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Let L = −� + V be the Schrödinger operator on R
n , where V belongs to the class of

reverse Hölder weights R Hq for some q > max{2,n/2}. We show that the second order
Riesz transforms ∇2 L−1 and V L−1 are bounded from the Hardy spaces H p

L (Rn) associated
to L into Lp(Rn) for 0 < p � 1. We show also that the operators ∇2 L−1 map the classical
Hardy spaces H p(Rn) into H p(Rn) for a restricted range of p.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let n � 3 and consider the Schrödinger operator on Rn with non-negative potential V , given by

L = −� + V .

We assume that V is locally integrable and belongs to the class of reverse Hölder weights R Hq for some q > n/2. That is,
there exists C = C(q, V ) > 0 such that for all balls B ⊂ Rn ,(

1

|B|
∫
B

V (x)q dx

)1/q

� C

|B|
∫
B

V (x)dx. (1.1)

The operator L generates a semigroup e−tL on L2(Rn) with integral kernel pt(x, y) given by

e−tL f (x) =
∫
Rn

pt(x, y) f (y)dy.

We shall refer to pt(x, y) as the heat kernel of L.
In this article we study the second order Riesz transform

∇2L−1 =
∞∫

0

∇2e−tL dt (1.2)

on Hardy spaces for p � 1.
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For p � 1 the following is known for Lp spaces.

(i) If V � 0 the first order Riesz transforms ∇L−1/2 and V 1/2L−1/2 are bounded on Lp for all p ∈ (1,2]. See [19,5].
(ii) If V ∈ R Hq for q > 1 and n � 1, the first order operators are bounded on Lp with p ∈ (1,q∗] for ∇L−1/2, and with

p ∈ (1,2q] for V 1/2L−1/2. Here q∗ = qn/(n − q) if q < n and q∗ = ∞ if q � n. The second order operators ∇2L−1 and
V L−1 are bounded on Lp for all p ∈ (1,q]. See [18,2].

For p � 1 the Hardy spaces H p continue the Lp scale in the sense that the classical Riesz transforms ∇(−�)−1/2 and
∇2(−�)−1 map H p into H p for all 0 < p � 1. See [22].

However when working with differential operators other than the Laplacian it turns out that H p may not be the most
appropriate and, in these situations, it may be more suitable to work with a Hardy space that is adapted to the differential
operator. A well developed theory concerning these matters is now available and we refer the reader to [3,6,10,11] for
further discussion and historical notes. For Schrödinger operators the class of Hardy spaces H p

L of relevance can be found in
[7–10,13]. See Section 2 of this article for a review of their definitions.

Estimates for the first order Riesz transforms on these spaces are known:

Theorem 1.1. (See [10,13,5].) Let V � 0 be a locally integrable function on Rn with n � 1, and L = −� + V . Then ∇L−1/2 maps H p
L

to Lp for all 0 < p � 1, and maps H p into H p for n/(n + 1) < p � 1.

In this article we obtain analogous estimates for the second order Riesz transforms associated to L under the extra
condition that V satisfies a reverse Hölder inequality (1.1). The main result of this article is the following.

Theorem 1.2. Let L = −� + V on Rn with n � 3. Assume that V ∈ R Hq with q > max{2,n/2}. Then the following hold:

(a) The operators ∇2 L−1 and V L−1 are bounded from H p
L (Rn) into Lp(Rn) for each p ∈ (0,1].

(b) The operator ∇2L−1 is bounded from H p
L (Rn) into H p(Rn) for each p ∈ (n/(n + 1),1].

The key to our approach is suitable estimates on the derivatives of the heat kernel ∇2
x pt(x, y), obtained in [15]. See

Lemma 3.2 below. This combined with the formula (1.2) allow us to apply the strategy in [10,13] used to study the first
order operator ∇L−1/2.

In addition since V is a reverse Hölder potential, the atomic characterization of the Hardy spaces H p
L given in [8] (see

Definition 2.3 below) allow us to state the range of boundedness on the classical Hardy spaces.

Corollary 1.3. Under the assumptions of Theorem 1.2 the operator ∇2L−1 is bounded from H p(Rn) to H p(Rn) for each p ∈ (n/

(n + pL),1], where pL = min{1,2 − n/q}.

We give some remarks about the condition q > max{2,n/2} in our results. The requirement q > 2 is required in two
instances. The first is in the construction of the H p

L spaces, which uses L2-convergence of atomic sums (see Section 2).
The other instance is the L2 boundedness of the operators ∇2L−1 and V L−1, which we recall from item (ii) above, is valid
when q > 2. The reader will observe that our techniques and our heat kernel estimates will still follow through for the
range q < 2, with suitable modifications, once an alternative construction of H p

L is available. For the time being however,
the range n = 3 and 3/2 < q < 2 remains open.

This result also admits extensions to weighted Hardy spaces introduced in [20] and further studied in [24,23]. Our
methods allow extensions for Theorem 1.2 (a) and (b) to weighted variants of H p

L and H p . However Corollary 1.3 remains
open in this setting. We refer the reader to [16] for the details.

This article is organized as follows. In Section 2 we summarize the definitions and properties of the Hardy spaces that
we will be working with and then give the proof of Corollary 1.3 is given at the end of the section. Section 3 collects
together the estimates on the heat kernel that we shall need. The proof of Theorem 1.2 is given in Section 4.

Throughout this article we write B to mean a ball B = B(xB , rB) with a centre xB and radius rB that has been fixed.
Given a ball B we write λB to mean the dilation B(xB , λrB). We use U j(B) to denote the annulus 2 j B\2 j−1 B when j � 1
and U0(B) = B . The letter “C” will represent possibly different constants that are independent of the essential variables.

This article forms part of the author’s doctoral thesis. He would like to thank his supervisor, Xuan Duong, for his guidance
and support. The author is also grateful to the referee for helpful comments, and particularly for suggesting a much more
readable proof of Lemma 4.1.

2. Hardy spaces

In this section we survey the Hardy spaces adapted to the Schrödinger operator L = −� + V . Unless otherwise noted,
we will assume the potential V is a non-negative and locally integrable function. The material in this section can be found
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in more complete form in [4,10,13], where more general classes of operators are treated. For a description of the classical
Hardy spaces and their properties see [22].

Firstly we set

H2(Rn) := {
Lu ∈ L2

(
Rn

)
: u ∈ L2

(
Rn

)}
.

For each f ∈ L2(Rn), we define area integral function of f associated to L as

SL( f )(x) :=
( ∞∫

0

∫
|x−y|<t

∣∣t2Le−t2 L f (y)
∣∣2

dy
dt

tn+1

)1/2

, x ∈Rn.

For each p ∈ (0,1] we define the Hardy spaces H p
L (Rn) associated to L as the completion of{

f ∈H2(Rn):
∥∥SL( f )

∥∥
L p(Rn)

< ∞}
in the quasi-norm ‖ f ‖H p

L
:= ‖SL( f )‖Lp .

Next we introduce the notion of (p,2, M)-atoms for L.

Definition 2.1 (Atoms for H p
L ). Let 0 < p � 1 and M ∈ N. A function a ∈ L2(Rn) is called a (p,2, M)-atom for L associated to

the ball B if for some b ∈D(LM) we have

(i) a = LMb,
(ii) supp Lkb ⊆ B for each k = 0,1, . . . , M ,

(iii) ‖(r2
B L)kb‖2 � r2M

B |B|1/2−1/p for each k = 0,1, . . . , M .

Let M > n
2 ( 1

p − 1
2 ). Then it follows that for each f ∈ H p

L (Rn) there exists a sequence {aB}B of (p,2, M)-atoms for L, and
a sequence of scalars {λB}B ⊂ C, such that

f =
∑

B

λBaB and
∑

B

|λ|p � ‖ f ‖p
H p

L
.

The convergence is in both H p
L (Rn) and L2(Rn).

These atoms allow us to reduce the study of operators on H p
L (Rn) to studying their behaviour on single atoms. This is

recorded in the following fact, and will be crucial in the proof of Theorem 1.2 (a).

Lemma 2.2. Let 0 < p � 1 and fix an integer M > n
2 ( 1

p − 1
2 ). Assume that T is a linear operator (resp. non-negative sublinear) operator

that maps L2(Rn) continuously into L2,∞(Rn) satisfying the following property: there exists C > 0 such that for each (p,2, M)-atom a,

‖T a‖L p(Rn) � C .

Then T extends to a bounded linear (resp. sublinear) operator from H p
L (Rn) to Lp(Rn). Furthermore, there exists C ′ > 0 such that

‖T f ‖L p(Rn) � C ′‖ f ‖H p
L (Rn)

for ever f ∈ H p
L (Rn).

Proof. We refer the reader to [10], Lemma 4.3 or [4], Lemma 3.15. �
Next we specialize to the case that V satisfies a reverse Hölder inequality (1.1). Under this context the Hardy spaces

associated to L can be characterized using certain atoms that allow us to directly compare H p
L with H p . We will use this

fact to give the proof of Corollary 1.3 at the end of this section. The material found here have their origins in the work by
Dziubański and Zienkiewicz in the series of papers [7–9].

Firstly we define the critical radius associated to V at x by the following expression:

ρ(x) = ρ(x, V ) := sup

{
r > 0:

r2

|B(x, r)|
∫

B(x,r)

V � 1

}
. (2.1)

For each p ∈ (0,1] we define Hp
(Rn) as the completion of
L
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{
f ∈ L1

c

(
Rn): ‖ML f ‖L p < ∞}

in the quasi-norm ‖ f ‖Hp
L
= ‖ML f ‖Lp . Here L1

c (R
n) is the space of compactly supported functions on Rn , and the operator

ML is defined as

ML f (x) := sup
t>0

∣∣e−tL f (x)
∣∣.

When V ∈ R Hq with q � n/2 and n � 3, the authors in [8] give a special atomic characterization of Hp
L (Rn).

Definition 2.3 (Special L-atoms). A function a is called a special L-atom associated to the ball B = B(xB , rB) if rB � ρ(xB) and

(i) supp a ⊆ B ,
(ii) ‖a‖L∞ � |B|−1/p ,

(iii)
∫

a(x)dx = 0 whenever rB � 1
4 ρ(xB).

Let pL := min{1,2 − n/q}. The authors show that when p ∈ (n/(n + pL),1], then each f ∈ Hp
L (Rn) has a special atomic

decomposition f = ∑
B λBaB where the aB are special L-atoms.

Recall that in the atomic characterization for the classical H p(Rn) spaces, the cancellation condition is required for all
balls (see [22]). Comparing this with Definition 2.3 (iii) above, we therefore have the following strict inclusion,

H p(
Rn)�Hp

L

(
Rn), p ∈

(
n

n + pL
,1

]
. (2.2)

It is also known (see [13], Section 6) that

H p
L

(
Rn) = Hp

L

(
Rn), p ∈

(
n

n + 1
,1

]
. (2.3)

We are now read to give

Proof of Corollary 1.3. We simply observe that pL � 1 and hence n/(n + 1) � n/(n + pL). Therefore (2.2) and (2.3) give

H p(
Rn)�Hp

L

(
Rn) = H p

L

(
Rn), p ∈

(
n

n + pL
,1

]
.

Combining this with Theorem 1.2 (b) we obtain the corollary. �
3. Kernel estimates

In this section we collect here the heat kernel estimates that we will need for the proof of Theorem 1.2.
We first consider the case V is a non-negative and locally integrable function.

Lemma 3.1. Let L = −� + V on Rn, n � 1 with 0 � V ∈ L1
loc(R

n). Then the heat kernel pt(x, y) of L satisfies the following:

(a) For each x, y ∈ Rn and t > 0,

0 � pt(x, y) � (4πt)−n/2e−|x−y|2/4t . (3.1)

(b) For each k ∈N there exist Ck > 0, c > 0 satisfying∣∣∣∣ ∂k

∂tk
pt(x, y)

∣∣∣∣ � Ck

tn/2+k
e−c |x−y|2

t (3.2)

for every x, y ∈ Rn, and t > 0.
(c) There exist C, c,α > 0 such that for all y ∈ Rn, and t > 0,(∫ ∣∣∇x pt(x, y)

∣∣2
eα |x−y|2

t dx

)1/2

� C

t1/2+n/4
. (3.3)

Proof. Estimate (a) is well known. See page 195 of [17]. For the proof of (b) see [17], Theorem 6.17. The proof of (c) can be
found in [1], Lemma 2.5. �
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Next we specialize to the case that V satisfies a reverse Hölder inequality (1.1). It is known that under this condition the
heat kernel for L satisfies stronger decay properties than the usual Gaussian upper bounds (3.1). Although this extra decay
is not needed in the proof of Theorem 1.2, we record it here for completeness. Note that the function ρ has been defined
in (2.1).

Lemma 3.2. Assume that V ∈ R Hq with q � n/2 for n � 3, or q > 1 for n = 2. Then the heat kernel pt(x, y) of L = −� + V satisfies
the following estimates.

(a) There exist C0, c0, c > 0 and δ ∈ (0,1) such that for all x, y ∈ Rn and t > 0,

pt(x, y) � C0

tn/2
e−c0

|x−y|2
t e

−c(1+ t
ρ(x)2 )δ

. (3.4)

(b) There exist c = c(δ) > 0 and c1 > 0 such that for each k ∈ N there exists Ck > 0 satisfying∣∣∣∣ ∂k

∂tk
pt(x, y)

∣∣∣∣ � Ck

tn/2+k
e−c1

|x−y|2
t e

−c(1+ t
ρ(x)2 )δ

(3.5)

for every x, y ∈ Rn, and t > 0.
(c) For each p ∈ [1,q) there exist βp, C p, c > 0 such that for all y ∈Rn, and t > 0,(∫ ∣∣∇2

x pt(x, y)
∣∣p

eβp
|x−y|2

t dx

)1/p

� C p

t1+n/2p′ e
−c(1+ t

ρ(y)2 )δ

, (3.6)

(∫ ∣∣V (x)pt(x, y)
∣∣p

eβp
|x−y|2

t dx

)1/p

� C p

t1+n/2p′ e
−c(1+ t

ρ(y)2 )δ

. (3.7)

Proof. The proof of (a) can be found in [14]. Parts (b) and (c) are proved in [15,16]. �
The following is an extension of Lemma 3.2 (c) to time derivatives on the heat kernel.

Proposition 3.3. Assume V ∈ R Hq with q � n/2 for n � 3 or q > 1 for n = 2. Let δ be the constant from (3.4). Then for each p ∈ [1,q)

and k ∈ Z+ there exist ξ = ξ(k, p) > 0 and Ck,p > 0 such that

( ∫
Rn

∣∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣∣
p

eξ
|x−y|2

t dx

)1/p

� Ck,p

t1+n/2p′+k
e
−c(1+ t

ρ(x)2 )δ

, (3.8)

( ∫
Rn

∣∣∣∣V (x)
∂k

∂tk
pt(x, y)

∣∣∣∣
p

eξ
|x−y|2

t dx

)1/p

� Ck,p

t1+n/2p′+k
e
−c(1+ t

ρ(x)2 )δ

(3.9)

for every y ∈Rn and t > 0.

Proof. We shall make use of the commutativity property of the semigroup e−tL to see that for each k � 1,

∂k

∂tk
e−2tL = (−2L)ke−2tL = 2ke−tL ∂k

∂tk
e−tL .

In particular this implies∫
Rn

∂k

∂tk
p2t(x, y) f (y)dy = ∂k

∂tk
e−2tL f (x) = 2ke−tL ∂k

∂tk
e−tL f (x)

= 2k
∫
Rn

pt(x, w)
∂k

∂tk
e−tL f (w)dw

= 2k
∫
Rn

pt(x, w)

∫
Rn

∂k

∂tk
pt(w, y) f (y)dy dw

= 2k
∫

n

( ∫
n

pt(x, w)
∂k

∂tk
pt(w, y)dw

)
f (y)dy,
R R
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giving the identity

∂k

∂tk
p2t(x, y) =

∫
Rn

pt(x, w)
∂k

∂tk
pt(w, y)dw (3.10)

for each x, y ∈Rn .
Now fix k � 1 and p ∈ [1,q). We first estimate (3.8). Let ξ be a constant such that 0 < ξ < min{βp/2, pc1/4} where c1 is

the constant in the time derivative bounds of Proposition 3.2 (b) and βp is the constant in Lemma 3.2 (c). Then using (3.10)
we have for each y ∈Rn and t > 0,∫

Rn

∣∣∣∣∇2
x

∂k

∂tk
p2t(x, y)

∣∣∣∣
p

eξ
|x−y|2

t dx = 2k
∫
Rn

∣∣∣∣
∫
Rn

∇2
x pt(x, w)

∂k

∂tk
pt(w, y) eξ

|x−y|2
pt dw

∣∣∣∣
p

dx.

Now for each w ∈Rn the triangle inequality gives

eξ
|x−y|2

pt � e2ξ
|x−w|2

pt e2ξ
|w−y|2

pt = e2ξ
|x−w|2

pt e−2ξ
|w−y|2

pt e4ξ
|w−y|2

pt .

Therefore for each x, y ∈ Rn , by Hölder’s inequality with exponent p and p′ ,∣∣∣∣
∫
Rn

∇2
x pt(x, w)

∂k

∂tk
pt(w, y) eξ

|x−y|2
pt dw

∣∣∣∣
p

�
( ∫

Rn

∣∣∇2
x pt(x, w)

∣∣p
e2ξ

|x−w|2
t e−2ξ

|w−y|2
t dw

)( ∫
Rn

∣∣∣∣ ∂k

∂tk
pt(w, y)

∣∣∣∣
p′

e4p′ξ |w−y|2
pt dw

)p/p′

.

Using that ξ < pc1/4 the time derivative bounds of Lemma 3.2 (b) give

∫
Rn

∣∣∣∣ ∂k

∂tk
pt(w, y)

∣∣∣∣
p′

e4p′ξ |w−y|2
pt dw � Ck,p

tnp′/2+kp′

∫
Rn

e−p′(c1−4ξ/p)
|w−y|2

t dw � Ck,p

tnp′/2p+kp′

since p′ − 1 = p′/p. Note that the constant Ck,p is independent of y. We therefore obtain

∫
Rn

∣∣∣∣∇2
x

∂k

∂tk
p2t(x, y)

∣∣∣∣
p

eξ
|x−y|2

t dx � Ck,p

tn/2+kp

∫
Rn

( ∫
Rn

∣∣∇2
x pt(x, w)

∣∣p
e2ξ

|x−w|2
t dx

)
e−2ξ

|w−y|2
t dw

� Ck,p
e
−cp(1+ t

ρ(x)2 )δ

tn/2+kp+np/2p′

∫
Rn

e−2ξ
|w−y|2

t dw

� Ck,p
e
−cp(1+ t

ρ(x)2 )δ

t p+kp+np/2p′ ,

where we have applied (3.6) in the second inequality because 2ξ < βp . This concludes the proof of estimate (3.8).
We can obtain (3.9) in the same way, but we use (3.7) in place of (3.6). �
These estimates allow us to obtain the following decay estimates, which will be crucial in the subsequent sections.

Lemma 3.4. Assume V ∈ R Hq with q > max{2,n/2} and n � 3. Then for each k ∈N∪ {0}, there exist Ck, c > 0 such that

( ∫
|x−y|�√

s

∣∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣∣
2

dx

)1/2

� Ck

t1+n/4+k
e−cs/t, (3.11)

( ∫
|x−y|�√

s

∣∣∣∣V (x)
∂k

∂tk
pt(x, y)

∣∣∣∣
2

dx

)1/2

� Ck

t1+n/4+k
e−cs/t, (3.12)

for each y ∈ Rn and s, t > 0.
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Proof. Since q > 2 we may apply Proposition 3.3 with p = 2. Let ξ be the constant in Proposition 3.3. Then by (3.8),( ∫
|x−y|�√

s

∣∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣∣
2

dx

)1/2

=
( ∫

|x−y|�√
s

∣∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣∣
2

eξ
|x−y|2

t e−ξ
|x−y|2

t dx

)1/2

� sup
|x−y|�√

s
e−ξ

|x−y|2
t

(∫
Rn

∣∣∣∣∇2
x

∂k

∂tk
pt(x, y)

∣∣∣∣
2

eξ
|x−y|2

t dx

)1/2

� C

t1+n/4+k
e−ξ s/t .

Estimate (3.12) can be obtained similarly but with (3.9) in place of (3.8). �
We also record corresponding estimates for the first spatial derivative. These are needed in the proof of Theorem 1.2 (b).

Lemma 3.5. Assume n � 1 and 0 � V ∈ L1
loc(R

n). Then for each k ∈N∪ {0}, there exist Ck, c > 0 such that∫
|x−y|�√

s

∣∣∣∣∇x
∂k

∂tk
pt(x, y)

∣∣∣∣dx � Ck

t1/2+k
e−cs/t, (3.13)

for each y ∈ Rn and s, t > 0.

Proof. We first observe that a similar argument to the proof of Proposition 3.3, but with (3.3) in place of (3.6), and with
the time derivative bounds in (3.2) in place of (3.5), give the following estimates: for each k ∈ N ∪ 0, there exist ξk > 0
and Ck > 0 such that( ∫

Rn

∣∣∣∣∇x
∂k

∂tk
pt(x, y)

∣∣∣∣
2

eξ
|x−y|2

t dx

)1/2

� Ck

t1/2+n/4+k
. (3.14)

Note that the case k = 0 is simply the estimate in (3.3).
Now we combine (3.14) with the Cauchy–Schwarz inequality to obtain∫

|x−y|�√
s

∣∣∣∣∇x
∂k

∂tk
pt(x, y)

∣∣∣∣dx �
( ∫

Rn

∣∣∣∣∇x
∂k

∂tk
pt(x, y)

∣∣∣∣
2

eξ
|x−y|2

t dx

)1/2( ∫
|x−y|�√

s

e−ξ
|x−y|2

t dx

)1/2

� Ck

t1/2+k
e−cs/t

as desired. �
4. Proof of the main result

In this section we prove Theorem 1.2.

Proof of Theorem 1.2 (a). We show that Lemma 2.2 holds for each of the operators ∇2 L−1 and V L−1, for all 0 < p � 1.
More precisely let M > n

2 ( 1
p − 1

2 ) be an integer and aB be a (p,2, M)-atom for L associated to the ball B = B(xB , rB).

We first consider the operator ∇2L−1. By Lemma 2.2 it suffices to show that∥∥∇2L−1aB
∥∥

L p � C (4.1)

with C independent of aB .
Since 0 < p � 1 we may apply Hölder’s inequality with exponents 2/p and 2/(2 − p) to obtain

∥∥∇2L−1aB
∥∥p

L p =
∞∑
j=0

∥∥∣∣∇2L−1aB
∣∣p∥∥

L1(U j(B))

�
∞∑
j=0

∣∣2 j B
∣∣1−p/2∥∥∇2L−1aB

∥∥p
L2(U j(B))

� |B|1−p/2
∞∑

2 jn(1−p/2)
∥∥∇2L−1aB

∥∥p
L2(U j(B))

. (4.2)

j=0
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Since q > 2 the operator ∇2L−1 is bounded on L2(Rn) (recall item (ii) from Section 1), and hence for j = 0,1,2,∥∥∇2L−1aB
∥∥

L2(U j(B))
� C‖aB‖L2 � C |B|1/2−1/p. (4.3)

Now for each j � 3 we note that

dist
(
U j(B), B

)
� 2 j−1rB − rB � 2 j−2rB .

Then using the identity

L−1 =
∞∫

0

e−tL dt,

we obtain

∥∥∇2L−1aB
∥∥

L2(U j(B))
�

∥∥∥∥∥
r2

B∫
0

∇2e−tLaB dt

∥∥∥∥∥
L2(U j(B))

+
∥∥∥∥∥

∞∫
r2

B

∇2e−tLaB dt

∥∥∥∥∥
L2(U j(B))

=: I j + II j .

We first estimate term I j . Using estimate (3.11) with k = 0 we have

∥∥∇2e−tLaB
∥∥

L2(U j(B))
=

( ∫
U j(B)

∣∣∣∣
∫
B

∇2
x pt(x, y)aB(y)dy

∣∣∣∣
2

dx

)1/2

�
∫
B

∣∣aB(y)
∣∣( ∫

|x−y|�2 j−2rB

∣∣∇2
x pt(x, y)

∣∣2
dx

)1/2

dy

� C‖aB‖L1
e−c4 j r2

B/t

t1+n/4
. (4.4)

In the following let α be a number satisfying n
2 ( 1

p − 1
2 ) < α < M . Then (4.4) gives

I j �
r2

B∫
0

∥∥∇2e−tLaB
∥∥

L2(U j(B))
dt � C‖aB‖L1

r2
B∫

0

e−c4 j r2
B/t dt

tn/4+1

� C |B|1−1/p

r2
B∫

0

(
t

4 jr2
B

)α dt

tn/4+1
� C2−2 jα |B|1/2−1/p. (4.5)

In the last line we used that α > n/4, because p � 1 implies that n
2 ( 1

p − 1
2 ) � n

4 .

We turn to the term II j . For this estimate we apply L-cancellation to transfer powers of L to powers of t−1 increasing
the decay as t → ∞. More precisely we write aB = LMbB for some bB ∈D(LM), and obtain

e−tLaB = e−tL LMbB = LMe−tLbB = (−1)M ∂M

∂tM
e−tLbB .

Now we apply (3.11) with k = M to obtain the extra powers of t−1. This gives∥∥∥∥∇2 ∂M

∂tM
e−tLbB

∥∥∥∥
L2(U j(B))

=
( ∫

U j(B)

∣∣∣∣
∫
B

∇2
x

∂M

∂tM
pt(x, y)bB(y)dy

∣∣∣∣
2

dx

)1/2

�
∫
B

∣∣bB(y)
∣∣( ∫

|x−y|�2 j−2rB

∣∣∣∣∇2
x

∂M

∂tM
pt(x, y)

∣∣∣∣
2

dx

)1/2

dy

� C‖bB‖L1
e−c4 j r2

B/t

tM+n/4+1
. (4.6)

Then, with α as before, we use (4.6) to get
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II j �
∞∫

r2
B

∥∥∥∥∇2 ∂M

∂tM
e−tLbB

∥∥∥∥
L2(U j(B))

dt � C‖bB‖L1

∞∫
r2

B

e−c4 j r2
B/t dt

tM+n/4+1

� Cr2M
B |B|1−1/p

∞∫
r2

B

(
t

4 jr2
B

)α dt

tM+n/4+1
� C2−2 jα |B|1/2−1/p. (4.7)

In the last line we used that α < M + n/4.
Collecting estimates (4.3), (4.5) and (4.7) into (4.2) we obtain

∥∥∇2L−1aB
∥∥p

L p � C + |B|1−p/2
∞∑
j=3

2 jn(1−p/2){I j + II j}p � C + C
∞∑
j=3

2− j(2αp−n(1−p/2)) � C

with the sum converging because α > n
2 ( 1

p − 1
2 ). Therefore (4.1) holds.

Turning to the operator V L−1 we observe that we can repeat the proof to obtain∥∥V L−1aB
∥∥

L p � C

using (3.12) in place of (3.11). �
Proof of Theorem 1.2 (b). The proof we give here follows the same strategy as in [12] Proposition 5.6. We utilize a certain
characterization of H p(Rn) for p � 1 given there on page 38: for each p ∈ (0,1], ε > 0, and N ∈N∪{0} with N � [n( 1

p − 1)],
we call m ∈ L2(Rn) a (p,2, N, ε)-molecule for H p(Rn) associated to a ball B if

(a)
∫
Rn xαm(x)dx = 0 for all multi-indices 0 � |α| � N ,

(b) ‖m‖L2(U j(B)) � 2− jε|2 j B|1/2−1/p for all j = 0,1, . . . .

Then one may characterize the classical H p(Rn) as follows

H p(
Rn) =

{∑
j

λ jm j: {λ j} ∈ lp, m j are (p,2, N, ε)-molecules

}

with

‖ f ‖H p ≈ inf

{(∑
j

|λ j|p
)1/p}

, (4.8)

where the infimum being taken over all decompositions f = ∑
j λ jm j and the sum converging the space of tempered

distributions S ′ .
We shall show that for each p ∈ (n/(n + 1),1] and M > n

2 ( 1
p − 1

2 ), the operator ∇2 L−1 maps (p,2, M)-atoms for H p
L to

multiples of (p,2,0, ε)-molecules for H p with some ε > 0. Fix a (p,2, M)-atom aB for L associated to a ball B = B(xB , rB).
Set mB := ∇2 L−1. Since p > n/(n + 1) then we may take N = 0 in the above cancellation condition (a). Then we aim to
show that there exist C > 0 and ε > 0 such that

‖mB‖L2(U j(B)) � C2− jε
∣∣2 j B

∣∣1/2−1/p
, (4.9)∫

Rn

mB(x)dx = 0, (4.10)

for all j � 0.
Before we prove (4.9) and (4.10) we explain how these imply the estimate∥∥∇2L−1 f

∥∥
H p � C‖ f ‖H p

L
.

Since f ∈ H p
L (Rn) there is a sequence of (p,2, M)-atoms {aB}B for L and constants {λB}B such that f = ∑

B λBaB in L2(Rn)

and

‖ f ‖H p
L

≈
(∑

|λB |p
)1/p

. (4.11)

B
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Now since the sum converges in L2(Rn) we have

∇2L−1 f =
∑

B

λB
(∇2L−1aB

) =:
∑

B

λBmB .

By (4.9) and (4.10) each mB is a (p,2,0, ε)-molecule and hence this last sum converges in L2(Rn), and hence also in S ′ .
Therefore

∑
B λBmB ∈ H p(Rn) and furthermore

∥∥∇2L−1 f
∥∥

H p =
∥∥∥∥∑

B

λBmB

∥∥∥∥
H p

�
(∑

B

|λB |p
)1/p

≈ ‖ f ‖H p
L

from (4.8) and (4.11).
Having these facts in hand we now proceed to estimate (4.9). We recall from the proof of Theorem 1.2 (a) that for any

n
2 ( 1

2 − 1
2 ) < α < M we have from estimates (4.3), (4.5), and (4.7) that there exists C > 0 with

‖mB‖L2(U j(B)) = ∥∥∇2L−1aB
∥∥

L2(U j(B))
� C2−2 jα|B|1/2−1/p

= C2− j(2α+n/2−n/p)
∣∣2 j B

∣∣1/2−1/p
. (4.12)

Since α > n
2 ( 1

p − 1
2 ) then 2α + n/2 − n/p > 0 and we obtain (4.9) with ε = 2α + n/2 − n/p.

We now prove the moment condition (4.10). To do so we shall need the following result. It is implicit in [13] but we
give a proof here for completeness.

Lemma 4.1. Assume that f ∈ L1(Rn) and ∂k f ∈ L1(Rn) for some k ∈ {1, . . . ,n}. Then∫
Rn

∂k f (x)dx = 0. (4.13)

Here the derivative ∂k f is taken in the sense of distributions.

Proof of Lemma 4.1. Pick θ ∈ C∞
0 (Rn) such that θ = 1 on B(0,1) and θ = 0 outside B(0,2). For each j ∈ N set ϕ j(x) :=

θ(x/ j) for x ∈Rn . Then we have∫
Rn

∂k f (x)dx = lim
j→∞

∫
Rn

ϕ j(x)∂k f (x)dx = − lim
j→∞

∫
Rn

(∂kϕ j)(x) f (x)dx = 0

where the first equality is by Lebesgue’s Dominated Convergence Theorem (LDCT), the second one uses the definition of the
distributional derivative ∂k f , and the third is based on the fact that |∂kϕ j| � j−1‖∂kθ‖L∞ and again by LDCT. �

By Lemma 4.1, to show that∫
Rn

∂k∂l L
−1aB(x)dx = 0

for each 1 � k, l � n, it suffices to show that the functions ∂k L−1aB and ∂k∂l L−1aB are integrable. We note that ∂k∂l L−1aB ∈
L1(Rn) follows from (4.12). Indeed,

∥∥∂k∂l L
−1aB

∥∥
L1 �

∞∑
j=0

∥∥∇2L−1aB
∥∥

L1(U j(B))

�
∞∑
j=0

|B|1/2
∥∥∇2L−1aB

∥∥
L2(U j(B))

� C |B|1/2
∞∑
j=0

2− jε
∣∣2 j B

∣∣1/2−1/p

= C |B|1−1/p
∞∑
j=0

2− j(ε+n/p−n/2)

� C |B|1−1/p,
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with the sum being convergent since ε + n/p − n/2 = 2α > 0. To check ∂k L−1aB ∈ L1(Rn) we write

∥∥∂k L−1aB
∥∥

L1 �
∥∥∇L−1aB

∥∥
L1 =

∞∑
j=0

∥∥∇L−1aB
∥∥

L1(U j(B))
.

For j � 3,

∥∥∇L−1aB
∥∥

L1(U j(B))
�

∥∥∥∥∥
r2

B∫
0

∇e−tLaB dt

∥∥∥∥∥
L1(U j(B))

+
∥∥∥∥∥

∞∫
r2

B

∇e−tLaB dt

∥∥∥∥∥
L1(U j(B))

=: I j + II j.

Let β be a number satisfying 0 < β < M − 1
2 . Then using (3.13) with k = 0, we have

I j �
r2

B∫
0

∥∥∇e−tLaB
∥∥

L1(U j(B))
dt

=
r2

B∫
0

∫
U j(B)

∣∣∣∣
∫
B

∇x pt(x, y)aB(y)dy

∣∣∣∣dx dt

�
r2

B∫
0

∫
B

∣∣aB(y)
∣∣ ∫
|x−y|�2 j−2rB

∣∣∇x pt(x, y)
∣∣dx dy dt

� C‖aB‖L1

r2
B∫

0

e−c4 j r2
B/t dt√

t

� C |B|1−1/p

r2
B∫

0

(
t

4 jr2
B

)β dt√
t

� 4− jβ |B|1−1/p+1/n. (4.14)

For the second term we use L-cancellation and estimate (3.13) with k = M to obtain

II j �
∞∫

r2
B

∥∥∥∥∇ ∂M

∂tM
e−tLbB

∥∥∥∥
L1(U j(B))

dt

�
∞∫

r2
B

∫
B

∣∣bB(y)
∣∣ ∫
|x−y|�2 j−2rB

∣∣∣∣∇x
∂M

∂tM
pt(x, y)

∣∣∣∣dx dy dt

� C‖bB‖L1

∞∫
r2

B

e−c4 j r2
B/t dt

tM+1/2

� Cr2M
B |B|1−1/p

∞∫
r2

B

(
t

4 jr2
B

)β dt

tM+1/2

� C4− jβ |B|1−1/p+1/n. (4.15)

The last line holds because 0 < β < M − 1
2 . For j = 0,1,2 we use that the Riesz transform ∇L−1/2 is bounded on L2(Rn),

and that the fractional power L−1/2 maps L2n/(n+2)(Rn) into L2(Rn). The latter fact is a consequence of the following.

Lemma 4.2. Let L = −�+ V on Rn with n � 1 and 0 � V ∈ L1
loc(R

n). Let α ∈ (0,n) and p ∈ (1,n/α), with q satisfying 1/p − 1/q =
α/n. Then L−α/2 is bounded from Lp(Rn) to Lq(Rn).
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Proof. From the heat kernel bounds of (3.1), we have∣∣L−α/2 f (x)
∣∣ � (−�)−α/2| f |(x)

and hence the mapping properties of L−α/2 follow from that of (−�)−α/2 (which can be found in [21] for example). �
More precisely we have∥∥∇L−1aB

∥∥
L2(8B)

= ∥∥∇L−1/2L−1/2aB
∥∥

L2(8B)
� C

∥∥L−1/2aB
∥∥

L2 � C‖aB‖L2n/(n+2) .

Now we apply Hölder’s inequality with exponents s := (n + 2)/n and s′ := (n + 2)/2 to obtain

‖aB‖2/s
L2/s � ‖aB‖2/s

L2 |B|1/s′ � |B|1−2/ps,

and therefore∥∥∇L−1aB
∥∥

L1(8B)
� C |B|1/2

∥∥∇L−1aB
∥∥

L2(8B)
� C |B|1−1/p+1/n.

Collecting these estimates for j � 0 we obtain for some 0 < β < M − 1
2 ,

∥∥∇L−1aB
∥∥

L1 � C + C |B|1−1/p+1/n
∞∑
j=3

4− jβ � C |B|1−1/p+1/n.

We have shown that ∂k L−1aB ∈ L1(Rn) for each 1 � k � n, and hence by Lemma 4.1, estimate (4.10) holds.
The proof of Theorem 1.2 (b) is therefore complete. �
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[9] J. Dziubański, J. Zienkiewicz, H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math. 98 (1) (2003)

5–38.
[10] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea, L. Yan, Hardy spaces associated to non-negative self adjoint operators satisfying Davies–Gaffney estimates,

Mem. Amer. Math. Soc. 214 (1007) (2011), v+78.
[11] S. Hofmann, S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (1) (2009) 37–116.
[12] S. Hofmann, S. Mayboroda, A. McIntosh, Second order elliptic operators with complex bounded measurable coefficients in Lp , Sobolev and Hardy

spaces, preprint, arXiv:1002.0792v2, 2010.
[13] R. Jiang, D. Yang, Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates, Commun. Contemp. Math. 13 (2) (2011) 331–373.
[14] K. Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. Lond.

Math. Soc. (2) 62 (3) (2000) 885–903.
[15] F.K. Ly, Classes of weights and second order Riesz transforms associated to Schrödinger operators, submitted for publication.
[16] F.K. Ly, Riesz transforms, function spaces, and weighted estimates for Schrödinger operators with non-negative potentials, PhD thesis, Macquarie

University, 2012.
[17] E.M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monogr. Ser., vol. 31, Princeton University Press, Princeton, NJ, 2005.
[18] Z. Shen, Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (2) (1995) 513–546.
[19] A. Sikora, Riesz transform, Gaussian bounds and the method of wave equation, Math. Z. 247 (3) (2004) 643–662.
[20] L. Song, L. Yan, Riesz transforms associated to Schrödinger operators on weighted Hardy spaces, J. Funct. Anal. 259 (6) (2010) 1466–1490.
[21] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., vol. 30, Princeton University Press, Princeton, NJ, 1970.
[22] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, in: Monographs in Harmonic Analysis, vol. III, in: Princeton

Math. Ser., vol. 43, Princeton University Press, Princeton, NJ, 1993, with the assistance of Timothy S. Murphy.
[23] H. Wang, The boundedness of some singular integral operators acting on weighted Hardy spaces associated to Schrödinger operators, preprint,

arXiv:1103.4752v1, 2011.
[24] H. Wang, Riesz transforms associated with Schrödinger operators acting on weighted Hardy spaces, preprint, arXiv:1102.5467v1, 2011.

http://refhub.elsevier.com/S0022-247X(13)00793-2/bib416E68s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib4142s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib4142s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib414D52s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib444Cs1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib444Cs1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib444F59s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445932s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445932s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445A31s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445A31s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445A32s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445A32s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445A33s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib445A33s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib484C4D4D59s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib484C4D4D59s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib484Ds1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib484D4Ds1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib484D4Ds1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib4A59s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib4B7572617461s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib4B7572617461s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib464B4C3A746865736973s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib464B4C3A746865736973s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib4F75686162617As1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib5368656E3935s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib53696B6F7261s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib5359s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib537465696E31s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib537465696E32s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib537465696E32s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib57616E6732s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib57616E6732s1
http://refhub.elsevier.com/S0022-247X(13)00793-2/bib57616E6731s1

	Second order Riesz transforms associated to  the Schrödinger operator for p<=1
	1 Introduction
	2 Hardy spaces
	3 Kernel estimates
	4 Proof of the main result
	References


