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The paper considers impulsive control systems, where the evolution equation depends
linearly on the time derivatives of the control function. The basic theory of “graph
completions” is here extended to control functions in feedback form. In the case where
the control u = u(t, x) is piecewise smooth, with a jump along a hypersurface Σ in the
t–x space, results are proved on the existence and uniqueness of solutions, and on their
approximation by means of smooth feedbacks. The paper is concluded with a couple
of examples, concerning the feedback control of mechanical systems by means of active
constraints.
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1. Introduction

For a vector-valued function of a scalar variable, the concept of a graph completion was introduced in [8]. Its main
motivation comes from control theory. As shown in [6,4,14,18], the control of a mechanical system by means of active
constraints often leads to a system of ODEs of the form

ẋ = f0(t, x, u) +
m∑

k=1

fk(t, x, u)u̇k, (1.1)

where t �→ x(t) ∈ R
n describes the state of the system, while t �→ u(t) ∈ R

m is the control function. The upper dot denotes
a derivative w.r.t. time. A key feature of (1.1) is that the right hand side depends not only on the control values u =
(u1, . . . , um), but is also an affine function of the time derivatives u̇k .

To avoid technicalities, we assume that all functions f j : Rn+m �→ R
n , j = 0,1, . . . ,m are smooth and globally bounded.

Notice that, by adding the state variables x0 = t , xn+ j = u j , j = 1, . . . ,m, the system (1.2) can be written in the form

ẋ = f0(x) +
m∑

k=1

fk(x)u̇k, (1.2)

where the vector fields f0, . . . , fm depend only on the state variables x0, . . . , xn+m .
Since the right hand side of (1.2) contains the time derivatives u̇k , given an initial data

x(0) = x̄, u(0) = ū, (1.3)

to achieve existence and uniqueness of solutions it is natural to consider control functions t �→ u(t) = (u1, . . . , um)(t) which
are absolutely continuous. However, as shown in [8], a solution to (1.2)–(1.3) can be uniquely determined also in the case
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where the control function u(·) is a function with bounded variation, provided that we “complete” its graph, bridging the
points where a jump occurs.

Definition 1. A graph completion of a BV function u : [0, T ] �→ R
m is a Lipschitz continuous path γ = (γ0; γ1, . . . , γm) :

[0, S] �→ [0, T ] ×R
m such that:

(i) γ (0) = (0, u(0)), γ (S) = (T , u(T )),
(ii) γ0(s1) � γ0(s2) whenever 0 � s1 < s2 � S ,

(iii) for each t ∈ [0, T ] there exists some s such that γ (s) = (t, u(t)).

Notice that the path γ provides a continuous parameterization of the graph of u in the t–u space. At a time τ where u
has a jump, the continuous curve γ must include an arc joining the left and right limits (τ , u(τ−)), (τ , u(τ+)). As soon as
a graph completion of u(·) is assigned, we can solve the Cauchy problem

y(0) = x̄,
d

ds
y(s) = f0

(
y(s)

) d

ds
γ0(s) +

m∑
k=1

fk
(

y(s)
) d

ds
γk(s), s ∈ [0, S]. (1.4)

Notice that (1.4) has a unique Carathéodory solution, s �→ y(s, γ ), because the right hand side of the ODE is measurable
w.r.t. s and Lipschitz continuous w.r.t. y. The (possibly multivalued) function

t �→ x(t;γ ) = {y(s, γ ); γ0(s) = t
}

(1.5)

is then called the generalized solution of (1.2)–(1.3) determined by the graph completion γ (·) of the control function u(·).
Up to now, this theory has been developed in the setting where u = u(t) is a (possibly discontinuous) function of time.

Aim of this paper is to study the more general case where the control u = u(t, x) is given in feedback form, depending on
the state x as well. More precisely, we consider the equation

ẋ = f (x, u) + G(x, u)u̇, u = u(t, x). (1.6)

Here f :Rn+m �→ R
n and G :Rn+m �→ R

n×m are assumed to be smooth, globally bounded functions.
When the feedback function u is continuously differentiable, by the chain rule (1.6) yields

ẋ = f (x, u) + G(x, u)ut + G(x, u)ux · ẋ. (1.7)

Hence, assuming that the n × n matrix I − G(x, u)ux is invertible, one recovers the ODE in standard form

ẋ = (I − G(x, u)ux
)−1(

f (x, u) + G(x, u)ut
)
. (1.8)

Here and throughout the following, for notational convenience we write ux
.= ∇xu = (ux1 , . . . , uxn ) for the gradient of u

w.r.t. the space variables. We now rewrite (1.6) in an equivalent form, which allows for the possibility of a trajectory having
jumps. Let U = U (t, x) be a bounded, upper semicontinuous multifunction with compact values, so that

graph(U )
.= {(t, x, u); u ∈ U (t, x)

}⊂ [0, T ] ×R
n ×R

m (1.9)

is closed.

Definition 2. A BV function t �→ X(t), t ∈ [0, T [ is a generalized solution of the impulsive system

ẋ = f (x, u) + G(x, u)u̇, u ∈ U (t, x), (1.10)

if there exists S > 0 and a Lipschitz continuous map

s �→ (t, x, u)(s) ∈ graph(U ), s ∈ [0, S[, (1.11)

with s �→ t(s) nondecreasing, such that:

(i) For every τ ∈ [0, T [ there exists s ∈ [0, S[ such that

τ = t(s), X(τ ) = x(s). (1.12)

(ii) For a.e. s ∈ [0, S[ the following system is satisfied:

f (x, u)
dt

ds
+ G(x, u)

du

ds
− dx

ds
= 0. (1.13)
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We say that t �→ X(t) is a solution of the initial value problem (1.6), (1.3) if, in addition, when s = 0 we have

t(0) = 0, X(0) = x(0) = x̄, u(0) = ū. (1.14)

In the single-valued case, where U (t, x) = {u(t, x)}, the function u is continuously differentiable, and the matrix I −
G(x, u)ux is invertible, by a straightforward computation one checks that any generalized solution to (1.6) coincides (for
a.e. time t) with a solution of (1.8).

A natural case, studied in Section 2 is where U is piecewise smooth, but multivalued along a hypersurface Σ in the
t–x space. Conditions are found, which guarantee the existence and uniqueness of generalized solutions. Under suitable
assumptions, in Section 3 we prove that these impulsive solutions can be obtained from a family of Lipschitz continuous
approximating feedbacks uε , taking the limit as ε → 0. Finally, Section 4 contains examples coming from mechanical models.
The first example describes a skier on a narrow trail, who can modify his speed by changing the height of his barycenter.
This problem, well studied in [5], is more naturally recast in the setting of impulsive feedback control. The second example
describes a two-dimensional version of this model, showing that a snow disc saucer can be partially controlled by changing
the height of the barycenter of the rider.

The literature on impulsive control systems is presently very extensive. Refs. [3,9,13,15–17] can only provide a partial
sample. It is worth mentioning that graph completions have also been used in [11] and in [12] to define “nonconservative
products” in connection with hyperbolic systems of PDEs. A first example of set-valued graph completions for functions of
several variables can be found in [7]. For the general theory of multifunctions and differential inclusion we refer to [1,2].

2. Impulsive feedback controls

Consider a partition of the space R × R
n consisting of two open sets Ω− , Ω+ , separated by a smooth hypersurface Σ .

The closures of these two sets are thus Ω− = Ω− ∪ Σ , Ω+ = Ω+ ∪ Σ . Let u+, u− : R × R
n �→ R

m be bounded, smooth
feedback controls, and consider the piecewise smooth control

u(t, x) =
{

u−(t, x) if (t, x) ∈ Ω−,

u+(t, x) if (t, x) ∈ Ω+.
(2.1)

Definition 3. By a graph completion of u we mean a multifunction U of the form

U (t, x) =

⎧⎪⎨⎪⎩
{u−(t, x)} if (t, x) ∈ Ω−,

{u+(t, x)} if (t, x) ∈ Ω+,

{γ (t, x, θ); θ ∈ [0,1]} if (t, x) ∈ Σ,

(2.2)

where θ �→ γ (t, x, θ) is a smooth curve bridging the jump at the point (t, x) ∈ Σ . More precisely:

γ (t, x,0) = u−(t, x), γ (t, x,1) = u+(t, x), (2.3)

for all (t, x) ∈ Σ . We always assume that γ does not have self-intersections: γ (t, x, θ) �= γ (t, x, θ ′) whenever θ �= θ ′ .

When U has the special form (2.2), according to Definition 2 solutions to (1.6) are obtained by concatenating three types
of trajectories:

(i) Solutions of the implicit ODE

ẋ = f
(
x, u−)+ G

(
x, u−)(u−

t + u−
x · ẋ

)
, (t, x) ∈ Ω−; (2.4)

(ii) Solutions of the implicit ODE

ẋ = f
(
x, u+)+ G

(
x, u+)(u+

t + u+
x · ẋ

)
, (t, x) ∈ Ω+; (2.5)

(iii) Trajectories s �→ (t(s), x(s), θ(s)) ∈R×R
n × [0,1] of the system

f (x, γ )
dt

ds
+ G(x, γ )

[
γt

dt

ds
+ γx · dx

ds
+ γθ

dθ

ds

]
− dx

ds
= 0, (t, x) ∈ Σ, (2.6)

with dt/ds � 0.

Remark 1. Since γ = γ (t, x, θ) is defined only for (t, x) ∈ Σ , the partial derivatives γt , γx are not defined. Hence the notation
used in (2.6) may appear somewhat improper. However, since the vector ( dt

ds ,
dx
ds ) must be tangent to the hypersurface Σ ,

the expression γt
dt + γx · dx is meaningful.
ds ds
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Trajectories of type (2.4) or (2.5) are obtained solving the system of n ODEs (1.8), with u = u± . On the other hand, if
dθ/ds > 0, then we can take s = θ as the new independent variable along singular trajectories of type (2.6). This leads to
the implicit system of n + 1 ODEs(

nt nx

f + Gγt Gγx − I

)(
dt/dθ

dx/dθ

)
=
(

0
−Gγθ

)
. (2.7)

Here and throughout the following, n = (nt ,nx)(t, x) ∈ R × R
n denotes the unit normal vector to the surface Σ at the

point (t, x) ∈ Σ , pointing toward the interior of Ω+ .
In order that the implicit ODEs in (2.4)–(2.6) have solutions, it is natural to impose the following conditions.

(A1) The functions f , G in (1.6) are in C1(Rn+m), while γ and the feedback functions u− , u+ are twice continuously
differentiable.

(A2) The n × n matrix I − G(x, u+(t, x))u+
x (t, x) is invertible for all (t, x) ∈ Ω+ , while the matrix I − G(x, u−(t, x))u−

x (t, x) is
invertible for all (t, x) ∈ Ω− .

(A3) As in Definition 3, the map γ is one-to-one and satisfies (2.3) for all (t, x) ∈ Σ .

For each (t, x, θ) ∈ Σ ×[0,1] the (1+n)×(1+n) matrix A(t, x, θ) =
(

nt nx

f +Gγt Gγx−I

)
is invertible. Calling A−1 =

(
a11 a12

a21 a22

)
its inverse, one has

dt

dθ
= −a12Gγθ � 0. (2.8)

We mention two cases where the technical condition (A3) is satisfied.
Case 1: As in the case of open-loop controls, the jump occurs at a fixed time τ . In this case the jump surface has the

form Σ = {τ } ×R
n . This implies nt = 1, nx = 0. The system (2.7) thus reduces to

(Gγx − I)
dx

dθ
= −Gγθ , t = τ . (2.9)

This reduced system can be solved provided that the n × n matrix B = Gγx − I is invertible.
Case 2: The n × n submatrix B

.= Gγx − I is invertible for all (t, x, θ). In this case we obtain

dx

dθ
= −B−1

[
( f + Gγt)

dt

dθ
+ Gγθ

]
.

Since

0 = nt dt

dθ
+
〈
nx,

dx

dθ

〉
= [nt − 〈nx, B−1( f + Gγt)

〉] dt

dθ
− 〈nx, B−1Gγθ

〉
, (2.10)

the inequality (2.8) is then satisfied provided that

〈nx, B−1Gγθ 〉
nt − 〈nx, B−1( f + Gγt)〉 � 0. (2.11)

In this connection, we observe that the quantity nt − 〈nx, B−1( f + Gγt)〉 in (2.11) is different from zero if and only if the
matrix A is invertible. Indeed,

A =
(

nt nx

f + Gγt B

)
=
(

1 nx

0 B

)(
nt − 〈nx, B−1( f + Gγt)〉 0

B−1( f + Gγt) I

)
,

and therefore

det A = det B · [nt − 〈nx, B−1( f + Gγt)
〉]
. (2.12)

We can now give the main result on the existence of generalized solutions to the impulsive system (1.6).

Theorem 1. Assume that the multifunction U : R+ ×R
n →R

m has the form (2.2) and that (A1)–(A3) are satisfied. Let the initial data
(1.3) be admissible, in the sense that ū ∈ U (0, x̄).

(i) If at every point (t, x) ∈ Σ one has

nt + 〈nx,
(

I − G
(
x, u+)u+

x

)−1(
f + G

(
x, u+)u+

t

)〉
� 0, (2.13)

then there exists at least one generalized solution X of (1.6), (1.3) in the sense of Definition 2. This solution is defined on a maximal
interval [0, T [ such that either T = ∞ or else the parameterization in (1.11) satisfies

lim
s→S−

(
t(s) + ∣∣X(s)

∣∣)= ∞. (2.14)
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(ii) If at every point (t, x) ∈ Σ in addition to (2.13) one has

nt + 〈nx,
(

I − G
(
x, u−)u−

x

)−1(
f + G

(
x, u−)u−

t

)〉
� 0, (2.15)

then the above solution is unique.

Proof. 1. If (0, x̄) ∈ Ω− , then by the assumptions (A1)–(A2) the implicit ODE (2.4) has a unique solution t �→ X(t) with
initial data (1.3). This solution is defined on a maximal interval [0, τ [ such that either limt→τ−(t + |X(t)|) = ∞, or else
limt→τ−(t, X(t)) ∈ Σ .

2. If (0, x̄) ∈ Ω+ , then by the assumptions (A1)–(A2) the implicit ODE (2.5) has a unique solution t �→ X(t) with ini-
tial data (1.3). This solution is defined on a maximal interval [0, τ [ such that limt→τ−(t + |X(t)|) = ∞. Notice that, if
limt→τ−(t, X(t)) ∈ Σ , then by the tangency condition (2.13) the solution X(·) of (2.5) can be prolonged to a strictly larger
time interval [0, τ + δ], with (t, X(t)) ∈ Ω+ for all t .

3. Consider now the case where (0, x̄) ∈ Σ . The admissibility condition yields the existence of a unique θ̄ ∈ [0,1] such
that γ (0, x̄, θ̄ ) = ū.

By the assumptions (A1) and (A3), the implicit system of ODEs (2.7) has a unique solution defined for θ in a maximal
interval [θ̄ , θmax], where either θmax = 1 or

lim
θ→θmax

(
t(θ) + ∣∣X(θ)

∣∣)= ∞. (2.16)

4. Statement (i) of the theorem now follows by putting together the three above steps.

– If (0, x̄) ∈ Ω+ then by step 2 the solution t �→ X(t) is well defined and remains inside the closed, positively invariant
set Ω+ ∩ Σ for t in a maximal interval [0, T [.

– If (0, x̄) ∈ Σ , by step 3 we obtain a solution θ �→ (t(θ), x(θ), u(θ)) of (2.7) on a maximal interval θ ∈ [θ̄ , θmax[. If (2.16)
holds, then this solution already satisfies the conclusion of the theorem. If (2.16) does not hold, then θmax = 1. In this
case, let T2 = t(1). By step 2 we can then prolong this generalized solution for t � T2 by solving the Cauchy problem
(2.5) with initial data given at t = T2.

– If (0, x̄) ∈ Ω− , by step 1 we obtain a solution of (2.4) on a maximal interval [0, T1[. If

lim
t→T1−

(
t + ∣∣X(t)

∣∣)= ∞, (2.17)

the conclusion of the theorem is satisfied. Otherwise, we must have limt→T1−(t, X(t)) ∈ Σ . We can then prolong the
solution to a larger time interval by constructing a solution of (2.7) with initial data

(t, x, u)(0) = (T1, X(T1), u−(T1, X(T1)
))

.

The remainder of the construction is as in the previous case.

5. Finally, we prove that if the additional condition (2.15) holds, then the generalized solution is unique. To fix the ideas,
assume

(0, x̄) ∈ Ω−, ū = u−(0, x̄),

the other cases being similar. Let X , X̃ be two generalized solutions of (1.6), (1.3).
As long as (t, X(t)) ∈ Ω− , (t, X̃(t)) ∈ Ω− , by (2.4) these two functions provide solutions to the same Cauchy problem

ẋ = (I − G
(
x, u−)u−

x

)−1(
f − G

(
x, u−)u−

t

)
, x(0) = x̄. (2.18)

By assumption, the right hand side of the ODE in (2.18) is Lipschitz continuous. Therefore this solution, defined on a
maximal interval [0, T1[, is unique.

If (2.17) holds, we are done. Otherwise (T1, X(T1)) = (T1, X̃(T1)) ∈ Σ . By (2.15) and the regularity of Σ and u− , there
can be no solution of (2.4) that starts at a point (t̄, x̄) ∈ Σ and enters in the open set Ω− at a later time. Similarly, by (2.13)
and the regularity of Σ and u+ , there can be no solution of (2.4) that starts at a point (t̄, x̄) ∈ Ω+ and reaches Σ at a later
time. Therefore, for t � T1 both X and X̃ must be a concatenation of a solutions to (2.6), then a solution to (2.5).

We thus consider two solutions s �→ (t(s), x(s), θ(s)) and σ �→ (t̃(σ ), x̃(σ ), θ̃ (σ )) of (2.6), with the same initial data(
t(0), x(0), θ(0)

)= (t̃(0), x̃(0), θ̃ (0)
)= (T1, X(T1),0

)
. (2.19)

By the assumption (A3), both of these solutions can be uniquely re-parameterized in terms of the variable θ . In this case,
the corresponding functions θ �→ (t(θ), x(θ)) and θ �→ (t̃(θ), x̃(θ)) provide solutions to the same Cauchy problem (2.7) with
initial data

t(0) = t̃(0) = T1, x(0) = x̃(0) = X(T1).
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By the assumptions (A1) and (A3), the matrix A has C1 coefficients and is invertible. Therefore the Cauchy problem for (2.7)
has a unique solution.

If this solution is defined for θ in a maximal interval [0, θmax[ with θmax � 1 and

lim
θ→θmax−

(
t(θ) + ∣∣X(θ)

∣∣)= ∞,

then we are done. Otherwise, consider the terminal value of this solution for θ = 1, namely (T2, X(T2)) = (T2, X̃(T2)) =
(t(1), x(1)). Then the two solutions X , X̃ can be extended beyond the time t = T2 only as solutions of the implicit ODE (2.5),
with the same initial data at t = T2. By (A2), (2.5) is equivalent to the ODE

ẋ = (I − G
(
x, u+)u+

x

)−1(
f − G

(
x, u+)u+

t

)
. (2.20)

By (A1)–(A2), the right hand side of (2.20) is locally C1, hence this Cauchy problem has a unique solution. �
3. Lipschitz approximations of impulsive feedbacks

Let the multifunction U have the form (2.2). In the same setting of Theorem 1, we shall construct a family of Lipschitz
continuous feedback controls uε(t, x) such that the classical solutions of the implicit ODE

ẋ = f
(
x, uε

)+ G
(
x, uε

)
uε

t + G
(
x, uε

)
uε

x ẋ (3.1)

are well defined and converge as ε → 0 to the generalized solutions of the impulsive equation (1.10), in a suitable sense.
The signed distance from the point (t, x) to the hypersurface Σ will be denoted by

dΣ(t, x)
.=
{

d((t, x),Σ) if (t, x) ∈ Ω+ ∪ Σ,

−d((t, x),Σ) if (t, x) ∈ Ω−.

We assume that this function dΣ is of class C2,1 on the set {(t, x); 0 � dΣ(t, x) < ε̄}, for some ε̄ > 0. For a given ε ∈ ]0, ε̄],
consider the region

Σε .= {(t, x); 0 � dΣ(t, x) < ε
}
.

Notice that every point (t, x) ∈ Σε can be uniquely represented as

(t, x) = (t0, x0) + θεn(t0, x0) with (t0, x0) ∈ Σ, θ ∈ [0,1]. (3.2)

As before, n(t0, x0) ∈ R
1+n denotes the unit normal vector to Σ at the point (t0, x0), pointing toward the interior of Ω+ .

We define the perpendicular projection π : Σε �→ Σ by setting

π(t, x)
.= (t0, x0) (3.3)

whenever (3.2) holds. Moreover, we define the map γ̃ : Σε × [0,1] �→R
m as

γ̃ (t, x, θ)
.= γ
(
π(t, x), θ

)+ u+(t, x) − u+(π(t, x)
)
. (3.4)

Notice that γ̃ does not depend on ε. We can now define an approximating feedback control uε by setting

uε(t, x)
.=

⎧⎪⎨⎪⎩
u−(t, x) if (t, x) ∈ Ω−,

γ̃ (t, x, ε−1dΣ(t, x)) if (t, x) ∈ Σε,

u+(t, x) if (t, x) ∈ Ω+ \ Σε.

(3.5)

For every given ε > 0, by (3.4) the feedback function uε is Lipschitz continuous.
Next, consider a set of admissible initial data (1.3) for (1.10). The admissibility condition means that⎧⎪⎨⎪⎩

(0, x̄) ∈ Ω− �⇒ ū = u−(0, x̄),

(0, x̄) ∈ Ω+ �⇒ ū = u+(0, x̄),

(0, x̄) ∈ Σ �⇒ ū = γ (0, x̄, θ̄ ) for some θ̄ ∈ [0,1].
(3.6)

In connection with this initial data, we consider a corresponding set of initial data for (3.1):{
x(0) = x̄ if (0, x̄) /∈ Σ,

x(t̄ε) = x̄ε if (0, x̄) ∈ Σ
(3.7)

where(
t̄ε, x̄ε

)= (0, x̄) + θ̄εn(0, x̄). (3.8)

The next result shows that the Cauchy problem (3.1), (3.7) has a well defined solution, converging to the generalized solution
of (1.10), (1.3) in the sense of the graph, as ε → 0.
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Theorem 2. Assume that the multifunction U : [0, T ]×R
n →R

m has the form (2.2) and that (A1)–(A3) hold. In addition, assume that

nt − 〈nx,
(
Gu±

x − I
)−1(

f + Gu±
t

)〉
� 0 for all (t, x) ∈ Σ, (3.9)

and that the n × n matrix B̃
.= Gγ̃x − I is invertible for all (t, x, θ) ∈ Σ × [0,1].

Let t �→ X(t) be a generalized solution to (1.10), (1.3), defined for t ∈ [0, T ]. As in Definition 2, let this solution be parameterized by
s �→ (t(s), x(s)), s ∈ [0, S].

Then, for every ε > 0 sufficiently small, the Cauchy problem (3.1), (3.7) has a well defined solution t �→ Xε(t), defined on some
interval [t̄ε, Tε].

As ε → 0, one has t̄ε → 0, Tε → T and the solution Xε converges to X in the sense of graphs. Indeed, there exist continuous
increasing functions s �→ tε(s) from [0, S] to [t̄ε, Tε] such that

lim
ε→0

sup
s∈[0,S]

{∣∣tε(s) − t(s)
∣∣+ ∣∣Xε

(
tε(s)

)− X
(
t(s)
)∣∣}= 0. (3.10)

Proof. Before working out details, we explain the main idea. The solution Xε of (3.1), (3.7) is given by a continuous con-
catenation of trajectories of the implicit ODEs

ẋ = f
(
x, u−)+ G

(
x, u−)(u−

t + u−
x ẋ
)
, (t, x) ∈ Ω−, (3.11)

ẋ = f (x, γ̃ ) + G(x, γ̃ )

[
γ̃t + 1

ε
γ̃θ nt +

(
γ̃x + 1

ε
γ̃θ ⊗ nx

)
ẋ

]
, (t, x) ∈ Σε, (3.12)

ẋ = f
(
x, u+)+ G

(
x, u+)(u+

t + u+
x ẋ
)
, (t, x) ∈ Ω+ \ Σε. (3.13)

Here the function n = (nt ,nx) is defined also for (t, x) ∈ Σε by setting n(t, x)
.= n(π(t, x)), where π is the perpendicular

projection introduced at (3.2)–(3.3).
Clearly, (3.11) and (3.13) are the same as (2.4)–(2.5). The main goal of the proof is to show that any trajectory θ �→

(t(θ), x(θ)) of (2.7) can be uniformly approximated by trajectories of (3.12), parameterized by

θ �→ (
tε(θ), xε(θ)

) ∈ Σε, (3.14)

where the parameter θ ∈ is chosen so that

θ
.= 1

ε
dΣ

(
t, xε(t)

)
. (3.15)

More precisely, let t �→ xε(t) be a solution to (3.12). We will show that:

(i) For ε > 0 sufficiently small, the map t �→ θ(t) defined by (3.15) is a strictly increasing function of time. Therefore, the
parameterization of (3.14) is well defined.

(ii) In terms of the variable θ , the solution (t, x(t)) of (3.12) satisfies the implicit system of ODEs(
nt nx

f + Gγ̃t Gγ̃x − I

)(
dt/dθ

dx/dθ

)
=
(

ε
−Gγ̃θ

)
. (3.16)

As ε → 0, this system approaches (2.7). Since the Cauchy problem for (2.7) is well posed, this will yield the convergence
of solutions to (3.16) to the solutions of (2.7), uniformly for θ in compact sets.

1. From (3.15) it follows

dθ

dt
= 1

ε

(
nt + 〈nx, ẋ

〉)
,

which is equivalent to the first equation in (3.16). Moreover, using (3.12) and then the first equation in (3.16) we obtain

dx

dθ
=
{

f (x, γ̃ ) + G(x, γ̃ )

(
γ̃t + 1

ε
γ̃θ nt

)}
dt

dθ
+ G(x, γ̃ )

(
γ̃x + 1

ε
γ̃θ ⊗ nx

)
dx

dθ
,

[
f (x, γ̃ ) + G(x, γ̃ )γ̃t

] dt

dθ
+ [G(x, γ̃ )γ̃x − I

]dx

dθ
= −Gγ̃θ · 1

ε

[
nt dt

dθ
+
〈
nx,

dx

dθ

〉]
= −Gγ̃θ ,

proving that (3.16) holds.
2. The following computations will show that, for ε > 0 sufficiently small, the solution of (3.16) satisfies the inequality

dt/dθ > 0. We remark that, for solutions of (3.12), the corresponding inequality (2.8) is contained in the assumption (A3).
As a first step, we prove that the assumption (2.8) implies〈

nx, B̃−1Gγ̃θ

〉
� 0, (3.17)
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where γ̃ and B̃ = Gγ̃x − I and are evaluated at (t, x, θ) ∈ Σ × [0,1]. Observe that, by choosing ε̄ > 0 sufficiently small, we
can assume that the matrix B̃ is invertible on Σε̄ .

To prove (3.17), observing that the determinant of the matrix A =
(

nt nx

f +Gγt Gγx−I

)
does not depend on the extension of

the map γ over a neighborhood of Σ , as in (2.12) we compute

det A = det B̃ · [nt − 〈nx, B̃−1( f + Gγ̃t)
〉]
.

Since A is invertible, the continuous function

η(t, x, θ)
.= det A

det B̃
= nt − 〈nx, B̃−1( f + Gγ̃t)

〉
is different from zero for every (t, x, θ) ∈ Σ × [0,1]. Moreover, for each (t, x) ∈ Σ one has

γ̃t(t, x,1) = u+
t (t, x), γ̃x(t, x,1) = u+

x (t, x).

Hence (3.9) yields η(t, x,1) > 0. The continuity of η implies

nt − 〈nx, B̃−1( f + Gγ̃t)
〉
> 0 for all (t, x, θ) ∈ Σ × [0,1]. (3.18)

From (2.7) one obtains

nt · dt

dθ
+ 〈nx, ẋ

〉= nt · dt

dθ
−
〈
nx, B̃−1( f + Gγ̃t)

dt

dθ
+ B̃−1Gγ̃θ

〉
= 0.

By the assumption (2.8), the derivative dt/dθ is non-negative. Hence

dt

dθ
= 〈nx, B̃−1Gγ̃θ 〉

nt − 〈nx, B̃−1( f + Gγ̃t)〉
� 0. (3.19)

The inequality (3.17) thus follows from (3.18) and (3.19).
To avoid confusion, we shall denote by θ �→ (tε(θ), xε(θ)) a solution to (3.16). By assumption, B̃ = Gγ̃ − I is invertible

on Σε × [0,1], for ε > 0 sufficiently small. Using (3.19) we thus obtain

dxε

dθ
= B̃−1

[
−Gγ̃θ − ( f + Gγ̃t)

dtε

dθ

]
,

dtε

dθ
= ε + 〈nx, B̃−1Gγ̃θ 〉

nt − 〈nx, B̃−1( f + Gγ̃t)〉
> 0. (3.20)

3. We now conclude the proof, showing the convergence (3.10).
(i) If (t̄, x̄) ∈ Ω+ the result is trivial. Indeed, the solutions X(·) and Xε coincide for all t � 0, provided that ε > 0 is small

enough.
(ii) If (t̄, x̄) ∈ Ω− , then the solution of (1.10), (2.2) is obviously the same the solution of (3.1), (3.5), up to the first time τ

where (τ , x(τ )) ∈ Σ .
(iii) To prove the theorem, it thus suffices to examine the case of an initial data (0, x̄) ∈ Σ , and ū = γ (0, x̄, θ̄ ) for some

θ̄ ∈ [0,1].
Since n(0, x̄) in (3.8) is a unit vector, it is clear that |t̄ε| = |θ̄εnt | � ε, hence t̄ε → 0 as ε → 0. By the previous analysis,

for each ε > 0 sufficiently small the implicit ODEs (3.16) determine a unique solution θ �→ (tε(θ), xε(θ)). As ε → 0, this
solution converges to the solution θ �→ (t(θ), x(θ)) of (2.7), uniformly for θ ∈ [θ̄ , 1]. In particular, when θ = 1 we have the
convergence

tε(1) → t(1), xε(1) → x(1). (3.21)

Let q
.= T − t(1) be the length of the time interval where the reference trajectory X lies in Ω+ , and set Tε = tε(1) + q.

For t ∈ [tε(1), Tε], each trajectory Xε can be continued as a solution to the Cauchy problem (3.13) with initial data
X(tε(1)) = xε(1). Since this implicit ODE is well posed, as ε → 0 this solution converges to the solution X of (3.13) with
data X(t(1)) = x(1). �
4. Examples

In this last section we consider two examples of mechanical systems controlled by active constraints given in feedback
form. A comprehensive introduction to the theory of control of mechanical systems can be found in [10].
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Fig. 1. Left: in Example 1, P (x) denotes the barycenter of the skier, on a vertical plane. Right: in Example 2, given a curve γ on the surface Σ , we seek a
solution of the system (4.16) such that the corresponding point Q (x) = (x1, x1,h(x1, x2)) moves along γ .

Example 1 (Skier on a narrow trail). Following [5], consider a skier sliding downhill on a narrow trail. As shown in Fig. 1
left, let x be the arc-length coordinate of a point Q (x) along the trail, and let n(x), t(x) = n⊥(x) denote the normal and the
tangent unit vector to the trail, at Q (x).

Assume that the skier, by standing up or bending down, can change the position of his barycenter w.r.t. the trail. Calling
P the position of the barycenter, we assume that this can be assigned as a function of x, in the form

P (x) = Q (x) + u(x)n(x), (4.1)

where x �→ u(x) is regarded as a feedback control, depending only on the position of the skier. Differentiating w.r.t. time
one obtains

Ṗ =
[

n⊥(x) + ∂u

∂x
n(x) + u(x)

∂n

∂x

]
ẋ. (4.2)

Approximating the skier by a point mass concentrated at the barycenter, we obtain the equation of motion

P̈ (t) = λ(t)n
(
x(t)
)− ge2, (4.3)

where the first term on the right hand side accounts for the constraint reactions and the second term represents gravity. To
derive a scalar ODE for the function x = x(t), consider the curvature of the trail at the point Q (x):

κ(x) =
〈
∂n⊥

∂x
,n
〉
= −

〈
∂n

∂x
,n⊥

〉
.

From (4.2) it follows

d

dt

〈
Ṗ ,n⊥〉= d

dt

[
(1 − κu)ẋ

]= (1 − κu)ẍ − κuxẋ2 − κxuẋ2. (4.4)

On the other hand, (4.3) yields

d

dt

〈
Ṗ ,n⊥〉= −〈ge2,n⊥〉+ 〈uxnẋ,n⊥

x ẋ
〉= −〈ge2,n⊥〉+ κuxẋ2. (4.5)

Together, (4.4)–(4.5) imply(
1 − κ(x)u

)
ẍ = 2κ(x)uxẋ2 + uκxẋ2 − 〈ge2,n⊥(x)

〉
. (4.6)

If we assume that the feedback control is always smaller than the radius of curvature, so that u(x) < κ−1(x) for all x,
then Eq. (4.6) can be written as a first order system of the same type as (1.1):⎧⎨⎩

ẋ = v,

v̇ = 1

1 − κ(x)u

[
2κ(x)vu̇ + uκx(x)v2 + f (x)

]
,

(4.7)

where f (x)
.= −〈ge2,n⊥(x)〉. Under the natural assumption v > 0, meaning that the skier always moves forward, one can

eliminate time from the equation and write one single ODE for v = v(x), namely

dv = 1
[

2vκux + uκx v + f (x)
]
. (4.8)
dx 1 − κ(x)u v
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Regarding x as the new time variable, the map x �→ u(x) becomes an open-loop control. In this special case, when u is a
control of bounded variation, the graph completion of u is a special case of the theory developed in [8].

Example 2 (Snow disc). We now consider a two-dimensional extension of the previous model. Let x = (x1, x2) be the two-
dimensional horizontal coordinate, and let

Σ
.= {Q (x) = (x1, x2, z); z = h(x1, x2)

}
describe the surface of a ski slope. Here h(x) is the height at the point x. Let n(x) be a vector perpendicular to the surface,
pointing upward. Assume that a feedback control u = u(x) can be implemented, so that the barycenter of the snow boarder
is located at

P (x) = Q (x) + u(x)n(x). (4.9)

Let {e1,e2,e3} be the standard orthonormal basis in R
3, with e3 pointing in the upward vertical direction. Differentiating

(4.9) w.r.t. time one obtains

Ṗ (x) = ẋ1e1 + ẋ2e2 + ḣe3 + u̇n + uṅ. (4.10)

As before, the equations of motion can be written as

P̈ = λ(t)n(x) − ge3, (4.11)

where the first term accounts for the force produced by the active constraint, while the second is due to gravity. Taking the
inner product of (4.11) with the two vectors

t1 = e1 + hx1 e3, t2 = e2 + hx2 e3,

both tangent to the surface Σ and hence orthogonal to n, we obtain a system of equations for the components x1, x2,
v1 = ẋ1, v2 = ẋ2.

In the following, we consider the case where

h(x1, x2) = −x1 + x2
2

2
, (4.12)

shown in Fig. 1, right. Since

n(x) = e1 − x2e2 + e3, ṅ = −ẋ2e2,

Eq. (4.10) takes the form

Ṗ (x) = (ẋ1 + u̇)e1 + (ẋ2 − x2u̇ − ẋ2u)e2 + (−ẋ1 + x2 ẋ2 + u̇)e3. (4.13)

Taking the inner product of (4.13) with the vector t1 = e1 − e3 and differentiating w.r.t. time, we obtain

d

dt

〈
Ṗ (x), t1

〉= 2ẍ1 − ẋ2
2 − x2ẍ2 = g. (4.14)

Here the last equality follows from (4.11). Performing a similar computation with the tangent vector t2 = e2 + x2e3, one
obtains

d

dt

〈
Ṗ (x), t2

〉= ẍ2 − ẍ2u − ẋ2u̇ − ẍ1x2 − ẋ1 ẋ2 + 2x2ẋ2
2 + x2

2 ẍ2

= −gx2 + (−ẋ1 + x2 ẋ2 + u̇)ẋ2. (4.15)

Eqs. (4.14) and (4.15) yield a system of ODEs for the velocities (v1, v2) = (ẋ1, ẋ2), namely(
v̇1
v̇2

)
=
(

1 + x2
2

2
− u

)−1[ v2
2 + g

2

(
1 − u
−x2

)
+ v2

(
x2
2

)
u̇

]
. (4.16)

We are primarily interested in a controllability issue. Let a smooth curve

γ
.= {(x1, x2,h(x1, x2)

); x2 = ϕ(x1)
}⊂ Σ (4.17)

be given. We seek an impulsive feedback control of the type

u(x) =
{

u−(x) if x2 < ϕ(x1),

u+(x) if x2 > ϕ(x1),
(4.18)

keeping the trajectory of the impulsive system (4.16) on the curve γ . More precisely,

Q (t) = (x1, x2,h(x1, x2)
)
(t) ∈ γ for all t ∈ [0, T ].
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Consider first the case where the initial data lies on γ , with velocity tangent to the curve:

x2(0) = ϕ
(
x1(0)

)
, v2(0) = ϕ′(x1(0)

)
v1(0). (4.19)

In this case, the point Q (t) remains on γ provided that

v2

v1
= ϕ′(x1),

d

dt

(
v2

v1

)
= v̇2 v1 − v2 v̇1

v2
1

= ϕ′′(x1)v1. (4.20)

Introducing the quantity β
.= 1 + [ϕ(x1)]2

2 − u and using (4.16), (4.19), we obtain⎧⎪⎨⎪⎩
ẋ1 = v1,

2β v̇1 = ([ϕ′(x1)
]2

v2
1 + g

)
(1 − u) + 2v1ϕ(x1)ϕ

′(x1)u̇,

2βϕ′(x1)v̇1 + 2βϕ′′(x1)v2
1 = −([ϕ′(x1)

]2
v2

1 + g
)
ϕ(x1) + 4v1ϕ

′(x1)u̇.

This can be written as(1 0 0
0 2β −2v1ϕ(x1)ϕ

′(x1)

0 2βϕ′(x1) −4v1ϕ
′(x1)

)( ẋ1
v̇1
u̇

)
=
⎛⎝ v1

([ϕ′(x1)]2 v2
1 + g)(1 − u)

−([ϕ′(x1)]2 v2
1 + g)ϕ(x1) − 2βϕ′′(x1)v2

1

⎞⎠ . (4.21)

The system (4.21) has a unique solution with initial value (x1(0), v1(0), ū) whenever the matrix on the left hand side is
invertible, i.e.

βv1ϕ
′(x1)

[
ϕ(x1)ϕ

′(x1) − 2
] �= 0. (4.22)

Next, consider a feedback impulsive control of the form (4.18), and its graph completion

U (x) =

⎧⎪⎨⎪⎩
{u−(x)} if x2 < ϕ(x1),

{u+(x)} if x2 > ϕ(x1),

{su+(x) + (1 − s)u−(x); s ∈ [0,1]} if x2 = ϕ(x1).

Let t �→ (x1, v1, u)(t) be a solution to (4.21). Then the map

t �→ (x, v, u)(t) = (x1, x2, v1, v2, u)(t) = (x1,ϕ(x1), v1,ϕ
′(x1)v1, u

)
(t)

is a solution to the impulsive feedback equation (4.16) with u ∈ U (x), as long as

u(t) ∈ {su+(x(t))+ (1 − s)u−(x(t)); s ∈ [0,1]}.
Next, we study what happens if a trajectory starts on the curve γ with a non-tangential velocity. To fix the ideas, assume

u(0) = ū,

{
x1(0) = x̄1 > 0,

x2(0) = x̄2 = ϕ(x̄1),

{
v1(0) = v̄1 > 0,

v2(0) = v̄2 > ϕ′(x̄1)v̄1.
(4.23)

In this case, the initial motion has impulsive character. The size of the initial jump in the velocity v and in the control u,
at time t = 0, can be computed as follows. Take θ = u as independent variable. Keeping in mind that t ≡ 0, from (4.16) we
obtain

d

dθ

(
v1
v2

)
=
(

1 + x̄2
2

2
− θ

)−1(
x̄2
2

)
v2,

(
v1(ū)

v2(ū)

)
=
(

v̄1
v̄2

)
. (4.24)

Notice that the solution of (4.24) is well defined, provided that

1 + x̄2
2

2
− θ > 0 for all θ ∈ I

.= {su+(x̄) + (1 − s)u−(x̄); s ∈ ]0,1[}.
Two cases must be considered.

Case 1: For every θ ∈ I one has v2(θ) > ϕ′(x̄1)v1(θ).
In this case, the solution of the original problem leaves the curve γ immediately at time t = 0. If u+ satisfies (2.13), the

corresponding trajectory can be computed by solving the Cauchy problem(
v̇1
v̇

)
=
(

1 + x2
2 − u+(x)

)−1[ v2
2 + g

(
1 − u+(x)

−x

)
+ v2

(
x2
2

)
u̇+(x)

]
(4.25)
2 2 2 2
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with initial data at t = 0+ computed by(
v1(0)

v2(0)

)
=
(

v1(u+(x̄))
v2(u+(x̄))

)
, u(0) = u+(x̄). (4.26)

Here vi(u+(x̄)), i = 1,2, are the components of the solution of (4.24) for θ = u+(x̄).
Case 2: There exists θ̄ ∈ I such that v2(θ̄) = ϕ′(x̄1)v1(θ̄ ).
In this case the system can move along the curve γ for a positive interval of time. Its motion is described by Eqs. (4.16),

with initial data at t = 0+ computed by(
v1(0)

v2(0)

)
=
(

v1(θ̄)

v2(θ̄)

)
, u(0) = θ̄ . (4.27)

To understand when these cases occur, assume for example that ū = u−(x̄) < u+(x̄) and v̄2 > 0. Clearly, the solution of
(4.24) then satisfies v2(θ) > 0 for all θ ∈ I . Defining

β(θ)
.= 1 + x̄2

2

2
− θ, α

.= 2 − x̄2ϕ
′(x̄1),

we find that Case 1 occurs either if α � 0, or else if α < 0 and v̄1, v̄2, u− , u+ satisfy(
β(u−(x̄))

β(u+(x̄))

)2

< 1 − 2

α

(
1 − ϕ′(x̄1)

v̄1

v̄2

)
. (4.28)

Indeed, if α � 0, using (4.24) we find

d

dθ

[
v2(θ) − ϕ′(x̄2)v1(θ)

]
� 0.

Hence v2(θ) − ϕ′(x̄2)v1(θ) > 0 for all θ ∈ I . As a consequence, the velocity remains non-tangential to the curve γ and the
unique solution of the feedback impulsive system immediately leaves such curve.

Next, assume that α < 0. Then by (4.24) it follows

v2(θ) − ϕ′(x̄1)v1(θ) = v̄2 − ϕ′(x̄1)v̄1 + α

θ∫
u−

β−1(σ )v2(σ )dσ = v̄2 − ϕ′(x̄1)v̄1 + α

2

[
v2(θ) − v̄2

]
.

Therefore, the inequality v2(θ) > ϕ′(x̄1)v1(θ) remains valid as long as

2

−α

(
v̄2 − ϕ′(x̄1)v̄1

)
> v2(θ) − v̄2 =

(
β(ū)

β(θ)

)2

v̄2 − v̄2.

Since ū = u−(x̄), the above inequality is equivalent to (4.28).
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