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The dual flatness for Riemannian metrics in information geometry has been extended
to Finsler metrics. The aim of this paper is to study the dual flatness of the so-called
(α,β)-metrics in Finsler geometry. By doing some special deformations, we will show that
the dual flatness of an (α,β)-metric always arises from that of some Riemannian metric in
dimensional n � 3.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Dual flatness is a basic notion in information geometry. It was first proposed by S.-I. Amari and H. Nagaoka when they
studied the information geometry on Riemannian spaces [2]. Information geometry has been emerged from investigating the
geometrical structure of a family of probability distributions, and has been applied successfully to various areas including
statistical inference, control system theory and multiterminal information theory [1,2].

In 2007, Z. Shen extended the dual flatness in Finsler geometry [11]. A Finsler metric F on a manifold M is said to be
locally dually flat if at any point there is a local coordinate system (xi) in which F = F (x, y) satisfies the following PDEs[

F 2]
xk yl yk − 2

[
F 2]

xl = 0.

Such a coordinate system is said to be adapted.

For a Riemannian metric α =
√

aij(x)yi y j , it is known that α is locally dually flat if and only if in an adapted coordinate

system, the fundamental tensor of α is the Hessian of some local smooth function ψ(x) [1,2], i.e.,

aij(x) = ∂2ψ

∂xi∂x j
(x).

The dual flatness of a Riemannian metric can also be described by its spray [15]: α is locally dually flat if and only if its spray
coefficients could be expressed in an adapted coordinate system as

Gi
α = 2θ yi + α2θ i (1.1)

for some 1-form ξ := ξi(x)yi .
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The first example of non-Riemannian dually flat Finsler metrics is the so-called Funk metric

F =
√

(1 − |x|2)|y|2 + 〈x, y〉2

1 − |x|2 + 〈x, y〉
1 − |x|2

on the unit ball Bn(1) [6,8], which belongs to a special class of Finsler metrics named Randers metrics. Randers metrics are

expressed as the sum of a Riemannian metric α =
√

aij(x)yi y j and a 1-form β = bi(x)yi with the norm b := ‖β‖α < 1.

Based on the characterization result for locally dually flat Randers metrics given by X. Cheng et al. [6], the author
provides a more direct characterization and proves that the dual flatness of a Randers metric always arises from that
of some Riemannian metric [15]: A Randers metric F = α + β is locally dually flat if and only if the Riemannian metric ᾱ =√

1 − b2
√

α2 − β2 is locally dually flat and the 1-form β̄ = −(1 − b2)β is dually related with respect to ᾱ. In this case, F can be
reexpressed as

F =
√

(1 − b̄2)ᾱ2 + β̄2

1 − b̄2
− β̄

1 − b̄2
. (1.2)

Recall that a 1-form β is said to be dually related to a locally dually flat Riemannian metric α if in an adapted coordinate
system the spray coefficients of α are in the form (1.1) and the covariant derivation of β with respect to α is given by

bi| j = 2θib j + c(x)aij (1.3)

for some scalar function c(x). This concept was first introduced by the author in [15]. In particular, we prove that the
Riemannian metrics

ᾱ =
√

(1 + μ|x|2)|y|2 − μ〈x, y〉2

(1 + μ|x|2) 3
4

(1.4)

are dually flat on the ball Bn(rμ) and the 1-forms

β̄ = λ〈x, y〉
(1 + μ|x|2) 5

4

(1.5)

are dually related to ᾱ for any constant number μ and λ, where the radius rμ is given by rμ = 1√−μ
if μ < 0 and rμ = +∞

if μ � 0.
As a result, we construct many non-trivial dually flat Randers metrics as follows:

F (x, y) =
4
√

1 + (μ + λ2)|x|2√(1 + μ|x|2)|y|2 − μ〈x, y〉2

1 + μ|x|2 + λ〈x, y〉
(1 + μ|x|2) 4

√
1 + (μ + λ2)|x|2 .

It is just the Funk metric when μ = −1 and λ = 1.
(1.2) is just the navigation expression for Randers metrics, which play a key role in the research of Randers metrics. For

example, D. Bao et al. classified Randers metrics with constant flag curvature [5]: F = α +β is of constant flag curvature if and
only if ᾱ in (1.2) is of constant sectional curvature and β̄ is homothetic to ᾱ, i.e.,

1

2
(b̄i| j + b̄ j|i) = cāi j

for some constant c. Similarly, D. Bao et al. gave a characterization for Einstein metric of Randers type [4]: F = α + β is
Einsteinian if and only if ᾱ is Einsteinian and β̄ is homothetic to ᾱ. It seems that most of the properties of Randers metrics
become simple and clear if they are described with the navigation form [10].

Except for Randers metrics, there is another important class of Finsler metrics defined also by a Riemannian metric and
a 1-form and given in the form

F = αφ

(
β

α

)
,

where φ(s) is a smooth function. Such kinds of Finsler metrics are called (α,β)-metrics. It was proposed by M. Matsumoto
in 1972 as a direct generalization of Randers metrics. (α,β)-metrics form a special class of Finsler metrics partly because
of its computability [3]. Recently, many encouraging results about (α,β)-metrics, including flag curvature property [9,17],
Ricci curvature property [7,13] and projective property [12,16] etc., have been achieved.

In 2011, Q. Xia gave a local characterization of locally dually flat (α,β)-metrics on a manifold with dimension n � 3:

Theorem 1.1. (See [14].) Let F = αφ
( β
α

)
be a Finsler metric on an open subset U ⊆ R

n with n � 3. Suppose F is not of Riemannian
type and φ′(0) 	= 0. Then F is dually flat on U if and only if the following conditions hold:
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α = [

2θ + (3k1 − 2)τβ
]

yi + α2(θ i − τbi) + 3

2
k3τβ2bi, (1.6)

r00 = 2θβ + (
3τ + 2τb2 − 2bkθ

k)α2 + (
3k2 − 2 − 3k3b2)τβ2, (1.7)

si0 = βθi − θbi, (1.8)

τ
{

s
(
k2 − k3s2)(φφ′ − sφ′ 2 − sφφ′′) − (

φ′ 2 + φφ′′) + k1φ
(
φ − sφ′)} = 0, (1.9)

where θ is a 1-form, τ is a scalar function, and k1,k2,k3 are constants.

The meaning of some notations here can be found in Section 2.
When τ = 0, (1.6) becomes Gi

α = 2θ yi + α2θ i , which implies α is dually flat. Moreover, (1.7) and (1.8) are equivalent to
bi| j = 2θib j − 2bkθ

kai j , i.e., β is dually related to α with c(x) + 2bkθ
k = 0. In fact, this is a trivial case. Because in this case,

F = αφ
( β
α

)
will be always dually flat for any suitable function φ(s) by Theorem 1.1. In this paper, we will focus on the

non-trivial case. Thereby, the function φ(s) must satisfy a 3-parameters equation

s
(
k2 − k3s2)(φφ′ − sφ′ 2 − sφφ′′) − (

φ′ 2 + φφ′′) + k1φ
(
φ − sφ′) = 0. (1.10)

It is clear that the geometrical meaning of the original data α and β for the dually flat (α,β)-metrics is very obscure.
The main aim of this paper is to provide a luminous description for a non-trivial dually flat (α,β)-metric. By using a special
class of metric deformations called β-deformations, we prove that the dual flatness of (α,β)-metrics always arises from that of
some Riemannian metric, just as Randers metrics.

Theorem 1.2. Let F = αφ
( β
α

)
be a Finsler metric on an open subset U ⊆ R

n with n � 3, where φ(s) satisfies (1.10). Suppose F is not
of Riemannian type and φ′(0) 	= 0. Then F is dually flat if and only if α and β can be expressed as

α = η
(
b̄2)√ᾱ2 − (k2 − k3b̄2)

1 + k2b̄2 − k3b̄4
β̄2, β = − η(b̄2)

(1 + k2b̄2 − k3b̄4)
1
2

β̄,

where ᾱ is a dually flat Riemannian metric on U , β̄ is dually related to ᾱ, b̄ := ‖β̄‖ᾱ . The deformation factor η(b̄2) is determined by
the coefficients k1,k2,k3 and given in the following five cases:

(1) When k3 = 0, k2 = 0,

η
(
b̄2) = exp

{
k1b̄2

4

}
;

(2) When k3 = 0, k2 	= 0,

η
(
b̄2) = {

1 + k2b̄2} k1−k2
4k2 ;

(3) When k3 	= 0, �1 > 0,

η
(
b̄2) =

{√
�1+k2√
�1−k2

·
√

�1−k2+2k3b̄2√
�1+k2−2k3b̄2

} 2k1−k2
8
√

�1

8
√

1 + k2b̄2 − k3b̄4
;

(4) When k3 	= 0, �1 = 0,

η
(
b̄2) =

4
√

2 exp
{ k2−2k1

2k2

[ 1
2+k2b̄2 − 1

2

]}
4
√

2 + k2b̄2
;

(5) When k3 	= 0, �1 < 0,

η
(
b̄2) =

exp
{ 2k1−k2

4
√−�1

(
arctan k2−2k3b̄2√−�1

− arctan k2√−�1

)}
8
√

1 + k2b̄2 − k3b̄4
,

where �1 := k2
2 + 4k3 .

β-deformations, which play a key role in the proof of Theorem 1.2, are a new method in Riemann–Finsler geom-
etry developed by the author in the research of projectively flat (α,β)-metrics [16]. Roughly speaking, the method of
β-deformations is aimed to make clear the latent light. By an analogy, α and β are just like two ropes tangles together,
and it is possible to unhitch them using β-deformations. The navigation expression for Randers metrics is a representative
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example. In fact, it is just a specific kind of β-deformations. In other words, β-deformations can be regarded as a natural
generalization of the navigation expression for Randers metrics. See also [13] for more applications.

The argument in this paper is similar to that in [15], but we don’t show the original ideas here. One can obtain a more
deep analysis in the latter.

In Section 4, we will use a skillful method to solve the basic equation (1.10). As a result, we can construct infinity many
non-trivial dually flat (α,β)-metrics combining with (1.4) and (1.5). In particular, the following metrics

F =
√

α2 + 2εαβ + κβ2

are locally dually flat if and only if

α = (
1 − κ b̄2)−1

√(
1 − κ b̄2

)
ᾱ2 + κβ̄2, β = −(

1 − κ b̄2)−1
β̄, (1.11)

where ᾱ is locally dually flat and β̄ is dually related to ᾱ.
Taking κ = 1 and ε = 1, one can see that (1.11) is just the Randers metrics F = α + β . Taking κ = 0 and ε = 1

2 , then we
can obtain a very simple kind of dually flat (α,β)-metrics given in the form

F = √
α(α + β).

2. Preliminaries

Let M be a smooth n-dimensional manifold. A Finsler metric F on M is a continuous function F : T M → [0,+∞) with
the following properties:

(i) Regularity: F is C∞ on the entire slit tangent bundle T M\{0};
(ii) Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0;

(iii) Strong convexity: the fundamental tensor gij := [ 1
2 F 2

]
yi y j is positive definite for all (x, y) ∈ T M\{0}.

Here x = (xi) denotes the coordinates of the point in M and y = (yi) denotes the coordinates of the vector in TxM .
For a Finsler metric, the geodesics are characterized by the geodesic equation

c̈i(t) + 2Gi(c(t), ċ(t)
) = 0,

where

Gi(x, y) := 1

4
gil{[F 2]

xk yl yk − [
F 2]

xl

}
are called the spray coefficients of F . Here (gij) := (gij)

−1. For a Riemannian metric α, the spray coefficients are given by

Gi
α(x, y) = 1

2
Γ i

jk(x)y j yk

in terms of the Christoffel symbols of α.

By definition, an (α,β)-metric is a Finsler metric in the form F = αφ
( β
α

)
, where α =

√
aij(x)yi y j is a Riemannian metric,

β = bi(x)yi is a 1-form and φ(s) is a positive smooth function on some symmetric open interval (−bo,bo).
On the other hand, the so-called β-deformations are a triple of metric deformations in terms of α and β listed below:

α̃ =
√

α2 − κ
(
b2

)
β2, β̃ = β;

α̂ = eρ(b2)α̃, β̂ = β̃;
ᾱ = α̂, β̄ = ν

(
b2)β̂.

Some basic formulas for β-deformations are listed below. Be attention that the notation ‘ḃi| j ’ always means the covariant
derivative of the 1-form ‘β̇ ’ with respect to the corresponding Riemannian metric ‘α̇’, where the symbol ‘ ˙ ’ can be nothing,
‘ ˜ ’, ‘ ˆ ’ or ‘ ¯ ’ in this paper. Moreover, we need the following abbreviations,

r00 := ri j yi y j, ri := ri j y j, r0 := ri yi, r := rib
i,

si0 := si j y j, si
0 := aij s j0, si := si j y j, s0 := sib

i,

where ri j and si j are the symmetrization and antisymmetrization of bi| j respectively, i.e.,

ri j := 1
(bi| j + b j|i), si j := 1

(bi| j − b j|i).
2 2
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Roughly speaking, indices are raised and lowered by aij , vanished by contracted with bi and changed to be ‘0’ by contracted

with yi . Since bi| j − b j|i = ∂bi
∂x j − ∂b j

∂xi , si j = 0 implies β is closed, and vice versa.

Lemma 2.1. (See [16].) Let α̃ = √
α2 − κ(b2)β2 , β̃ = β . Then

G̃i
α̃ = Gi

α − κ

2(1 − κb2)

{
2
(
1 − κb2)βsi

0 + r00bi + 2κs0βbi}
+ κ ′

2(1 − κb2)

{(
1 − κb2)β2(ri + si) + κrβ2bi − 2(r0 + s0)βbi},

b̃i| j = bi| j + κ

1 − κb2

{
b2ri j + bi s j + b j si

} − κ ′

1 − κb2

{
rbib j − b2bi(r j + s j) − b2b j(ri + si)

}
.

Lemma 2.2. (See [16].) Let α̂ = eρ(b2)α̃, β̂ = β̃ . Then

Ĝi
α̂ = G̃ i

α̃ + ρ ′
{

2(r0 + s0)yi − (
α2 − κβ2)(ri + si + κ

1 − κb2
rbi

)}
,

b̂i| j = b̃i| j − 2ρ ′
{

bi(r j + s j) + b j(ri + si) − 1

1 − κb2
r(aij − κbib j)

}
.

Lemma 2.3. (See [16].) Let ᾱ = α̂, β̄ = ν(b2)β̂ . Then

Ḡi
ᾱ = Ĝ i

α̂ ,

b̄i| j = νb̂i| j + 2ν ′bi(r j + s j).

3. Proof of Theorem 1.2

Suppose that F = αφ
( β
α

)
is a non-trivial dually flat (α,β)-metric on U . According to Theorem 1.1, it is easy to obtain the

following simple facts:

ri j = θib j + θ jbi + (
3τ + 2τb2 − 2bkθ

k)aij + τ
(
3k2 − 2 − 3k3b2)bib j, (3.1)

si
0 = βθ i − θbi, (3.2)

s0 = bkθ
kβ − b2θ, (3.3)

ri + si = 3τ
(
1 + k2b2 − k3b4)bi, (3.4)

bi s j + b j si = 2bkθ
kbib j − b2(θib j + θ jbi), (3.5)

r = 3τ
(
1 + k2b2 − k3b4)b2. (3.6)

Lemma 3.1. Take κ(b2) = −k2 + k3b2 , then

G̃i
α̃ = [

2θ + τβ(3k1 − 2)
]

yi + α̃2θ i + τ (3k2 − 2 − 3k3b2) − 2(k2 − k3b2)bkθ
k

2(1 + k2b2 − k3b4)
α̃2bi .

Proof. By (1.6), (3.1)–(3.6) and Lemma 2.1, we have

G̃ i
α̃ = [

2θ + (3k1 − 2)τβ
]

yi + α2(θ i − τbi) + 3

2
k3τβ2bi

− κ

2(1 − κb2)

{
2
(
1 − κb2)β(

βθ i − θbi) + 2θβbi + (
3τ + 2τb2 − bkθ

k)α2bi

+ τ
(
3k2 − 2 − 3k3b2)β2bi + 2κ

(
bkθ

kβ − b2θ
)
βbi}

+ κ ′

2(1 − κb2)

{
3τ

(
1 − κb2)(1 + k2b2 − k3b4)β2bi

+ 3τκ
(
1 + k2b2 − k3b4)b2β2bi − 6τ

(
1 + k2b2 − k3b4)β2bi}

= [
2θ + (3k1 − 2)τβ

]
yi + α̃2θ i − 1

2(1 − κb2)

{(
3τκ + 2τ − 2κbkθ

k)α2

+ [
2κ2bkθ

k − 3τk3
(
1 − κb2) + τκ

(
3k2 − 2 − 3k3b2) + 3τκ ′(1 − k2b2 + k3b4)]β2}bi .
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When κ = −k2 + k3b2, it is easy to verify that

κ2 + k2κ − k3 = −κ ′(1 + k2b2 − k3b4),
and hence G̃ i

α̃
is given in the following form,

G̃ i
α̃ = [

2θ + τβ(3k1 − 2)
]

yi + α̃2θ i − 3τκ + 2τ − 2κbkθ
k

2(1 − κb2)
α̃2bi . � (3.7)

Lemma 3.2. Take ρ(b2) = − 1
4

∫ k1−k2+k3b2

1+k2b2−k3b4 db2 , then

Ĝi
α̂ = 2θ̂ yi + α̂2θ̂ i,

where θ̂ = θ − 1
4 τ [4 − 3(k1 + k2 − k3b2)]β . In particular, α̂ is dually flat on U .

Proof. By (3.4), (3.6), (3.7) and Lemma 2.2 we have

Ĝ i
α̂ = G̃ i

α̃ + ρ ′
{

6τ
(
1 + k2b2 − k3b4)β yi − α̃2

(
3τ

(
1 + k2b2 − k3b4)bi + κ

1 − κb2
· 3τ

(
1 + k2b2 − k3b4)b2bi

)}
= {

2θ + τ
[
3k1 − 2 + 6ρ ′(1 + k2b2 − k3b4)]β}

yi + α̃2θ i

− 1

2(1 − κb2)

{
3τκ + 2τ + 6τρ ′(1 + k2b2 − k3b4) − 2κbkθ

k}α̃2bi .

Let

θ̂ := θ + 1

2
τ
[
3k1 − 2 + 6ρ ′(1 + k2b2 − k3b4)]β.

It is easy to verify that the inverse of (âi j) is given by

âi j = e−2ρ

(
aij + κ

1 − κb2
bib j

)
, (3.8)

so θ̂ i := âi j θ̂ j are given by

θ̂ i = e−2ρ

{
θ i + 1

2(1 − κb2)

[
2κbkθ

k + τ (3k1 − 2) + 6τρ ′(1 + k2b2 − k3b4)]bi
}
.

Hence Ĝ i
α̂

can be reexpressed as

Ĝ i
α̂ = 2θ̂ yi + α̂2θ̂ i − 3τe−2ρ

2(1 − κb2)

{
k1 + κ + 4ρ ′(1 + k2b2 − k3b4)}α̂2bi .

Obviously, the deformation factor given in the lemma satisfies

ρ ′ = − k1 + κ

4(1 + k2b2 − k3b4)
, (3.9)

thus Ĝ i
α̂

= 2θ̂ yi + α̂2θ̂ i . �
Lemma 3.3. Take ν(b2) = −

√
1 + k2b2 − k3b4eρ(b2) , then

Ḡi
ᾱ = 2θ̄ yi + ᾱ2θ̄ i,

b̄i| j = 2θ̄i b̄ j + c̄(x)āi j,

where c̄(x) is a scalar function. In particular, β̄ is dually related to ᾱ.

Proof. Under the deformations used above, combining with (3.1), (3.4), (3.5) and Lemma 2.2 we can see that

r̃i j = 1

1 − κb2

{
ri j + 2κbkθ

kbib j − κb2(θib j + θ jbi) + 3τκ ′(1 + k2b2 − k3b4)b2bib j
}

= θib j + θ jbi + 1
2

{(
3τ + 2τb2 − 2bkθ

k)aij + [
τ
(
3k2 − 2 − 3k3b2) + 2κbkθ

k

1 − κb
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+ 3τκ ′(1 + k2b2 − k3b4)b2]bib j
}

= θib j + θ jbi + 1

1 − κb2

(
3τ + 2τb2 − 2bkθ

k)ãi j + τ (3κ + 3k2 − 2)bib j,

s̃i j = si j = θib j − θ jbi .

Similarly, by (3.4), (3.9) and Lemma 2.2 we get

r̂i j = r̃i j + k1 + κ

2(1 + k2b2 − k3b4)

{
6τ

(
1 + k2b2 − k3b4)bib j − 1

1 − κb2
· 3τ

(
1 + k2b2 − k3b4)b2ãi j

}

= θib j + θ jbi + e−2ρ

2(1 − κb2)

{
6τ + (4 − 3k1)τb2 − 3τκb2 − 4bkθ

k}âi j + τ (6κ + 3k1 + 3k2 − 2)bib j,

ŝi j = si j = θib j − θ jbi .

If we use θ̂ instead of θ to express r̂i j and ŝi j , then

r̂i j = θ̂i b̂ j + θ̂ j b̂i + e−2ρ

2(1 − κb2)

{
6τ + τb2 − 3τκb2 − 4bkθ

k}âi j + 3

2
τ (5κ + k1 + 2k2)b̂i b̂ j,

ŝi j = θ̂i b̂ j − θ̂ j b̂i,

where b̂i = bi according to the definition of β-deformations.
Finally, by (3.4) and Lemma 2.3 we have

r̄i j = νr̂i j + 6τν ′(1 + k2b2 − k3b4)bib j

= θ̄i b̄ j + θ̄ j b̄i + e−2ρν

2(1 − κb2)

{
6τ + τb2 − 3τκb2 − 4bkθ

k}āi j

+ 3

2
τ
{
(5κ + k1 + 2k2)ν + 4

(
1 + k2b2 − k3b4)ν ′}b̂i b̂ j,

s̄i j = νsi j = ν(θ̂i b̂ j − θ̂ j b̂i) = θ̄i b̄ j − θ̄ j b̄i,

where θ̄ := θ̂ . It is easy to verify that the deformation factor in the lemma satisfies

(5κ + k1 + 2k2)ν + 4
(
1 + k2b2 − k3b4)ν ′ = 0, (3.10)

So

r̄i j = θ̄i b̄ j + θ̄ j b̄i + c̄(x)āi j

where c̄(x) is a scalar function and can be reexpressed as

c̄(x) = −2b̄kθ̄
k + 3τe−2ρν

2(1 − κb2)

{
2
(
1 − κb2) + (k1 − 1)b2}. (3.11)

Combining with s̄i j , we have b̄i| j = 2θ̄i b̄ j + c̄(x)āi j . �
From the equality (3.11) we can see that c̄(x) 	= −2b̄k θ̄

k unless τ = 0. In other words, when τ 	= 0, β̄ is non-trivial (see
the statements below Theorem 1.1 for the reason).

Proof of Theorem 1.2. Due to the above lemmas, we have shown that if F = αφ
( β
α

)
is a non-trivial dually flat Finsler metric

with dimension n � 3, then the output Riemannian metric ᾱ is dually flat and the output 1-form β̄ is dually related to ᾱ.
Conversely, by (3.8) we can see that the norm of b̄ is related to b as

b̄2 = νbiνb je
−2ρ

(
aij + κ

1 − κb2
bib j

)
= b2,

which implies that the β-deformations given above are reversible. More specifically, we have

β = ν−1(b̄2)β̄ = − e−ρ(b̄2)√
1 + k2b̄2 − k3b̄4

β̄

and

α =
√

e−2ρ(b̄2)ᾱ2 + κ
(
b̄2

)
β2 = e−ρ(b̄2)

√
ᾱ2 − (k2 − k3b̄2)

¯2 ¯4
β̄2.
1 + k2b − k3b
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Denote η(b̄2) := e−ρ(b̄2) . By (3.9), η can be chosen as

η
(
b̄2) = exp

{
1

4

b̄2∫
0

k1 − k2 + k3t

1 + k2t − k3t2
dt

}
.

Combining with the discussions in the proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3, it is not hard to see that if ᾱ is
dually flat and β̄ is dually related to ᾱ, then the output data α and β of the reverse β-deformations satisfy (1.6)–(1.8) and
hence F = αφ

( β
α

)
is dually flat. �

4. Symmetry and solutions of Eq. (1.10)

In this section, we will solve the basic equation (1.10) in a nonconventional way. Firstly, let us introduce two special
transformations for the function φ:

gu
(
φ(s)

) :=
√

1 + us2φ

(
s√

1 + us2

)
, hv

(
φ(s)

) := φ(vs),

where u and v are constants with v 	= 0. The motivation of the above transformations can be found in [16], here we just
need to know that such transformations satisfy

gu1 ◦ gu2 = gu1+u2 , hv1 ◦ hv2 = hv1 v2 , hv ◦ gu = gv2u ◦ hv ,

and hence generate a transformation group G under the above generation relationship, which is isomorphism to (R ×
R\{0}, ·) under the map π(gu ◦ hv) = (u, v). For the later, the operation is given by (u1, v1) · (u2, v2) = (u1 + v2

1u2, v1 v2).
In particular,

g−1
u = g−u, h−1

v = hv−1 .

The importance of the transformation group G for our question is that the solution space of the 3-parameters equa-
tion (1.10) is invariant under the action of G as below. The computations are elementary and hence omitted here.

Lemma 4.1. If φ(s) satisfies (1.10), then the function ψ(s) := gu(φ) satisfies the same kind of equation

s
(
k′

2 − k′
3s2)(ψψ ′ − sψ ′ 2 − sψψ ′′) − (

ψ ′ 2 + ψψ ′′) + k′
1ψ

(
ψ − sψ ′) = 0,

where

k′
1 = k1 + u, k′

2 = k2 + 2u, k′
3 = k3 − k2u − u2.

Moreover, φ(0) = ψ(0) and φ′(0) = ψ ′(0).

Lemma 4.2. If φ(s) satisfies (1.10), then the function ϕ(s) := hv(φ) satisfies the same kind of equation

s
(
k′′

2 − k′′
3s2)(ϕϕ′ − sϕ′ 2 − sϕϕ′′) − (

ϕ′ 2 + ϕϕ′′) + k′′
1ϕ

(
ϕ − sϕ′) = 0,

where

k′′
1 = v2k1, k′′

2 = v2k2, k′′
3 = v4k3.

Moreover, φ(0) = ϕ(0) and φ′(0) = vϕ′(0).

Furthermore, there are some invariants. Denote

�1 = k2
2 + 4k3, �2 = k2 − 2k1, �3 = k2

1 − k1k2 − k3.

Then we have

Lemma 4.3. Sgn(�i) (i = 1,2,3) are all invariants under the action of G.

Proof. We only need to show that Sgn(�i) are invariant for gu(φ) and hv(φ). It is obvious, because by Lemma 4.1 and
Lemma 4.2 we have �′

1 = �1, �′
2 = �2, �′

3 = �3 and �′′
1 = v4�1, �′′

2 = v2�2, �′′
3 = v4�3. �

Furthermore, �i satisfy �2
2 − 4�3 = �1. They will play a basic role for the further research.

Next, we will solve Eq. (1.10) with the initial conditions

φ(0) = 1, φ′(0) = ε
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combining with the transformation group G . Note that for (α,β)-metrics F = αφ
( β
α

)
, the function φ(s) must be positive

near s = 0 and hence we can always assume φ(0) = 1 after necessary scaling. On the other hand, ε 	= 0 by the assumption
of Theorem 1.1.

Let ψ(s) = g−k1 (φ). According to Lemma 4.1, the function ψ(s) will satisfy the following equation

s
{

k2 − 2k1 − (
k3 + k1k2 − k2

1

)
s2}(ψψ ′ − sψ ′ 2 − sψψ ′′) − ψ ′ 2 + ψψ ′′ = 0 (4.1)

with the initial conditions

ψ(0) = 1, ψ ′(0) = ε.

Let u(s) = ψ2(s). It is easy to see that (4.1) becomes{
1 + �2s2 + �3s4}u′′ = s

{
�2 + �3s2}u′ (4.2)

with the initial conditions

u(0) = 1, u′(0) = 2ε.

Hence, u′(s) is given by

u′(s) = exp

{
1

2

∫
�2 + �3s2

1 + �2s2 + �3s4
ds2

}
:= 2ε f (s),

where f (s) satisfying f (0) = 1 can be expressed as elementary functions. So we have

Lemma 4.4. The solutions of Eq. (4.2) with the initial conditions u(0) = 1, u′(0) = 2ε are given by

u(s) = 1 + 2ε

s∫
0

f (σ )dσ ,

where f (s) satisfying f (0) = 1 are given in the following:

1. when �3 = 0, �1 = 0,

f (s) = 1;
2. when �3 = 0, �1 	= 0,

f (s) =
√

1 + �2s2;
3. when �3 	= 0, �1 > 0,

f (s) = 4
√

1 + �2s2 + �3s4

{
2 + (�2 + √

�1)s2

2 + (�2 − √
�1)s2

} �2
4
√

�1 ;

4. when �3 	= 0, �1 = 0,

f (s) =
√

1 + �2

2
s2 exp

{
1

2 + �2s2
− 1

2

}
;

5. when �3 	= 0, �1 < 0,

f (s) = 4
√

1 + �2s2 + �3s4 exp

{
�2

2
√−�1

[
arctan

�2 + 2�3s2

√−�1
− arctan

�2√−�1

]}
.

Theorem 4.5. The solutions of Eq. (1.10) with the initial conditions φ(0) = 1, φ′(0) = ε are given by

φ(s) =

√√√√√(
1 + k1s2

){
1 + 2ε

s∫
0

(
1 + k1σ 2

)− 3
2 f

(
σ√

1 + k1σ 2

)
dσ

}
.

Proof. By assumption,

ψ(s) = √
u =

√√√√√1 + 2ε

s∫
f (σ )dσ ,
0
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so

φ(s) = gk1(ψ) =
√

1 + k1s2ψ

(
s√

1 + k1s2

)
=

√√√√√√√(
1 + k1s2

)(
1 + 2ε

s√
1+k1s2∫
0

f (σ )dσ

)
,

which can also be expressed as the form given in the theorem. �
Most of the solutions of (1.10) are non-elementary. Some elementary solutions are listed below (except for the last two

items). Notice that there is no sum of formula when the sum index n = 1, and we rule m!! = 1 when m � 0.

• When k1 = 0, k2 = 0, k3 = 0,

φ(s) = √
1 + 2εs;

• When k1 = 0, k2 < 0, k3 = 0,

φ(s) =
√

1 + ε

(
s
√

1 + k2s2 + 1√−k2
arcsin

√
−k2s

)
;

• When k1 = 0, k2 > 0, k3 = 0,

φ(s) =
√

1 + ε

(
s
√

1 + k2s2 + 1√
k2

arcsinh
√

k2s

)
;

• When k3 = 0, k1 + k2 = 0,

φ(s) =
√

1 + 2εs + k1s2;
• When k1 	= 0, k2 = 1

2n k1 (n = 1,2,3, . . .), k3 = 0,

φ(s) =
√√√√1 + k1s2 + εs

√
1 + k2s2

[
(2n)!!

(2n − 1)!! −
n−1∑
k=1

2(n − k)(2n − 2)!!(2k − 3)!!
(2n − 1)!!(2k)!!

(
1 + k2s2

)−k

]
;

• When k1 > 0, k2 = 1
2n+1 k1 (n = 1,2,3, . . .), k3 = 0,

φ(s) =
{(

1 + k1s2)[1 + (2n − 1)!!
(2n)!!

ε√
k2

arctan
√

k2s

]

+ εs

[
(2n + 1)!!

(2n)!! −
n−1∑
k=1

2(n − k)(2n − 1)!!(2k − 2)!!
(2n)!!(2k + 1)!!

(
1 + k2s2)−k

]} 1
2

;

• When k1 < 0, k2 = 1
2n+1 k1 (n = 1,2,3, . . .), k3 = 0,

φ(s) =
{(

1 + k1s2)[1 + (2n − 1)!!
(2n)!!

ε√−k2
arctanh

√
−k2s

]

+ εs

[
(2n + 1)!!

(2n)!! −
n−1∑
k=1

2(n − k)(2n − 1)!!(2k − 2)!!
(2n)!!(2k + 1)!!

(
1 + k2s2)−k

]} 1
2

;

• When k1 	= 0, k2 = − 1
2n+1 k1 (n = 1,2,3, . . .), k3 = 0,

φ(s) =
√√√√1 + k1s2 + εs

[
(2n + 2)!!
(2n + 1)!! −

n∑
k=1

2(n − k + 1)(2n)!!(2k − 3)!!
(2n + 1)!!(2k)!!

(
1 + k2s2

)k

]
;

• When k1 > 0, k2 = − 1 k1 (n = 1,2,3, . . .), k3 = 0,
2n
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φ(s) =
{(

1 + k1s2)[1 + (2n − 1)!!
(2n)!!

ε√−k2
arcsin

√
−k2s

]

+ εs
√

1 + k2s2

[
(2n + 1)!!

(2n)!! −
n−1∑
k=1

2(n − k)(2n − 1)!!(2k − 2)!!
(2n)!!(2k + 1)!!

(
1 + k2s2)k

]} 1
2

;

• When k1 < 0, k2 = − 1
2n k1 (n = 1,2,3, . . .), k3 = 0,

φ(s) =
{(

1 + k1s2)[1 + (2n − 1)!!
(2n)!!

ε√
k2

arcsinh
√

k2s

]

+ εs
√

1 + k2s2

[
(2n + 1)!!

(2n)!! −
n−1∑
k=1

2(n − k)(2n − 1)!!(2k − 2)!!
(2n)!!(2k + 1)!!

(
1 + k2s2)k

]} 1
2

;

• When k1 = 0, k2 = 0, k3 	= 0,

φ(s) =

√√√√√1 + 2ε

s∫
0

4
√

1 − k3σ 4 dσ ;

• When k1 	= 0, k2 = 0, k3 = 0,

φ(s) =

√√√√√(
1 + k1s2

)[
1 + 2ε

s∫
0

e
k1
2 σ 2

(1 + k1σ 2)2
dσ

]
.

5. Some explicit examples

We can construct some typical examples below.

Example 5.1. Take k1 = k2 = k3 = 0 and ε = 1
2 , then φ(s) = √

1 + s satisfies (1.10). By Theorem 1.2, the Finsler metric

F = √
α(α + β)

is locally dually flat if and only if α is locally dually flat and β is dually related to α. In particular, the following metrics

F =
√√√√√

(1 + μ|x|2)|y|2 − μ〈x, y〉2

(1 + μ|x|2) 3
4

(√
(1 + μ|x|2)|y|2 − μ〈x, y〉2

(1 + μ|x|2) 3
4

+ λ〈x, y〉
(1 + μ|x|2) 5

4

)

are dually flat.

Example 5.2. Take k1 = −k2 = κ , k3 = 0, then φ(s) = √
1 + 2εs + κs2 satisfies (1.10). By Theorem 1.2, the Finsler metric

F =
√

α2 + 2εαβ + κβ2

is locally dually flat if and only if

α = (
1 − κ b̄2)−1

√(
1 − κ b̄2

)
ᾱ2 + κβ̄2, β = −(

1 − κ b̄2)−1
β̄,

where ᾱ is locally dually flat and β̄ is dually related to ᾱ.

Example 5.3. Take k1 = k3 = 0, k2 = −1 and ε = 1, then φ(s) =
√

1 + s
√

1 − s2 + arcsin s satisfies (1.10). By Theorem 1.2, the
Finsler metric

F =
√

α2 +
√

α2 − β2β + α2 arcsin
β

α

is locally dually flat if and only if

α = (
1 − b̄2)− 3

4

√(
1 − b̄2

)
ᾱ2 + β̄2, β = −(

1 − b̄2)− 3
4 β̄,

where ᾱ is locally dually flat and β̄ is dually related to ᾱ.
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Example 5.4. Take k1 = k3 = 0, k2 = 1 and ε = 1, then φ(s) =
√

1 + s
√

1 + s2 + arcsinh s satisfies (1.10). By Theorem 1.2, the
Finsler metric

F =
√

α2 +
√

α2 + β2β + α2 arcsinh
β

α

is locally dually flat if and only if

α = (
1 + b̄2)− 3

4

√(
1 + b̄2

)
ᾱ2 − β̄2, β = −(

1 + b̄2)− 3
4 β̄,

where ᾱ is locally dually flat and β̄ is dually related to ᾱ.

Example 5.5. Take k1 = k2 = 0, k3 = ±1 and ε = 1
2 , then φ(s) =

√
1 + ∫ s

0
4
√

1 ± σ 4 dσ satisfies (1.10). By Theorem 1.2, the
Finsler metric

F =

√√√√√√1 +
β
α∫

0

4
√

1 ± σ 4 dσ

is locally dually flat if and only if

α = (
1 ∓ b̄4)− 5

8

√(
1 ∓ b̄4

)
ᾱ2 ± b̄2β̄2, β = −(

1 ∓ b̄4)− 5
8 β̄,

where ᾱ is locally dually flat and β̄ is dually related to ᾱ.

Example 5.6. Take k2 = k3 = 0, k1 = ±1 and ε = 1
2 , then φ(s) =

√
(1 ± s2)

(
1 + ∫ s

0
e± σ2

2

(1±σ 2)2 dσ
)

satisfies (1.10). By Theorem 1.2,

the Finsler metric

F =

√√√√√√(
α2 ± β2

)(
1 +

β
α∫

0

e± σ2
2

(1 ± σ 2)2
dσ

)

is locally dually flat if and only if

α = e± b̄2
4 ᾱ, β = −e± b̄2

4 β̄,

where ᾱ is locally dually flat and β̄ is dually related to ᾱ.
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