ∥AAĎCBĎB − C∥} and this concludes the proof. �

Theorem 5.4. Consider the problems

min
X∈QC(W ,S)

∥WXS∗
− I∥2, (11)

and

min
X∈QC(W ,S)

∥WXS∗
− PR(W )∥

2. (12)

The resulting reconstruction are

f̃ = [PM⊥W (S∗W )Ď + PM(S∗)Ď]S∗f , (13)

and

f̃ = [PM⊥W (S∗W )Ď + PMPR(W )(S∗)Ď]S∗f , (14)

respectively, where M is the closed subspace R(WPN(S∗W )).
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Proof. First, note thatM = R(WPN(S∗W )) is a closed subspace since N(W )+N(S∗W ) = N(S∗W ) is closed (see [23, Theorem
22]). Now, by Theorem 5.1,

min
X∈QC(W ,S)

∥WXS∗
− I∥2

= min
L∈L(H)

∥W ((S∗W )Ď + PN(S∗W )L)S∗
− I∥2

= min
L∈L(H)

∥WPN(S∗W )LS∗
− (I − W (S∗W )ĎS∗)∥2.

In order to apply Theorem 5.3, we note that

PM⊥(I − W (S∗W )ĎS∗)PN(S∗)(I − S(W ∗S)ĎW ∗)PM = PM⊥PN(S∗)PM = 0

where the last equality follows from the fact that M ⊆ N(S∗).
Now, applying Theorems 5.1 and 5.3, we get that for all T ∈ L(l2),

X = (S∗W )Ď + PN(S∗W )[(WPN(S∗W ))
Ď
[I − W (S∗W )ĎS∗

] + T − (WPN(S∗W ))
ĎWPN(S∗W )TS∗

](S∗)Ď,

are solutions of (11). Therefore the optimal reconstruction is

f̃ = WXS∗f = W

(S∗W )Ď + PN(S∗W )(WPN(S∗W ))

Ď
[I − W (S∗W )ĎS∗

](S∗)Ď

S∗f

= W (S∗W )ĎS∗f + WPN(S∗W )(WPN(S∗W ))
Ď
[I − W (S∗W )ĎS∗

](S∗)ĎS∗f

= W (S∗W )ĎS∗f + PM[(S∗)ĎS∗f − W (S∗W )ĎS∗f ]
= [PM⊥W (S∗W )Ď + PM(S∗)Ď]S∗f .

Finally, problem (12) can be solved in a similar manner. �

Remarks 5.5. (1) The problems of minimizing the worst error and worst regret among all possible reconstructions were
studied by Eldar and Dvorkind in [12].

(2) If (S∗W )Ď = W Ď(S∗)Ď then W (S∗W )ĎS∗
= WW Ď(S∗)ĎS∗

= PR(W )PR(S). Thus, replacing in (14) we have f̃ = PR(W )PR(S)f
which coincides with the solution obtained in Theorem 2 of [12]. For equivalent conditions for (S∗W )Ď = W Ď(S∗)Ď

see [25].
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