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In this paper, we consider the following elliptic problem with the nonlinear Neumann
boundary condition:

(E p)

⎧⎪⎨
⎪⎩

−�u + u = 0 on Ω,

u > 0 on Ω,

∂u
∂ν = up on ∂Ω,

where Ω is a smooth bounded domain in R
2, ν is the outer unit normal vector to ∂Ω , and

p > 1 is any positive number.
We study the asymptotic behavior of least energy solutions to (E p) when the nonlinear
exponent p gets large. Following the arguments of X. Ren and J.C. Wei [13,14], we show
that the least energy solutions remain bounded uniformly in p, and it develops one peak
on the boundary, the location of which is controlled by the Green function associated to
the linear problem.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following elliptic problem with the nonlinear Neumann boundary condition:

(E p)

⎧⎪⎨
⎪⎩

−�u + u = 0 in Ω,

u > 0 in Ω,

∂u
∂ν = up on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R
2, ν is the outer unit normal vector to ∂Ω , and p > 1 is any positive number.

Let H1(Ω) be the usual Sobolev space with the norm ‖u‖2
H1(Ω)

= ∫
Ω

(|∇u|2 + u2)dx. Since the trace Sobolev embedding

H1(Ω) ↪→ Lp+1(∂Ω) is compact for any p > 1, we can obtain at least one solution of (1.1) by a standard variational method.
In fact, let us consider the constrained minimization problem

C2
p = inf

{∫
Ω

(|∇u|2 + u2)dx
∣∣∣ u ∈ H1(Ω),

∫
∂Ω

|u|p+1 dsx = 1

}
. (1.2)

Standard variational method implies that C2
p is achieved by a positive function ūp ∈ H1(Ω) and then up = C2/(p−1)

p ūp solves
(1.1). We call up a least energy solution to the problem (1.1).
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In this paper, we prove the followings:

Theorem 1. Let up be a least energy solution to (E p). Then it holds

1 � lim inf
p→∞ ‖up‖L∞(∂Ω) � lim sup

p→∞
‖up‖L∞(∂Ω) �

√
e.

To state further results, we set

v p = up

/( ∫
∂Ω

up
p dsx

)
. (1.3)

Theorem 2. Let Ω ⊂ R
2 be a smooth bounded domain. Then for any sequence v pn of v p defined in (1.3) with pn → ∞, there exists a

subsequence (still denoted by v pn ) and a point x0 ∈ ∂Ω such that the following statements hold true.

(1)

fn = upn
pn∫

∂Ω
upn

pn dsx

∗
⇀ δx0

in the sense of Radon measures on ∂Ω .
(2) v pn → G(·, x0) in C1

loc(Ω̄ \ {x0}), Lt(Ω) and Lt(∂Ω) respectively for any 1 � t < ∞, where G(x, y) denotes the Green function
of −� for the following Neumann problem:{−�xG(x, y) + G(x, y) = 0 in Ω,

∂G
∂νx

(x, y) = δy(x) on ∂Ω.
(1.4)

(3) x0 satisfies

∇τ (x0)R(x0) = 
0,

where τ (x0) denotes a tangent vector at the point x0 ∈ ∂Ω and R is the Robin function defined by R(x) = H(x, x), where

H(x, y) := G(x, y) − 1

π
log |x − y|−1

denotes the regular part of G.

Concerning related results, X. Ren and J.C. Wei [13,14] first studied the asymptotic behavior of least energy solutions to
the semilinear problem⎧⎨

⎩
−�u = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

as p → ∞, where Ω is a bounded smooth domain in R
2. They proved that the least energy solutions remain bounded

and bounded away from zero in L∞-norm uniformly in p. As for the shape of solutions, they showed that the least energy
solutions must develop one “peak” in the interior of Ω , which must be a critical point of the Robin function associated with
the Green function subject to the Dirichlet boundary condition. Later, Adimurthi and Grossi [1] improved their results by
showing that, after some scaling, the limit profile of solutions is governed by the Liouville equation

−�U = eU in R
2,

∫
R2

eU dx < ∞,

and obtained that limp→∞ ‖up‖L∞(Ω) = √
e for least energy solutions up . Actual existence of concentrating solutions to (1.1)

is recently obtained by H. Castro [4] by a variational reduction procedure, along the line of [8] and [6]. As for construction
of concentrating solutions to related problems, see also [7,9], and [11].

Also in our case, we may conjecture that the limit problem of (1.1) is⎧⎪⎪⎨
⎪⎪⎩

�U = 0 in R
2+,

∂U
∂ν = eU on ∂R2+,∫
∂R2+ eU ds < ∞,

and limp→∞ ‖up‖L∞(∂Ω) = √
e holds true at least for least energy solutions up . Verification of these conjectures remains as

the future work.
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2. Some estimates for C 2
p

In this section, we provide some estimates for C2
p in (1.2) as p → ∞.

Lemma 3. For any s � 2, there exists D̃s > 0 such that for any u ∈ H1(Ω),

‖u‖Ls(∂Ω) � D̃ss
1
2 ‖u‖H1(Ω)

holds true. Furthermore, we have

lim
s→∞ D̃s = (2πe)−

1
2 .

Proof. Let u ∈ H1(Ω). By Trudinger–Moser trace inequality, see [5] and the references therein, we have∫
∂Ω

exp

(
π |u(x) − u∂Ω |2

‖∇u‖2
L2(Ω)

)
dsx � C(Ω)

for any u ∈ H1(Ω), where u∂Ω = 1
|∂Ω|

∫
∂Ω

u dsx . Thus, by an elementary inequality xs

Γ (s+1)
� ex for any x � 0 and s � 0,

where Γ (s) is the Gamma function, we see

1

Γ ((s/2) + 1)

∫
∂Ω

|u − u∂Ω |s dsx = 1

Γ ((s/2) + 1)

∫
∂Ω

(
π

|u(x) − u∂Ω |2
‖∇u‖2

L2(Ω)

)s/2

dsxπ
−s/2‖∇u‖s

L2(Ω)

�
∫

∂Ω

exp

(
π

|u(x) − u∂Ω |2
‖∇u‖2

L2(Ω)

)
dsxπ

−s/2‖∇u‖s
L2(Ω)

� C(Ω)π−s/2‖∇u‖s
L2(Ω)

.

Set

Ds := (
Γ (s/2 + 1)

)1/s
C(Ω)1/sπ−1/2s−1/2.

Then we have

‖u − u∂Ω‖Ls(∂Ω) � Dss1/2‖∇u‖L2(Ω).

Stirling’s formula says that (Γ ( s
2 + 1))

1
s ∼ ( s

2e )1/2 as s → ∞, so we have

lim
s→∞ Ds =

(
1

2πe

)1/2

.

On the other hand, by the embedding ‖u‖L2(∂Ω) � C(Ω)‖u‖H1(Ω) for any u ∈ H1(Ω), we see

|u∂Ω | � 1

|∂Ω|1/2

( ∫
∂Ω

|u|2 dsx

)1/2

� C(Ω)

|∂Ω|1/2
‖u‖H1(Ω).

Thus,

‖u‖Ls(∂Ω) � ‖u − u∂Ω‖Ls(∂Ω) + ‖u∂Ω‖Ls(∂Ω) � ‖u − u∂Ω‖Ls(∂Ω) + |u∂Ω ||∂Ω|1/s

� s1/2‖u‖H1(Ω)

(
D(s) + C(Ω)|∂Ω|1/s−1/2

s1/2

)
.

Put

D̃(s) = D(s) + C(Ω)|∂Ω|1/s−1/2

s1/2
.

Then, we have lims→∞ D̃(s) = lims→∞ D(s) = 1√
2πe

and

‖u‖Ls(∂Ω) � D̃ss
1
2 ‖u‖H1(Ω)

holds. �
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Lemma 4. Let Ω be a smooth bounded domain in R
2 . Then we have

lim
p→∞ pC2

p = 2πe.

Proof. For the estimate from below, we use Lemma 3. By Lemma 3, we have

‖u‖2
Lp+1(∂Ω)

� D̃2
p+1(p + 1)‖u‖2

H1(Ω)

for any u ∈ H1(Ω), which leads to D̃−2
p+1(

p
p+1 ) � pC2

p . Thus, we have 2πe � lim infp→∞ pC2
p , since limp→∞ D̃ p+1 =

(2πe)−1/2.
For the estimate from above, we use the Moser function. Let 0 < l < L. First, we assume Ω ∩ B L(0) = Ω ∩ B+

L where
B+

L = B L(0) ∩ {y = (y1, y2) | y2 > 0}. Define

ml(y) = 1√
π

⎧⎪⎪⎨
⎪⎪⎩

(log L/l)1/2, 0 � |y| � l, y ∈ B+
L ,

(log L/|y|)
(log L/l)1/2 , l � |y| � L, y ∈ B+

L ,

0, L � |y|, y ∈ B+
L .

Then ‖∇ml‖L2(B+
L ) = 1 and since ml ≡ 0 on ∂ B+

L ∩ {y2 > 0}, we have

‖ml‖p+1
Lp+1(∂ B+

L )
= 2

l∫
0

∣∣ml(y1)
∣∣p+1

dy1 + 2

L∫
l

∣∣ml(y1)
∣∣p+1

dy1

� 2

l∫
0

(
1√
π

√
log(L/l)

)p+1

dy1 = 2l

(√
1

π
log(L/l)

)p+1

.

Thus ‖ml‖2
Lp+1(∂ B+

L )
� (2l)

2
p+1 1

π log(L/l). Also,

‖ml‖2
L2(B+

L )
=

π∫
0

L∫
0

|ml|2r dr dθ =
π∫

0

l∫
0

|ml|2r dr dθ +
π∫

0

L∫
l

|ml|2r dr dθ =: I1 + I2.

We calculate

I1 = l2

2
log(L/l), I2 = 1

log(L/l)

L∫
l

(log L/r)2r dr = − l2

2
− l2

2
log(L/l) + 1

log(L/l)

L2 − l2

4
.

Thus we have ‖ml‖2
L2(B+

L )
= − l2

2 + 1
log(L/l)

L2−l2

4 .

Now, put l = Le− p+1
2 and extend ml by 0 outside B+

L and consider it as a function in H1(Ω). Then

pC2
p � p

‖ml‖2
H1(B+

L )

‖ml‖2
Lp+1(∂ B+

L )

= p

‖ml‖2
Lp+1(∂ B+

L )

+
p‖ml‖2

L2(B+
L )

‖ml‖2
Lp+1(∂ B+

L )

.

We estimate

p

‖ml‖2
Lp+1(∂ B+

L )

� p

(2l)
2

p+1 1
π log(L/l)

=
(

p

p + 1

)
2πe

1

(2L)
2

p+1

→ 2πe,

and

p‖ml‖2
L2(B+

L )

‖ml‖2
Lp+1(∂ B+

L )

�
p(− l2

2 + 1
log(L/l)

L2−l2

4 )

(2l)
2

p+1 1
π log(L/l)

= 2πe

(2L)
2

p+1

(
p

p + 1

){
− L2

2
e−(p+1) + 2

p + 1

L2(1 − e−(p+1))

4

}
→ 0

as p → ∞. Therefore, we have obtained lim supp→∞ pC2
p � 2πe in this case.
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In the general case, we introduce a diffeomorphism which flattens the boundary ∂Ω , see Ni and Takagi [12]. We may
assume 0 ∈ ∂Ω and in a neighborhood U of 0, the boundary ∂Ω can be written by the graph of function ψ : ∂Ω ∩ U = {x =
(x1, x2) | x2 = ψ(x1)}, with ψ(0) = 0 and ∂ψ

∂x1
(0) = 0. Define x = Φ(y) = (Φ1(y),Φ2(y)) for y = (y1, y2), where

x1 = Φ1(y) = y1 − y2
∂ψ

∂x1
(y1), x2 = Φ2(y) = y2 + ψ(y1),

and put D L = Φ(B+
L ). Note that ∂ D L ∩ ∂Ω = Φ(∂ B+

L ∩ {(y1,0)}). Since DΦ(0) = Id, we obtain there exists Ψ = Φ−1 in a
neighborhood of 0. Finally, define m̃l ∈ H1(Ω) as m̃l(x) = ml(Ψ (x)) for x ∈ U ∩ Ω . Then, Lemma A.1 in [12] implies the
estimates

‖∇m̃l‖2
L2(D L)

= ‖∇ml‖2
L2(B+

L )
+ O

(
1

p

)
, ‖m̃l‖2

L2(D L)
�

(
1 + O (L)

)‖ml‖2
L2(B+

L )
,

‖m̃l‖2
Lp+1(∂ D L∩∂Ω)

� ‖ml‖2
Lp+1(∂ B+

L ∩{(y1,0)}).

The last inequality comes from that, if we put I = {(y1,0) | −L � y1 � L} ⊂ ∂ B+
L and J = Φ(I) ⊂ ∂Ω , then dsx =√

1 + (ψ ′(x1))2 dx1 and J = {(x1, x2) | x1 = y1, x2 = ψ(y1)}. Thus∫
J

∣∣m̃l(x)
∣∣p+1

dsx =
∫
I

∣∣ml(y)
∣∣p+1

√
1 + (

ψ ′(y1)
)2

dy1 �
∫
I

∣∣ml(y)
∣∣p+1

dy1.

By testing C2
p with m̃l , again we obtain lim supp→∞ pC2

p � 2πe. �
Corollary 5. Let up be a least energy solution to (E p). Then we have

lim
p→∞ p

∫
∂Ω

up+1
p dsx = 2πe, lim

p→∞ p

∫
Ω

(|∇up|2 + u2
p

)
dx = 2πe.

Proof. Since up satisfies∫
Ω

(|∇up|2 + u2
p

)
dx =

∫
∂Ω

up+1
p dsx

and

pC2
p = p

∫
Ω

(|∇up|2 + u2
p)dx

(
∫
∂Ω

up+1
p dsx)

2
p+1

=
(

p

∫
∂Ω

up+1
p dsx

) p−1
p+1

p
2

p+1 ,

the results follow from Lemma 4. �
3. Proof of Theorem 1

The uniform estimate of ‖u‖L∞(∂Ω) from below holds true for any solution u of (E p), as in [13].

Lemma 6. There exists C1 > 0 independent of p such that

‖u‖L∞(∂Ω) � C1

holds true for any solution u to (E p).

Proof. Let λ1 > 0 be the first eigenvalue of the eigenvalue problem{−�ϕ + ϕ = 0 in Ω,

∂ϕ
∂ν = λϕ on ∂Ω

and let ϕ1 be the corresponding eigenfunction. It is known that λ1 is simple, isolated, and ϕ1 can be chosen positive on Ω̄ .
(See [15].) Then by integration by parts, we have

0 =
∫
Ω

{
(−�u + u)ϕ1 − (−�ϕ1 + ϕ1)u

}
dx =

∫
∂Ω

(
∂ϕ1

∂ν
u − ∂u

∂ν
ϕ1

)
dsx =

∫
∂Ω

ϕ1u
(
λ1 − up−1)dsx.

Since ϕ1u > 0 on ∂Ω , this implies ‖u‖p−1
L∞(∂Ω) � λ1. �
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Lemma 7. Let up be a least energy solution to (E p). Then it holds

lim sup
p→∞

‖up‖L∞(∂Ω) �
√

e.

Proof. We follow the argument of [14], which in turn originates from [10], and use Moser’s iteration procedure. Let u be a
solution to (E p). For s � 1, multiplying u2s−1 ∈ H1(Ω) to the equation of (E p) and integrating, we get(

2s − 1

s2

)2 ∫
Ω

∣∣∇(
us)∣∣2

dx +
∫
Ω

u2s dx =
∫

∂Ω

u2s−1+p dsx.

Since 2s−1
s2 � 1 for s � 1, we have(
2s − 1

s2

)∥∥us
∥∥2

H1(Ω)
�

∫
∂Ω

u2s−1+p dsx. (3.1)

Also by Lemma 3 applied to us ∈ H1(Ω), we have( ∫
∂Ω

uνs dsx

)1/ν

� D̃νν
1
2
∥∥us

∥∥
H1(Ω)

for any ν � 2. Thus by (3.1), we see( ∫
∂Ω

uνs dsx

)1/ν

� D̃νν
1
2

(
s2

2s − 1

)1/2( ∫
∂Ω

u2s−1+p dsx

)1/2

.

Since D̃2
ν( s

2s−1 ) � C1 for some C1 > 0 independent of s � 1 and ν � 2, we obtain

( ∫
∂Ω

uνs dsx

)2/ν

� C1νs

∫
∂Ω

u2s−1+p dsx. (3.2)

Once the iteration scheme (3.2) is obtained, the rest of the argument is exactly the same as one in [14]. Indeed, by
Lemma 3, we have( ∫

∂Ω

uν dsx

)1/ν

� (2πe)−
1
2
(
1 + o(1)

)
ν1/2‖u‖H1(Ω), (3.3)

here o(1) → 0 as ν → ∞. Now, we fix α > 0 and ε > 0 which will be chosen small later and put ν = (1 + α)(p + 1) > 2
in (3.3). By Corollary 5, p1/2(2πe)−1/2‖up‖H1(Ω) → 1 as p → ∞ for a least energy solution up . Thus by (3.3), we see there
exists p0 > 1 such that∫

∂Ω

uν
p dsx � (1 + α + ε)ν/2 =: M0

for p > p0. Define {s j} j=0,1,2,... and {M j} j=0,1,2,... such that{
p − 1 + 2s0 = ν,

p − 1 + 2s j+1 = νs j ( j = 0,1,2, . . .),

and {
M0 = (1 + α + ε)ν/2,

M j+1 = (C1νs j M j)
ν/2 ( j = 0,1,2, . . .).

We easily see that s0 = α(p+1)
2 > 0, s j is increasing in j, s j → +∞ as j → ∞, and actually,

s j =
(

ν

2

) j

(s0 − x) + x where x = p − 1

ν − 2
> 0.

At this moment, we can follow exactly the same argument in [14] to obtain the estimates
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‖up‖Lνs j−1 (∂Ω) � M
1

νs j−1
j � exp

(
m(α, p, ε)

)
,

where m(α, p, ε) is a constant depending on α, p and ε, satisfying

lim
p→∞m(α, p, ε) = 1 + α

2α
log(1 + α + ε).

Letting j → ∞, p → ∞ first, we get

lim sup
p→∞

‖up‖L∞(∂Ω) � (1 + α + ε)
1+α
2α ,

and then letting α → +0, ε → +0, we obtain

lim sup
p→∞

‖up‖L∞(∂Ω) �
√

e

as desired. �
By Theorem 1 and Hölder’s inequality, we also obtain

Corollary 8. There exists C1, C2 > 0 such that

C1 � p

∫
∂Ω

up
p dsx � C2

holds.

4. Proof of Theorem 2

In this section, we prove Theorem 2. First, we recall an L1 estimate from [6], which is a variant of the one by Brezis and
Merle [2].

Lemma 9. Let u be a solution to{−�u + u = 0 in Ω,
∂u
∂ν = h on ∂Ω

with h ∈ L1(∂Ω), where Ω is a smooth bounded domain in R
2 . For any ε ∈ (0,π), there exists a constant C > 0 depending only on ε

and Ω , independent of u and h, such that∫
∂Ω

exp

(
(π − ε)|u(x)|

‖h‖L1(∂Ω)

)
dsx � C (4.1)

holds true.

Also we need an elliptic L1 estimate by Brezis and Strauss [3] for weak solutions with the L1 Neumann data.

Lemma 10. Let u be a weak solution of{−�u + u = f in Ω,
∂u
∂ν = g on ∂Ω

with f ∈ L1(Ω) and g ∈ L1(∂Ω), where Ω is a smooth bounded domain in R
N , N � 2. Then we have u ∈ W 1,q(Ω) for all 1 � q < N

N−1
and

‖u‖W 1,q(Ω) � Cq
(‖ f ‖L1(Ω) + ‖g‖L1(∂Ω)

)
holds.

For the proof, see [3, Lemma 23].
Now, following [13,14], we define the notion of δ-regular points. Put un = upn for any subsequence of up . Since un

satisfies
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∫
∂Ω

upn
n∫

∂Ω
upn

n dsx
dsx = 1,

we can select a subsequence pn → ∞ (without changing the notation) and a Radon measure μ � 0 on ∂Ω such that

fn := upn
n∫

∂Ω
upn

n dsx

∗
⇀ μ

weakly in the sense of Radon measures on ∂Ω , i.e.,∫
∂Ω

fnϕ dsx →
∫

∂Ω

ϕ dμ

for all ϕ ∈ C(∂Ω). As in [14], we define

L0 = 1

2
√

e
lim sup

p→∞

(
p

∫
∂Ω

up
p dsx

)
. (4.2)

By Corollary 5 and Hölder’s inequality, we have

L0 � π
√

e.

For some δ > 0 fixed, we call a point x0 ∈ ∂Ω a δ-regular point if there is a function ϕ ∈ C(∂Ω), 0 � ϕ � 1 with ϕ = 1 in a
neighborhood of x0 such that∫

∂Ω

ϕ dμ <
π

L0 + 2δ

holds. Define S = {x0 ∈ ∂Ω | x0 is not a δ-regular point for any δ > 0}. Then,

μ
({x0}

)
� π

L0 + 2δ
(4.3)

for all x0 ∈ S and for any δ > 0.
Here, following the argument in [14], we prove a key lemma in the proof of Theorem 2.

Lemma 11. Let x0 ∈ ∂Ω be a δ-regular point for some δ > 0. Then vn = un∫
∂Ω upn

n dsx
is bounded in L∞(B R0 (x0) ∩ Ω) for some R0 > 0.

Proof. Let x0 ∈ ∂Ω be a δ-regular point. Then by definition, there exists R > 0 such that∫
∂Ω∩B R (x0)

fn dsx <
π

L0 + δ

holds for all n large. Put an = χB R (x0) fn and bn = (1 −χB R (x0)) fn where χB R (x0) denotes the characteristic function of B R(x0).
Split vn = v1n + v2n , where v1n, v2n is a solution to{−�v1n + v1n = 0 in Ω,

∂v1n
∂ν = an on ∂Ω,

{−�v2n + v2n = 0 in Ω,
∂v2n
∂ν = bn on ∂Ω

respectively. By the maximum principle, we have v1n, v2n > 0. Since bn = 0 on B R(x0), elliptic estimates imply that

‖v2n‖L∞(B R/2(x0)∩Ω) � C‖v2n‖L1(B R (x0)∩Ω) � C,

where we used the fact ‖v2n‖L1(Ω) = ‖�v2n‖L1(Ω) = ‖bn‖L1(∂Ω) � C for the last inequality. Thus we have to consider v1n

only.

Claim. For any x ∈ ∂Ω , we have

fn(x) � exp
(
(L0 + δ/2)vn(x)

)
(4.4)

for n large.
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Indeed, put

αn = ‖un‖L∞(∂Ω)

(
∫
∂Ω

upn
n dsx)1/pn

.

Then by Lemma 7 and Corollary 8, we have

lim sup
n→∞

αn �
√

e.

Since the function s �→ log s
s is monotone increasing if 0 < s < e, and un(x)

(
∫
∂Ω upn

n dsx)1/pn
� αn for any x ∈ ∂Ω , we observe that

for fixed ε > 0,

log un(x)
(
∫
∂Ω upn

n dsx)1/pn

un(x)
(
∫
∂Ω upn

n dsx)1/pn

� logαn

αn
� 1

2
√

e
+ ε

holds for large n. Thus

fn(x) = exp

(
pn log

un(x)

(
∫
∂Ω

upn
n dsx)1/pn

)
� exp

(
pnun(x)

(
∫
∂Ω

upn
n dsx)1/pn

(
1

2
√

e
+ ε

))

= exp

(
pn vn(x)

( ∫
∂Ω

upn
n dsx

)1−1/pn( 1

2
√

e
+ ε

))

� exp

((
lim sup

n→∞
pn

∫
∂Ω

upn
n dsx

)
vn(x)

(
1

2
√

e
+ 2ε

))

= exp

((
1

2
√

e
+ 2ε

)
2
√

eL0 vn(x)

)
= exp

(
(L0 + 4ε

√
eL0)vn(x)

)
.

Thus if we choose ε > 0 so small, we have the claim (4.4).
By this claim and the fact that v2n is uniformly bounded in B R/2(x0), for sufficiently small δ0 > 0 so that (1 +

δ0)
L0+δ/2

L0+δ
< 1, we have∫

B R/2(x0)∩∂Ω

f 1+δ0
n dsx �

∫
B R/2(x0)∩∂Ω

exp
(
(1 + δ0)(L0 + δ/2)vn(x)

)
dsx

� C

∫
B R/2(x0)∩∂Ω

exp
(
(1 + δ0)(L0 + δ/2)v1n(x)

)
dsx

� C

∫
B R/2(x0)∩∂Ω

exp

(
π(1 + δ0)

L0 + δ/2

L0 + δ
v1n(x)

)
dsx

= C

∫
B R/2(x0)∩∂Ω

exp
(
π(1 − ε0)v1n(x)

)
dsx,

where 1 − ε0 = (1 + δ0)
L0+δ/2

L0+δ
. Thus by Lemma 9, we have∫

B R/2(x0)∩∂Ω

f 1+δ0
n dsx � C

for some C > 0 independent of n. This fact and elliptic estimates imply that

lim sup
n→∞

‖vn‖L∞(Ω∩B R/4(x0)) � C,

which proves lemma. �
Now, we estimate the cardinality of the set S . By Theorem 1, we have
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vn(xn) = ‖un‖L∞(∂Ω)∫
∂Ω

upn
n dsx

� C1∫
∂Ω

upn
n dsx

→ ∞

for a sequence xn ∈ ∂Ω such that un(xn) = ‖un‖L∞(∂Ω) . Thus by Lemma 11, we see x0 = limn→∞ xn ∈ S and �S � 1. On the
other hand, by (4.3) we have

1 = lim
n→∞‖ fn‖L1(∂Ω) � μ(∂Ω) � π

L0 + 2δ
�S,

which leads to

1 � �S � L0 + 2δ

π
�

√
e + 2δ

π
� 1.64 . . . + 2δ

π
.

Thus we have �S = 1 if δ > 0 is chosen small.

Let S = {x0} for some point x0 ∈ ∂Ω . By Lemma 11, we can conclude easily that fn
∗
⇀ δx0 in the sense of Radon measures

on ∂Ω:∫
∂Ω

fnϕ dsx → ϕ(x0), as n → ∞

for any ϕ ∈ C(∂Ω), since vn is locally uniformly bounded on ∂Ω \ {x0} and fn → 0 uniformly on any compact sets of
∂Ω \ {x0}.

Now, by the L1 estimate in Lemma 10, we have vn is uniformly bounded in W 1,q(Ω) for any 1 � q < 2. Thus, by choosing
a subsequence, we have a function Ḡ such that vn ⇀ Ḡ weakly in W 1,q(Ω) for any 1 � q < 2, vn → Ḡ strongly in Lt(Ω)

and Lt(∂Ω) respectively for any 1 � t < ∞. The last convergence follows by the compact embedding W 1,q(Ω) ↪→ Lt(Ω) for
any 1 � t <

q
2−q . Thus by taking the limit in the equation∫

Ω

(−�ϕ + ϕ)vn dx =
∫

∂Ω

fnϕ dsx −
∫

∂Ω

∂ϕ

∂ν
vn dsx

for any ϕ ∈ C1(Ω̄), we obtain∫
Ω

(−�ϕ + ϕ)Ḡ dx +
∫

∂Ω

∂ϕ

∂ν
Ḡ dsx = ϕ(x0),

which implies Ḡ is the solution of (1.4) with y = x0.
Finally, we prove the statement (3) of Theorem 2. We borrow the idea of [6] and derive Pohozaev-type identities in balls

around the peak point. We may assume x0 = 0 without loss of generality. As in [6], we use a conformal diffeomorphism
Ψ : H ∩ B R0 → Ω ∩ Br which flattens the boundary ∂Ω , where H = {(y1, y2) | y2 > 0} denotes the upper half space and
R0 > 0 is a radius sufficiently small. We may choose Ψ is at least C3, up to ∂ H ∩ B R0 , Ψ (0) = 0 and DΨ (0) = Id. Set
ũn(y) = un(Ψ (y)) for y = (y1, y2) ∈ H ∩ B R0 . Then by the conformality of Ψ , ũn satisfies{−�ũn + b(y)ũn = 0 in H ∩ B R0 ,

∂ ũn
∂ν̃

= h(y)ũpn
n on ∂ H ∩ B R0 ,

(4.5)

where ν̃ is the unit outer normal vector to ∂(H ∩ B R0 ), b and h are defined

b(y) = ∣∣det DΨ (y)
∣∣, h(y) = ∣∣DΨ (y)e

∣∣
with e = (0,−1). Note that ν̃(y) = ν(Ψ (y)) for y ∈ ∂ H ∩ B R0 . Note also that, by using a clever idea of [6], we can modify
Ψ to prescribe the number

α = ( ∂h
∂ y1

)

h(y)2

∣∣∣∣
y=0

=
(

∂h

∂ y1

)
(0).

Let D ⊂ R
N be a bounded domain and recall the Pohozaev identity for the equation −�u = f (y, u), y ∈ D:

N

∫
D

F (y, u)dy −
(

N − 2

2

)∫
D

|∇u|2 dy +
∫
D

(
y − y0,∇y F (y, u)

)
dy

=
∫

(y − y0, ν)F (y, u)dsy +
∫

(y − y0,∇u)

(
∂u

∂ν

)
dsy − 1

2

∫
(y − y0, ν)|∇u|2 dsy
∂ D ∂ D ∂ D
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for any y0 ∈ R
N , where u is a smooth solution. Applying this to (4.5) for N = 2, D = H ∩ B R for 0 < R < R0, f (y, ũn) =

−b(y)ũn and F (y, ũn) = − b(y)
2 ũ2

n , we obtain∫
H∩B R

b(y)ũ2
n(y)dy +

∫
H∩B R

(
y − y0,∇b(y)

)1

2
ũ2

n(y)dy

=
∫

∂(H∩B R )

(y − y0, ν̃)
1

2
b(y)ũ2

n(y)dsy −
∫

∂(H∩B R )

(
y − y0,∇ũn(y)

)(∂ ũn

∂ν̃

)
dsy + 1

2

∫
∂(H∩B R )

(y − y0, ν̃)|∇ũn|2 dsy,

where and from now on, ν̃ will be used again to denote the unit normal to ∂(H ∩ B R). Differentiating with respect to y0,
we have, in turn,∫

∂(H∩B R )

∇ũn(y)

(
∂ ũn

∂ν̃

)
dsy = 1

2

∫
∂(H∩B R )

(|∇ũn|2 + b(y)ũ2
n

)
ν̃ dsy − 1

2

∫
H∩B R

∇b(y)ũ2
n(y)dy.

Since ν̃ = (ν̃1, ν̃2) = (0,−1) on ∂ H ∩ B R , the first component of the above vector equation reads∫
∂ H∩B R

(ũn)y1 h(y)ũpn
n (y)dsy +

∫
H∩∂ B R

(ũn)y1(y)

(
∂ ũn

∂ν̃

)
dsy

= 1

2

∫
H∩∂ B R

(|∇ũn|2 + b(y)ũ2
n

)
ν̃1 dsy − 1

2

∫
H∩B R

by1(y)ũ2
n(y)dy, (4.6)

where ( )y1 denotes the derivative with respect to y1. Let γn = ∫
∂Ω

upn
n dsx . From the fact that f̃n(y) = ũpn

n
γn

∗
⇀ δ0 in the sense

of Radon measures on ∂ H ∩ B R , Corollary 8 and ‖ũn‖L∞(∂ H∩B R ) = O (1) uniformly in n, we see

g̃n(y) = 1

γ 2
n

ũpn+1
n (y)

pn + 1
= 1

(pn + 1)γn
f̃n(y)ũn(y)

satisfies that supp(g̃n) → {0} and
∫
∂ H∩B R

g̃n dsy = O (1) as n → ∞. Thus, by choosing a subsequence, we have the conver-
gence

g̃n(y) = 1

γ 2
n

ũpn+1
n (y)

pn + 1

∗
⇀ C0δ0

in the sense of Radon measures on ∂ H ∩ B R , where C0 = limn→∞
∫
∂ H∩B R

g̃n dsy (up to a subsequence). By using this fact,
we have

1

γ 2
n

∫
∂ H∩B R

(ũn)y1 h(y)ũpn
n (y)dsy =

[
h(y)

γ 2
n

ũpn+1
n

pn + 1

]y1=R

y1=−R
−

∫
∂ H∩B R

hy1(y)
ũpn+1

n (y)

(pn + 1)γ 2
n

dsy → 0 − C0hy1(0) = −C0α

as n → ∞. Thus after dividing (4.6) by γ 2
n and then letting n → ∞, we obtain

−C0α +
∫

H∩∂ B R

G̃ y1(y)

(
∂ G̃

∂ν̃

)
dsy = 1

2

∫
H∩∂ B R

(|∇ G̃|2 + b(y)G̃2)ν̃1 dsy − 1

2

∫
H∩B R

by1(y)G̃2(y)dy, (4.7)

where G̃(y) = G(Ψ (y),0) is a limit function of ṽn(y) = vn(Ψ (y)) = ũn(y)
γn

. At this point, we have the same formula as
Eq. (117) in [6], thus we obtain the result. Indeed, decompose G(x,0) = s(x) + w(x) where

s(x) = 1

π
log |x|−1, w(x) = H(x,0),

and put s̃(y) = s(Ψ (y)), w̃(y) = H(Ψ (y),0) so that G̃ = s̃ + w̃ . Then after some computation using the fact that w̃ satisfies

−�w̃ + b(y)w̃ = −b(y)s̃(y) in H ∩ B R ,

we have from (4.7) that
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−C0α +
∫

H∩∂ B R

(s̃ν̃ s̃ y1 + s̃ν̃ w̃ y1 + s̃ y1 w̃ ν̃ )dsy

=
∫

H∩∂ B R

(
1

2
|∇ s̃|2 + ∇ s̃ · ∇ w̃

)
ν̃1 dsy +

∫
H∩∂ B R

(
1

2
s̃2 + s̃w̃

)
b(y)ν̃1 dsy

−
∫

∂ H∩B R

by1(y)

(
1

2
s̃2 + s̃w̃

)
dsy +

∫
∂ H∩B R

w̃ ν̃ w̃ y1 dsy −
∫

H∩B R

b(y)s̃(y)w̃ y1 dy. (4.8)

By Lemma 9.3 in [6], we know estimates

lim
R→0

∫
H∩∂ B R

s̃ν̃ s̃ y1 dsx = 3α

4π
, lim

R→0

∫
H∩∂ B R

s̃ν̃ w̃ y1 dsx = −w̃ y1(0),

lim
R→0

1

2

∫
H∩∂ B R

|∇ s̃|2ν̃1 dsx = α

4π
, lim

R→0

∫
H∩∂ B R

∇ s̃ · ∇ w̃ν̃1 dsx = −1

2
w̃ y1(0)

and other terms in (4.8) go to 0 as R → 0. Thus we take the limit in (4.8) as R → 0 to obtain the relation

−C0α + 3α

4π
− w̃ y1(0) = α

4π
− 1

2
w̃ y1(0),

which leads to

α

(
1

2π
− C0

)
= 1

2
w̃ y1(0).

Since α ∈ R can be chosen arbitrary, we conclude that C0 = 1
2π and w̃ y1 (0) = 0. This last equation means the desired

conclusion of Theorem 2(3). �
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