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1. Introduction

Dual flatness is a basic notion in information geometry. It was first proposed by S.-I. Amari and H. Nagaoka when they
studied the information geometry on Riemannian spaces [2]. Information geometry has been emerged from investigating the
geometrical structure of a family of probability distributions, and has been applied successfully to various areas including
statistical inference, control system theory and multiterminal information theory [1,2].

In 2007, Z. Shen extended the dual flatness in Finsler geometry [11]. A Finsler metric F on a manifold M is said to be
locally dually flat if at any point there is a local coordinate system (x) in which F = F(x, y) satisfies the following PDEs

2 k 2
[F ]x"y’y _Z[F ]x’ =
Such a coordinate system is said to be adapted.

For a Riemannian metric « =, /a;j(x)y'y/, it is known that « is locally dually flat if and only if in an adapted coordinate
system, the fundamental tensor of « is the Hessian of some local smooth function v (x) [1,2], i.e.,

%y
dxioxJ

The dual flatness of a Riemannian metric can also be described by its spray [15]: « is locally dually flat if and only if its spray
coefficients could be expressed in an adapted coordinate system as

(x).

aij(x) =

Gl, =20y +a?6' (11)

for some 1-form & := & (x)y'.
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The first example of non-Riemannian dually flat Finsler metrics is the so-called Funk metric

VA=xP)y2+x 2  (xy)
1— |x|? 1—|x?

F=

on the unit ball B"(1) [6,8], which belongs to a special class of Finsler metrics named Randers metrics. Randers metrics are
expressed as the sum of a Riemannian metric o =, /aij(x)yfyf and a 1-form B = b;(x)y' with the norm b := ||8|lo < 1.

Based on the characterization result for locally dually flat Randers metrics given by X. Cheng et al. [6], the author
provides a more direct characterization and proves that the dual flatness of a Randers metric always arises from that
of some Riemannian metric [15]: A Randers metric F = o + B is locally dually flat if and only if the Riemannian metric @ =
1 —b2/a2 — B2 is locally dually flat and the 1-form B = —(1 — b?)8 is dually related with respect to &. In this case, F can be
reexpressed as

V(1 —b2)a? + p2 3
F= = — ’8_ . (1.2)
1— b2 1—-b2
Recall that a 1-form § is said to be dually related to a locally dually flat Riemannian metric « if in an adapted coordinate
system the spray coefficients of « are in the form (1.1) and the covariant derivation of 8 with respect to « is given by

bijj =26ibj + c(x)ajj (1.3)

for some scalar function c(x). This concept was first introduced by the author in [15]. In particular, we prove that the
Riemannian metrics

VA + Ry — pix, y)?
(1+ plx)3
are dually flat on the ball B"(r,) and the 1-forms
AX, y)
(1+ plx2)d

(i:

(1.4)

j— (1.5)

1

are dually related to & for any constant number w and A, where the radius r, is given by r;, = T
if u=>0.

As a result, we construct many non-trivial dually flat Randers metrics as follows:

1+ (+ 212/ A+ plxP)y? — puix, y)? N Ax, y)
1+ wlx|? A+ plxP)I1+ (u+ 2212

It is just the Funk metric when ©=—1 and A =1.

(1.2) is just the navigation expression for Randers metrics, which play a key role in the research of Randers metrics. For
example, D. Bao et al. classified Randers metrics with constant flag curvature [5]: F = « + B is of constant flag curvature if and
only if & in (1.2) is of constant sectional curvature and f is homothetic to @, i.e.,

if w <0andr, =400

Fx,y)=

1. - _
5 (bij +bjii) = ca;

for some constant c. Similarly, D. Bao et al. gave a characterization for Einstein metric of Randers type [4]: F =« + B is
Einsteinian if and only if & is Einsteinian and f is homothetic to &. It seems that most of the properties of Randers metrics
become simple and clear if they are described with the navigation form [10].

Except for Randers metrics, there is another important class of Finsler metrics defined also by a Riemannian metric and
a 1-form and given in the form

o)

where ¢(s) is a smooth function. Such kinds of Finsler metrics are called («, 8)-metrics. It was proposed by M. Matsumoto
in 1972 as a direct generalization of Randers metrics. (¢, 8)-metrics form a special class of Finsler metrics partly because
of its computability [3]. Recently, many encouraging results about («, 8)-metrics, including flag curvature property [9,17],
Ricci curvature property [7,13] and projective property [12,16] etc., have been achieved.

In 2011, Q. Xia gave a local characterization of locally dually flat (o, 8)-metrics on a manifold with dimension n > 3:

Theorem 1.1. (See [14].) Let F = a¢(g) be a Finsler metric on an open subset U C R" with n > 3. Suppose F is not of Riemannian
type and ¢'(0) # 0. Then F is dually flat on U if and only if the following conditions hold:
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Gl =[20 + Bk —2)TB]y' + o?(0' — Tb') + %Icgrﬂzbi, (1.6)
roo = 268 + (37 + 2tb* — 2b46%)a® + (3kz — 2 — 3ksb?)T 82, (1.7)
sio = B6; — 6b;, (1.8)
t{s(ka — k3s?)(¢¢' — s¢'*> —sp9”) — (¢'> + ¢9”) + k1o (¢ — s¢') } =0, (19)

where 6 is a 1-form, T is a scalar function, and k1, k2, k3 are constants.

The meaning of some notations here can be found in Section 2.

When t =0, (1.6) becomes Gfx =20y + 26!, which implies « is dually flat. Moreover, (1.7) and (1.8) are equivalent to
bjjj =26ib; — Zbkeka,-j, ie., B is dually related to o with c(x) + 2b;6* = 0. In fact, this is a trivial case. Because in this case,
F = a(p(g) will be always dually flat for any suitable function ¢(s) by Theorem 1.1. In this paper, we will focus on the
non-trivial case. Thereby, the function ¢ (s) must satisfy a 3-parameters equation

s(ky — k3s®) (' — s¢'? —spd") — (¢'* + ¢¢") + k1 (¢ — s¢') = 0. (1.10)

It is clear that the geometrical meaning of the original data o and B for the dually flat («, 8)-metrics is very obscure.
The main aim of this paper is to provide a luminous description for a non-trivial dually flat (¢, 8)-metric. By using a special
class of metric deformations called B-deformations, we prove that the dual flatness of («, B)-metrics always arises from that of
some Riemannian metric, just as Randers metrics.

Theorem 1.2. Let F = a¢(§) be a Finsler metric on an open subset U C R" with n > 3, where ¢ (s) satisfies (1.10). Suppose F is not
of Riemannian type and ¢’ (0) # 0. Then F is dually flat if and only if o« and B can be expressed as

[ (ky — ksb?) - (b%) 2
azn(bz)\/az—%ﬂz, p=— T,
1+ kob? — ksb (1+ kob?2 —k3b%)2

where @ is a dually flat Riemannian metric on U, B is dually related to &, b := || B||g. The deformation factor n(b2) is determined by
the coefficients ky, k2, k3 and given in the following five cases:

(1) Whenks =0,k =0,

s

h2
n(b?) =exp{%}

(2) Whenks =0,k #0,

_ —o ki—ky
n(b*) = {1 +keb?} % ;
(3) Whenks #0, A1 >0,
2kq —koy

{ A1tk . \/K] —k2+2k3]§2 } W
77 (52) _ Aq —kz \/K] +k2—2k3b2

\8/ 1+ szz - k3l_)4

(4) When ks #0, A1 =0,

Pexpl gL~ 4]

\4/ 24+ kzl_)z

n(b*) =

(5) When ks #0, A1 <0,

n(b?) = exp{fﬁf—ﬁi (arctan kZJELAglEz — arctan \/’ile)}

\8/ 1+ kzl_lz — k3l_)4 ’

where Ay := k% + 4ks.

B-deformations, which play a key role in the proof of Theorem 1.2, are a new method in Riemann-Finsler geom-
etry developed by the author in the research of projectively flat (o, 8)-metrics [16]. Roughly speaking, the method of
B-deformations is aimed to make clear the latent light. By an analogy, o and B are just like two ropes tangles together,
and it is possible to unhitch them using g-deformations. The navigation expression for Randers metrics is a representative
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example. In fact, it is just a specific kind of B-deformations. In other words, S-deformations can be regarded as a natural
generalization of the navigation expression for Randers metrics. See also [13] for more applications.
The argument in this paper is similar to that in [15], but we don’t show the original ideas here. One can obtain a more

deep analysis in the latter.
In Section 4, we will use a skillful method to solve the basic equation (1.10). As a result, we can construct infinity many
non-trivial dually flat (¢, 8)-metrics combining with (1.4) and (1.5). In particular, the following metrics

F=.a2+2eaB +kp2

are locally dually flat if and only if

a=(1-kb?) "\ J(1—kb)a? +xp?.  p=—(1—kb?) B, (111)

where & is locally dually flat and 8 is dually related to @.
Taking k =1 and & =1, one can see that (1.11) is just the Randers metrics F = o + 8. Taking k =0 and ¢ = % then we
can obtain a very simple kind of dually flat (¢, 8)-metrics given in the form

F=\a(x+p).
2. Preliminaries

Let M be a smooth n-dimensional manifold. A Finsler metric F on M is a continuous function F : TM — [0, +00) with
the following properties:

(i) Regularity: F is C* on the entire slit tangent bundle T M\{0};
(ii) Positive homogeneity: F(x,Ay) = AF(x, y) for all A > 0;

(iii) Strong convexity: the fundamental tensor g;j := [%Fz] is positive definite for all (x, y) € TM\{0}.

yiyl

Here x = (x') denotes the coordinates of the point in M and y = (y') denotes the coordinates of the vector in TyM.
For a Finsler metric, the geodesics are characterized by the geodesic equation

&) + 26 (c(t), ¢(t)) =0,

where
. 1 .
G'x ) = 58" ([FPlayy* ~ [F],)

are called the spray coefficients of F. Here (g') := (g,-j)”. For a Riemannian metric «, the spray coefficients are given by

) 1 . )
G (%, y) = ST jr(0yTy*
in terms of the Christoffel symbols of «.

By definition, an (&, B)-metric is a Finsler metric in the form F = oap(g), where @ =, /a;; (x)y'yJ is a Riemannian metric,

B=bi(x)y' is a 1-form and ¢(s) is a positive smooth function on some symmetric open interval (—bo, bo).
On the other hand, the so-called S-deformations are a triple of metric deformations in terms of « and g listed below:

a=e’a,  p=p
a=a, p=v(b?)B.

Some basic formulas for f-deformations are listed below. Be attention that the notation ‘b,-‘ j' always means the covariant
derivative of the 1-form ‘8’ with respect to the corresponding Riemannian metric ‘@’, where the symbol ‘"’ can be nothing,
‘7', "7 or ‘7’ in this paper. Moreover, we need the following abbreviations,

. iyJ . j . i . i
roo :=rijy'y’, ri=rijy’, ro:=riy', r:=r;b',

. j i ij . j . i
sio:=sijy’,  so:=alsj,  sit=siyl, sor=sib,

where r;; and s;; are the symmetrization and antisymmetrization of b;; respectively, i.e.,

1 1
rij = 5 by +bj).  sij = o bijj = bjpi).
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Roughly speaking, indices are raised and lowered by a;;, vanished by contracted with bt and changed to be ‘o’ by contracted
with y'. Since bjjj —bji= % - %, sijj =0 implies g is closed, and vice versa.

Lemma 2.1. (See [16].) Let & = /a2 — k (b2) 82, B = B. Then

6551 = Gfx - ﬁ{z(l — sz)ﬂsio +T00bi + 2K50/3bi}
/
ME TR f,(bz) {(1=&b?)B2(r' +5') + krB2b' —2(r0 +50)BD'},
~ K‘ K_/
bi“‘ = bi‘j + w{bzr” —l—biSj + bjSi} — m{rbibj — bzbi(l‘j +5sj) — bzbj(r,- + S,')}.

Lemma 2.2. (See [16].) Let & = e? V&, § = f. Then

6&=ég+p’{2(ro+so)yi—(az—xﬂ2)<ri+si+ i rbi>},
1 — kb2
L ) 1
byjj=bij—2p {bi(rj—i-sj)—kbj(ri—}-s,-)——]_szr(a,-j—/cb,-bj)}.
Lemma 2.3. (See [16].) Let & = &, B = v(b?)B. Then

i _ i
a=Cg

o

~

bi|j = \)b,’u + 2v/b,~(rj -|—Sj).
3. Proof of Theorem 1.2

Suppose that F = a¢(§) is a non-trivial dually flat (o, 8)-metric on U. According to Theorem 1.1, it is easy to obtain the
following simple facts:

rij = 6ibj + 0;b; + (3t +2tb? — 2b6")ai; + T (3ko — 2 — 3k3b?)bib;, (31)
slo= B0 —06b', (32)
so = byo* B — b2, (3.3)
ri +si =37 (1 + kob? — ksb®)b;, (3.4)
bisj +bjsi = 2bx6*bibj — b?(6;b; + 6;by), (3.5)
r=37(1+kob? — k3b*)b?. (3.6)

Lemma 3.1. Take « (b%) = —ky + k3b?, then

T(3ky — 2 — 3k3b?) — 2(ky — k3b?)by6* _, ,

Gl =20 3k —2)]y' + @6 b
a=[20+7BGki —2)]y' + a0 + 2(1 + kzb2 — k3b%) *

Proof. By (1.6), (3.1)-(3.6) and Lemma 2.1, we have

CL =[20+ Bk —2)TB]y' +a?(0' — Tb') + %kg‘[ﬂzbi
K

- 2(1—«kb?)

+7(3ky — 2 — 3k3b?) B2 + 2« (b8* B — b%6) b’}

{2(1 — kb?)B(BO' — 6b') +26Bb" + (3T + 27b? — bro¥)a®b!

K/
a0 —«b?)
+ 37k (1 +kob? — ksb*)b?B2b' — 67 (1 + kzb? — k3b*)B2b'}

[37(1 = kb?) (1 + kob? — k3b®) B2b'

: ; 1
— 2 _2 1 ~2 r_ -
[20 + Bk —2)TB]y' +@%0 ST <8

+ [26?br8* — 3Tk3(1 — kb?) + T (3ka — 2 — 3k3b?) + 37k’ (1 — kab? + k3b?)] B2} b'.

{3tk + 21 — 2kbi0")er?



C. Yu/J. Math. Anal. Appl. 412 (2014) 664-675

When « = —k, + k3b?, it is easy to verify that
K% +kak — k3 = —k'(1 + kab? — ksb?),
and hence 6%{ is given in the following form,

iy . 3tk +21 — 2kb 0% _, .
GL =20 3k —2) |yt +a?el — 2pi. o
L=[20+1BGki —2)]y' +@& EPTIN

Lemma 3.2. Take p(b?) = — [ 7 +k2kb22+"k3bb4 db?, then

" A i aA
G, =20y' +a°0',
where§ =0 — 1t[4— 3(k1 + ko — k3b®)1B. In particular, & is dually flat on U.

Proof. By (3.4), (3.6), (3.7) and Lemma 2.2 we have
@2 (37 (1 + kab? — ksb*)b + —<
1 —kb?

GL =GL + ,o’{6r(1 +kab® — k3b*) By’ —
= {260 + t[3ki — 2+ 6p'(1 + kab® — k3b*) |8}y’ + &6
_ mpm +27 + 670/ (1 + kob® — k3b*) — 2kbi6* }@?b'.
Let
0:=0+ %t[3k1 —2+6p'(1+kob* — k3b*)]B.

It is easy to verify that the inverse of (a;j) is given by
.. .. K P
@ =e 2" (a¥ + ———b'b/ ),
1—«b?

ji .= &ijéj are given by
i : 1 .
—e 2 k 2 4
p'=e 'O{Ql + m[ZKka + t(3kq —2)+6‘L’,0/(1 + kob“ — k3b )]bl]

Hence @g can be reexpressed as

A i 31—6_2)0

Gl = 620" — ————lky + K +4p' (1 +kab? — ksb*)}&?b'.
L=20y"+a 51 =g kK 40" (14 kab” —ksb®)

Obviously, the deformation factor given in the lemma satisfies

r_ ki +«
r= 4(1 4+ kpb? — k3b%)’

thus G, =20y' +a%0'. O

Lemma 3.3. Take v(b?) = —/1 + kab? — k3b%e?®"), then
_. S o
Gs =20y"' + a0,
bijj =26;bj + c(x)ajj,

where ¢(x) is a scalar function. In particular, 8 is dually related to &

Proof. Under the deformations used above, combining with (3.1), (3.4), (3.5) and Lemma 2.2 we can see that

N 1 .

Fij= 1 {rij + 2kbk6*bibj — kb*(Bibj + 6;bi) + 3Tk’ (1 + kob® — k3b*)b?bib;}
1

=6ibj +0jbi + —— {37 + 2tb? — 2b0%)a;j + [T (3k2 — 2 — 3k3b?) + 2k by

669

37(1 + kob® — l<3b4)b2bi> }

(3.8)

(3.9)
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+37k’(1 4 kob* — k3b*)b?]bib ;}

1 N
0Tt 2tb? — 2bk0")dij + T (3K + 3kz — 2)bib,
Sij=sij=0ibj — 0;b;.

=0ibj+6;b; +

Similarly, by (3.4), (3.9) and Lemma 2.2 we get

~ ~ k‘] +K 2 4 1 2 4 2~
rij =T1ij + 21 + kob? — kab%) {61’(1 + kob? — k3b )bibj — m ~3‘C(1 + kob® — k3b )b aij
-2p
=0;b; +6;b; + ﬁ{ﬁt + (4 —3ky)Tb* — 3TKb? — 4b0*)a;j + T (6K + 3k1 + 3ko — 2)bibj,

§ij =sjj =0;bj —0;b;.
If we use @ instead of @ to express #;j and 3, then
e—2p

fij = 0ibj + 0;b; + 30 k05 {67 + Tb* — 3Tkb? — 4bo*}a;; + STk +ki+2k2)bibj,
§ij =éil;j —éjB,',

where b; = b according to the definition of B-deformations.
Finally, by (3.4) and Lemma 2.3 we have

Fij = vijj + 67V (14 kab® — k3b®)b;b;
)
2(1 - «b?) {

= Q_jbj + 9_]'[_71‘ + 67 + th? —3tKb? — 4bk0k}ﬁ,-j

+ %t{(SK + ki + 2ka)v +4(1 + kob? — ksb®)v'}bib.,

5ij = vsij = v(@ib; — 6;b;) = 6:bj — 6;b;,
where 6 :=0. It is easy to verify that the deformation factor in the lemma satisfies

(5K + ki + 2kz)v + 4(1 + kab? — ksb*)v' =0, (3.10)
So

7ij = 0ibj + 0jb; + t(x)d;j
where c(x) is a scalar function and can be reexpressed as

3re 2Py

2(1 —kb?)

Combining with Eij, we have Ei|j = 29_1'13]' + (_,‘(X)ﬁij. O

¢(x) = —2bf* + {2(1 = kb?) + (ky — 1)b*}. (311)

From the equality (3.11) we can see that ¢(x) # —2b,6% unless T = 0. In other words, when 7 = 0, B is non-trivial (see
the statements below Theorem 1.1 for the reason).

Proof of Theorem 1.2. Due to the above lemmas, we have shown that if F = a¢(§) is a non-trivial dually flat Finsler metric

with dimension n > 3, then the output Riemannian metric @ is dually flat and the output 1-form B is dually related to @.
Conversely, by (3.8) we can see that the norm of b is related to b as

b% = vbjvbje~2* <aij + Lb"bf> =b?,

1—«b?
which implies that the g-deformations given above are reversible. More specifically, we have
o o e—P(b?) _
B=v (b =P
v1+ k2b2 — k3b4

and

(kz — kgBZ) -

—_— = 2«
1+ kyb? — k3b?

o= \/6—2/3(52)642 +ie(b2)p2 = e""“;Z)\/ée2 -
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Denote 7(b?) :=e=P®*)_ By (3.9),  can be chosen as
BZ
- 1 k1 — ko + kst
b%) = exp{ - / ————dt;.
n( ) p{4 1+ kot — kat?
0

Combining with the discussions in the proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3, it is not hard to see that if & is
dually flat and g is dually related to &, then the output data o and B of the reverse S-deformations satisfy (1.6)-(1.8) and
hence F :oap(g) is dually flat. O

4. Symmetry and solutions of Eq. (1.10)

In this section, we will solve the basic equation (1.10) in a nonconventional way. Firstly, let us introduce two special
transformations for the function ¢:

gu(6() =1+ us%(ﬁ) ho(¢(9)) = (vs),

where u and v are constants with v # 0. The motivation of the above transformations can be found in [16], here we just
need to know that such transformations satisfy

8uq © 8uy; = 8uq+uys hv1 th2 =hV]V21 hy o gu=g,2, 0 hy,

and hence generate a transformation group G under the above generation relationship, which is isomorphism to (R x
R\{0}, -) under the map 7 (g, o hy) = (u, v). For the later, the operation is given by (u1, vy) - (uz, va) = (u1 + v%uz, viVv)).
In particular,

-1 -1
g, =8&-u h, =h,-.
The importance of the transformation group G for our question is that the solution space of the 3-parameters equa-

tion (1.10) is invariant under the action of G as below. The computations are elementary and hence omitted here.

Lemma 4.1. If ¢ (s) satisfies (1.10), then the function v (s) := gy (¢) satisfies the same kind of equation
s(ky — K5s?) (W' —sy'? —syy”) — (W2 + yy”) +Kv (v —sy’) =0,

where
ki =ki +u, Ky =ky +2u, k’3=k3—k2u—u2.

Moreover, ¢ (0) = v (0) and ¢'(0) = v/(0).

Lemma 4.2. If ¢ (s) satisfies (1.10), then the function ¢(s) := hy (¢) satisfies the same kind of equation
s(ky — K4s?) (pg — 5@’ —sp@") — (¢'2 + @¢") + K{p(p —s¢’) =0,
where
K| =v?ki,  ky=v’ka, Kk =vks.
Moreover, ¢(0) = ¢(0) and ¢'(0) = v¢'(0).
Furthermore, there are some invariants. Denote

A1:k%+4k3, Ay =ky — 2kq, A3 Zk%—k1k2—k3.

Then we have
Lemma 4.3. Sgn(A;) (i =1, 2, 3) are all invariants under the action of G.

Proof. We only need to show that Sgn(A;) are invariant for g,(¢) and hy(¢). It is obvious, because by Lemma 4.1 and
Lemma 4.2 we have A} = Ay, Ay = Ay, Ay = Az and A} =viAy, Ay =v2Ay, Ay =viA;s. O

Furthermore, A; satisfy A% — 4A3 = Aq. They will play a basic role for the further research.
Next, we will solve Eq. (1.10) with the initial conditions

PO =1, ¢ 0 =¢
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combining with the transformation group G. Note that for (o, 8)-metrics F = oup(g), the function ¢(s) must be positive
near s =0 and hence we can always assume ¢ (0) =1 after necessary scaling. On the other hand, ¢ # 0 by the assumption
of Theorem 1.1.

Let ¥ (s) = g_k, (¢). According to Lemma 4.1, the function (s) will satisfy the following equation

s{ko — 2ky — (k3 +kiko — K2)s*} (w o' —sy'? —syy”) — ¢/ 2 + ¢y =0 (4.1)
with the initial conditions

yO =1, ¢ 0 =e.
Let u(s) = ¥2(s). It is easy to see that (4.1) becomes

{14 A25% + Ass*hu” =s{Az + Ass® ' (4.2)
with the initial conditions

u(0) =1, u'(0) = 2e.

Hence, u’(s) is given by

1 Ay + A352 )
"(s) = — | ————————ds“;:=2 ,
u'(s) exp{ 5 / " 2 e s ef(s)

where f(s) satisfying f(0) =1 can be expressed as elementary functions. So we have

Lemma 4.4. The solutions of Eq. (4.2) with the initial conditions u(0) = 1, u’(0) = 2¢ are given by
N
u@is)=1 +26/f(0’)d0’,
0

where f(s) satisfying f(0) =1 are given in the following:
1. when A3 =0, A1 =0,
f&=1;
2. when A3 =0, A1 #0,
f()=V1+ Ars?;
3. when A3 #0, A1 >0,

Y]

24 (Ay + /A7)s2 ) /a7

$) =14 Ays2+ A 54{ :
fs) 2 3N 2T (dy — VA

4. when A3 #0, A1 =0,

Ay 1 1
$)=,/1+ —=s2exp] —— — = 15
I® 3 p{2+A252 2}

5. when A3 #0, A1 <0,

Aj Ay + 2A3s? Ay
(s) = v1+ Azs2 + Azstex { — |:arctan —~ — _arctan ——
! P 2/ —Aq Vv —A1 V—A1

Theorem 4.5. The solutions of Eq. (1.10) with the initial conditions ¢ (0) = 1, ¢’(0) = € are given by

= | (1+kqs? 1+2f1+k 2)2 (L>d )
?(s) ( 15){ 60( 102) 2 f Jiiko? o

Proof. By assumption,

v(s) =Vu= 1+28ff(0)d0,
0
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SO

S

J1+kys2

=8, () =V1+ks? <%)= 1+ks?)(1+2 f do |,
¢ (5) = gk, (¥) 1529 N (1+kys2) € J f(o)do

which can also be expressed as the form given in the theorem. O

Most of the solutions of (1.10) are non-elementary. Some elementary solutions are listed below (except for the last two
items). Notice that there is no sum of formula when the sum index n =1, and we rule m!! =1 when m < 0.

e When k1 =0, ky =0, k3 =0,
d(s) =1+ 2es;

When k1 =0, ky <0, k3 =0,

arcsiny/ —k25>;

¢(s):\/l+€<s 1+k252+\/1—k2

e When k1 =0, ky >0, k3 =0,

1
¢(s)=,/1+¢€ (s\/l + kys%2 + — arcsinh kzs>;
A/ kz
e When k3 =0, k1 +ky =0,

¢ () =14 2es +kqs?;

o When ki #£0, ko = k; (n1=1,2,3,...), k3 =0,

2m! n-l 2(n —k)2n —2)!'2k — 3)!! —k
b6 = 1+k152+65m|:(2n_1)”— 3 2m Ik }

o When k; >0, ky = 55k (1=1,2,3,...), k3 =0,

. 5 (2n—1)!!i
¢(s) = {(1 +kqs )[1 + NG arctan \/Es}

n—1

1
2n+ 1! 2 — k)(2n — )12k — 2)1! e
65[ 2l _,; M2k + D! (1+k2s?) “ :

e When k1 <0, ky = ﬁkl n=1,2,3,...),k3=0,

2n-1!

— 2 €
¢(s)—[(1+k1s)[l+ EINE

arctanh —kzs}

1
7‘1 3
@n+1! 20 —k@n— 112k —2)! o —k
_ 1+k ;
6{ @m! kz_; @2k + 1! (1+kas”)
o When ki #0, ky = — 57k (1=1,2,3,...), k3 =0,

n

2n +2)11 2 — k4 1)(2n)11(2k — 3)! (|
2n+ Ol _k; 2n+ DIk (1+kas?) ]

d(s) = |14 kqs? +es[

e When ky >0, ko =—oki (n1=1,2,3,...), k3 =0,



674 C. Yu/J. Math. Anal. Appl. 412 (2014) 664-675

2n-1!

_ 2
¢(s)—[(1+k1s)[1+ N

arcsin —k25:|

[N

@ N2k + D!

+65m[(2n+1)” Z2(n—1<)(2n—1)u(2k— )”( +1<252)"“ .

e When k1 <0, kz———kl n=1,2,3,...),k3=0,

_ 5 @n-D! € .
¢(s) = {(1 +k1s )|:l + et v arcsinh kzs]

[(SE

n—1

@n+ 2 —k)(2n — 1112k — 2)1! ik
2 _ .
+esvlthas [ @l & 2mI 2k + D (1+kas) ” ’

e When k1 =0, ko =0, k3 #0,

S
o(s) = ]+2€/\4/1 —ksotdo;
\ 0
e When ki #0, k; =0, k3 =0,

’<162
— 2 _
d(s)= | (1+kis )[ +2e/(1+k102)2 }

5. Some explicit examples

We can construct some typical examples below.

Example 5.1. Take ki =ky =k3 =0 and ¢ = % then ¢(s) = +/1 + s satisfies (1.10). By Theorem 1.2, the Finsler metric

a(x+pB)

is locally dually flat if and only if « is locally dually flat and 8 is dually related to «. In particular, the following metrics

VA +plxP)yR - pix, y) (J(l + 1Ix2)]y[2 — pix, y)2 AX, ¥) )
(A + plxi?)a (A + plxi2)a (1 + lx[2)3
are dually flat.

Example 5.2. Take k; = —k, =k, k3 =0, then ¢ (s) =+/1 + 2¢s + ks? satisfies (1.10). By Theorem 1.2, the Finsler metric

F=.a2+2eaB +kp?2

is locally dually flat if and only if
a=(1- KBZ)*l\/(l —kb?)a? +xp?,  p=—(1—-«b?) "B,

where & is locally dually flat and 8 is dually related to @.

Example 5.3. Take k1 =k3 =0, k; = —1 and ¢ =1, then ¢(s) = \/1 +54/1 — 52 4 arcsins satisfies (1.10). By Theorem 1.2, the
Finsler metric

F:\/az—i- a2—52ﬂ+(x2arcsiné
o
is locally dually flat if and only if
3 - - o3
a=(1-b*)"%/(1-b2)a2+p2  p=—(1-Db*)"*8,

where @ is locally dually flat and B is dually related to é.
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Example 5.4. Take k1 =k3 =0, k; =1 and ¢ =1, then ¢(s) = \/1 + s+/1+s2 4+ arcsinhss satisfies (1.10). By Theorem 1.2, the
Finsler metric

F= \/az +y/ o2+ B2B + a? arcsinhg

is locally dually flat if and only if

_3

a=(1+b%)"4/(1+b2)a2-p2, p=-(1+D%

g
‘B,

where & is locally dually flat and B is dually related to @.

Example 5.5. Take k1 =k, =0, k3 ==+1 and ¢ = % then ¢(s) =,/1+ fos Y1+ 0%do satisfies (1.10). By Theorem 1.2, the
Finsler metric

B
F= 1+f{‘/1ia4da
0

is locally dually flat if and only if
43 - p— _
a=(150) 73/ Fba2 0282, p=—(155

where @ is locally dually flat and 8 is dually related to .

5
°B.

2
Example 5.6. Take k =k3 =0, k; =41 and ¢ = % then ¢ (s) = \/(1 +s)(1+ J, (fITZZ)Z do) satisfies (1.10). By Theorem 1.2,
the Finsler metric

£ 2
o
eiaT

F= [(@xp)1+ [ -5 —d
@£p)\1+ | Gzom
0

is locally dually flat if and only if

4b2 _ 4b2
a=e 4, B=—e"1p8,

where & is locally dually flat and B is dually related to @.
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