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1. Introduction

Linear iterative equations are the iterations of a linear first-order equation. They are known as equations
that can always be reduced to the canonical form y(n) = 0 by point transformations. It is well known that
every second-order linear ordinary differential equation can be reduced to the canonical form y′′ = 0 by an
invertible point transformation. However, the corresponding property does not hold for equations of order
higher than two and any equation of such an order can be transformed into the canonical form if and only
if it is iterative [1]. On the basis of this and a result of S. Lie [3], iterative equations are also the only linear
equations that admit a symmetry algebra of maximal dimension. Moreover, the general solution of iterative
equations of a general order can be obtained by a simple superposition formula from those of the source
equation of the second order.

Linear ordinary differential equations of a general order have been studied in the recent literature and
from the symmetry group approach by many authors [1,4,5,7]. It is well known that for the order n = 2,
the dimension of the symmetry algebra does not exceed 8 and all linear differential equations are locally
equivalent to the canonical form y′′ = 0. For n � 3, Sophus Lie proved that the dimension of the symmetry
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algebra does not exceed n + 4. One of Lie’s main results is that the maximal dimension is reached for
equations reducible to the canonical form y(n) = 0.

In their work, Krause and Michel [1] proved that an equation is reducible to the canonical form if its
symmetry algebra has maximal dimension. Then, using the result due to Lie cited above, they showed that
for a linear equation of order n � 3 the statements

(a) the equation is reducible to the form y(n) = 0 by a diffeomorphism of the (x, y)-plane,
(b) the Lie algebra of its symmetry group has maximal dimension,
(c) the equation is iterative,

are equivalent. By definition, iterative equations are the iterations where Ψ = r d
dx + s is a differential

operator and r and s are given functions of x referred to as the parameters of the source equation Ψy ≡
r(x)y′ + s(x)y = 0.

Let us consider a linear differential equation of a general order n in its standard form

y(n) +
n−1∑
i=0

biy
(i) = 0, (1)

where the bi are functions of the independent variable x. For n = 3, Lie [3] and Laguerre [2] showed that
the equation is reducible to the form y(n) = 0, which we shall refer to as the canonical form, if and only if
the coefficients in (1) satisfy

54b0 − 18b1b2 + 4b32 − 27b′1 + 18b2b′2 + 9b′′2 = 0. (2)

It is well known that one can use the transformation

y �→ y exp
(

1
n

x∫
x0

bn−1(v) dv
)

(3)

to reduce the general form (1) into the reduced normal form

y(n) +
n−2∑
i=0

aiy
(i) = 0, (4)

and in the case of iterative equations, the operator that generates an iterative equation of a general order
n in its normal form (4) has been found [7]. We know that up to isomorphism the symmetry algebra of a
differential equation does not change under an invertible point transformation, meaning that (1) and (4)
have isomorphic symmetry algebras. Therefore, for several considerations we may, without loss of generality,
let the iterative equation be of the form (4).

Some properties of iterative equations were obtained and the characterizations of these equations in terms
of their coefficients have been considered [5,7]. All the coefficients ai can naturally be expressed in terms
of the parameters r and s of the source equation [7] but surprisingly it is always possible to express the
coefficients an−i for 2 < i � n in terms of the coefficient an−2 and its derivatives [5]. The list of iterative
equations in which all the coefficients are given in terms of an−2 and its derivatives for n running between
3 and 8 was obtained in [5]. The first three of them are

y(3) + a1y
(1) + 1

a
(1)
1 y = 0, (5)
2
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y(4) + a2y
(2) + a

(1)
2 y(1) +

(
3
10a

(2)
2 + 9

100a
2
2

)
y = 0, (6)

y(5) + a3y
(3) + 3

2a
′
3y

(2) +
(

9
10a

′′
3 + 16

100a
2
3

)
y′ +

(
1
5a

(3)
3 + 16

100a3a
′
3

)
y = 0. (7)

It should be noted that if we let

y(n) + A2
ny

(n−2) + · · · + An−1
n y(1) + An

ny = 0 (8)

be the general form of linear iterative equations in normal form for the same source equation, then by a
result of [7] we have

A2
n =

(
n + 1

3

)
A2

2. (9)

Using the result from [5] one can generate the list of canonical forms of iterative equations in normal reduced
form for any order after a long and sometimes very complicated set of calculations.

Another exceptional property of iterative equation states that if we assume that u and v are the inde-
pendent solutions of the second-order source equation

y′′ + p(x)y = 0, (10)

where p turns out to be the Wronskian of u and v, then n linearly independent solutions of (4) are given
by [1]

yk = un−(k+1)vk, 0 � k � n− 1. (11)

Therefore, once we know the general solution of the source equation (10) we can construct the set of solutions
to the corresponding nth-order iterative equation. The implication is that there is no need to search for
linearly independent solutions for the linear differential equation of order n itself when we know those of its
source equation. In other words, finding the general solution of the nth-order equation (4) is equivalent to
finding the two linearly independent solutions of the second-order source equation (10).

To rewrite the coefficients of the linear iterative equation in terms of the coefficient A2
2 of the second-order

source equation and its derivatives only, let

y(n) +
n−2∑
i=0

An−i
n y(i) = 0 (12)

be a linear iterative equation in normal form, where A2
2 are functions of x, and let

y′′ + A2
2(x)y = 0 (13)

be the corresponding second-order source equation. If we assume that the first-order source equation in
standard form is

r(x)y′ + s(x)y = 0, (14)

where r = r(x) and s = s(x) are the parameters of the source equations, it follows [7] that

A2
2(x) = r′2 − 2rr′′ (15)
4r2
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provided that

s = −1
2(n− 1)r′. (16)

It is well known that it is always possible to express the coefficients of the iterative equation (12) in terms
of A2

n [5]. On the other hand, it has been proved [7] that the relationship between A2
n and A2

2 is given by

A2
n =

(
n + 1

3

)
A2

2. (17)

It follows from these results that all the coefficients of iterative equations with the same source equation can
be written in terms of the coefficient A2

2 of the second-order source equation. Below is the list of iterative
equations of order n = 3, 4, 5 involving the coefficient A2

2, a say, of the second-order source equation and its
derivatives only,

y(3) + 4ay(1) + 2a′y = 0,

y(4) + 10ay(2) + 10a′y(1) +
(
3a′′ + 9a2)y = 0,

y(5) + 20ay(3) + 30a′y(2) +
(
18a′′ + 64a2)y(1) +

(
4a(3) + 64aa′

)
y = 0,

y(6) + 35ay(4) + 70a′y(3) +
(
63a(2) + 259a2)y(2) +

(
28a(3) + 518aa′

)
y′

+
(
5a(4) + 130a′ 2 + 155aa(2) + 225a3)y = 0.

The list can be extended to a general order, although the general formula is not known.

2. Symmetry generator of third- and nth-order differential equations

The aim of this section is to make a contribution to the results obtained by Krause and Michel [1], i.e.
the expression of v in terms of the solutions u and v of the second-order source equation. Some properties
of a linear iterative equation are used in order to generate the vector field that spanned the Lie algebra. For
nth-order differential equations, we require the knowledge of the nth extension of v. The following theorem
gives the general prolongation formula pr (n)v of the infinitesimal generator v [8].

Theorem 1. Let

v =
p∑

i=1
ξi(x, y) ∂

∂xi
+

q∑
α=1

Φα(x, y) ∂

∂yα
(18)

be a vector field defined on an open subset M ⊂ X × U . The nth prolongation of v is the vector field

pr (n)v = v +
q∑

α=1

∑
J

ΦJ
α(x, y) ∂

∂yαJ
(19)

defined on the corresponding jet space M (n) ⊂ X × U (n), the second summation being over all (unordered)
multi-indices J = (j1, j2, . . . , jk), with 1 � jk � p, 1 � k � n. The coefficient functions ΦJ

α of pr (n)v are
given by the following formula:

ΦJ
α(x, y) = DJ

(
Φα −

p∑
i=1

ξiyαi

)
+

p∑
i=1

ξiyαJ,i, (20)

where yαi = ∂yα

i , and yαJ,i = ∂yα
J
i .
∂x ∂x
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The infinitesimal criterion for invariance is given by the following theorem.

Theorem 2. Suppose

Δμ

(
x, y(n)) = 0, μ = 1, . . . , l, (21)

is a system of differential equations of maximal rank defined over M ⊂ X × U . If G is a local group of
transformations acting on M , and

pr(n)v[Δμ] = 0, μ = 1, . . . , l, whenever Δμ

(
x, y(n)) = 0, (22)

for every infinitesimal generator v of G, then G is a symmetry group of the system.

For an nth-order ordinary differential equation (ODE) we have up to nth derivatives and so need an nth
extension so that we can investigate how the derivatives transform too. Therefore, if we assume that E = 0
is an nth-order ODE then the invariance criterion is given by

v[n]E = 0, whenever E = 0, (23)

where v[n] stands for pr(n)v, that is,

v[n] = ξ∂x + φ∂y + φx∂yx
+ φxx∂yxx

+ φxxx∂yxxx
+ · · · + φ[n]∂yn . (24)

Here [1],

φ[n] = −
[
(nξx − φy)

]
y(n) −

[
(n + 1)ξy

]
y′y(n)

−
(
n + 1

2

)
ξyy

′′y(n−1) + n(φyy − nξxy)y′y(n−1)

+ n

(
φxy −

n− 1
2 ξxx

)
y(n−1) + n

2

(
φxxy −

n− 2
3 ξxxx

)
y(n−2) + · · · . (25)

Theorem 2 leads to a nonlinear partial differential equation in ξ and φ. We then equate all the coefficients
of all powers of derivatives of y to zero because ξ and φ depend only on x and y. The system of determining
equations obtained gives the expression of ξ and φ. Note that the number of constants found determines
the dimension of the Lie group.

2.1. Order 3

Consider the linear iterative equation of order three in reduced normal form

y(3) + 4ay′ + 2a′y = 0. (26)

An application of the infinitesimal criterion of invariance gives

v[3][y(3) + 4ay′ + 2a′y
]

= 0, whenever y(3) + 4ay′ + 2a′y = 0, (27)

which reduces to

ξ
(
4axy′ + 2axxy

)
+ 2φax + 4φxa + φxxx = 0. (28)
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Substituting φx and φxxx in (28) by their expression given by (25), Eq. (28) leads to a single differential
equation (y(3) is replaced by −4ay′−2a′y). Equating the coefficients of all powers of derivatives of y to zero
yields the system of determining equations given as follows

1: 2axφ + 4aφx + φxxx + y
[
2ξaxx − 2ax(φy − 3ξx)

]
= 0, (29)

yx: 4ξax + 4aφy − 4aξx − 8ξyaxy + (3φxxy − ξxxx) − 4a(φy − 3ξx) = 0, (30)

yx
2: −4aξy + (3φxyy − 3ξxxy) − 16ξya = 0, (31)

yx
5: φyyy − 3ξxyy = 0, (32)

yxyxx: 3φyy − 7ξxy = 0, (33)

yx
4: −ξyyy = 0, (34)

yx
2yxx: −6ξyy = 0, (35)

yxx
2: −3ξy = 0. (36)

Therefore, the infinitesimals are given by

ξ = f(x), φ =
(
f ′(x) + c0

)
y + h(x), (37)

where c0 is an arbitrary constant, with f and g satisfying

f (3) + 4af (1) + 2a(1)f = 0, (38)

h(3) + 4ah(1) + 2a′h = 0 (39)

respectively. So, f and h satisfy the original equation.

2.2. Arbitrary order n

Denoting as usual by v = ξ(x, y)∂x + φ(x, y)∂y the infinitesimal generator of the iterative equation of
order n, [1] showed that its nth prolongation has the form

pr (n)v = v +
n∑

k=0

φ[k](x, y(n))∂y(k) , (40)

where φ[k] is given by (25).
Using the invariance criterion and separating by the powers of derivatives of y they proved that the most

general form of the symmetry generator is given by

v = f(x)∂x +
[(

n− 1
2 f ′(x) + c

)
y + h(x)

]
∂y, (41)

where
(
n + 1

3

)
f ′′′ + 4A2

nf
′ + 2A2

n
′
f = 0, (42)

h(n) +
n−2∑

An−i
n y(i) = 0 (43)
i=0
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and c is an arbitrary constant. To obtain the same condition on h, [3] used the Leibniz’s rule of differentiating
a product to rewrite (25) fully. They showed that (25) is the same as

φ[j] =
([

n− 1
2 f ′ + α

]
y

)(j)

+ h(j) −
j∑

i=1

(
n + 1

3

)
yj+1−iξi, j = 1, . . . , n. (44)

Using the above result and the invariance criterion they showed that h satisfies the original equation.
However, using in

(
n + 1

3

)
f ′′′ + 4A2

nf
′ + 2A2

n
′
f = 0 (45)

the expression of A2
n given in (9), i.e.

A2
n =

(
n + 1

3

)
A2

2, (46)

we get
(
n + 1

3

)
f ′′′ + 4

(
n + 1

3

)
A2

2f
′ + 2

(
n + 1

3

)
A2

2
′
f = 0, (47)

which can also be written as

f ′′′ + 4A2
2f

′ + 2A2
2
′
f = 0. (48)

Hence, f satisfies the third order linear iterative equation as in the cases of order 3 and 4. Therefore,
condition on f does not depend on the order of the linear iterative equation. In all, the most general form
of the symmetry generator is given by

v = f(x)∂x +
[(

n− 1
2 f ′(x) + c

)
y + h(x)

]
∂y, (49)

where the new condition on f is

f ′′′ + 4A2
2f

′ + 2A2
2
′
f = 0, (50)

and

h(n) +
n−2∑
i=0

An−i
n y(i) = 0. (51)

Eqs. (50) and (51) are linear iterative equations with the same source equation y′′ + A2
2y = 0.

Based on the properties of iterative equations already outlined, finding the solutions of (50) will be
reduced to finding the solutions of the second-order source equation. It is well known that if we assume that
u and v are solutions of the second-order source equation, then n linearly independent solutions of (12) are
given by [1]

yk = un−(k+1)vk, 0 � k � n− 1. (52)

Let us verify this known fact for linear iterative equations of order n = 3, 4, 5, 6.
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• n = 3. Suppose indeed that u and v are the two linearly independent solutions of

y′′ + ay = 0, (53)

and let us check that yk = u2−kvk, 0 � k � 2, are linearly independent solutions of the third-order
linear iterative equation

y(3) + 4ay′ + 2a′y = 0. (54)

We have

y
(3)
k =

(
u2−k

)(3)
vk + 3

(
u2−k

)(2)
vk

′ + 3
(
u2−k

)′
vk

(2) + u2−k
(
vk

)(3)
=

[
(2 − k)u(3)u1−kvk + 3(2 − k)(1 − k)u′u(2)u−kvk + (2 − k)(1 − k)(−k)u′3u−k−1vk

]
+ 3

[
k(2 − k)u(2)u1−kv′vk−1 + k(2 − k)(1 − k)u′2u−kv′vk−1]

+ 3
[
k(2 − k)u′u1−kv(2)vk−1 + k(2 − k)(k − 1)u′u1−kv′2vk−2]

+
[
ku2−kv(3)vk−1 + 3k(k − 1)u2−kv′v(2)vk−2 + (k − 2)(k − 1)ku2−kv′3vk−3]. (55)

Using in (55) the substitutions f ′′ = −af , f ′′′ = −(af)′ for f = u, v gives

(yk)(3) = −a′(2 − k)u2−kvk − a(2 − k)u′u1−kvk

− 3a(2 − k)(1 − k)u′u1−kvk − k(1 − k)(2 − k)u′3u−1−kvk

− 3ak(2 − k)v′u2−kvk−1 + 3k(2 − k)(1 − k)u′2u−kv′vk−1

− 3ak(2 − k)u′u1−kvk + 3k(k − 1)(2 − k)u′u1−kv′2vk−2

− a′ku2−kvk − akv′u2−kvk−1 − 3ak(k − 1)u2−kv′vk−1

+ (k − 2)(k − 1)(k)u2−kv′3vk−3. (56)

Substituting (56) into (54) and expressing also y′k and yk in the resulting equation in terms of u and v

gives

(yk)(3) + 4a(yk)′ + 2a′(yk) = k(k − 1)(k − 2)
(
−u′3u−1−kvk + 3u′2u−kv′vk−1

+ 3u′u1−kv′2 + v2−k + u2−kv′3vk−3)
= k(k − 1)(k − 2)u−1−kvk−3[(uv′ − u′v

)3]
=

( 2∏
j=0

(k − j)
)

· u5−kvk−3
[(

v

u

)′]3

= 0, for k = 0, 1, 2.

Let Ωn be the linear operator corresponding to the linear iterative equation of order n with source equation
y′′ + ay = 0. Thus Ω3 = d3

dx3 + 4a d
dx + 2a′. Let yk, for 0 � k � n− 1 be given as above by yk = un−(k+1)vk.

Proceeding in the same way for n = 4, n = 5 and n = 6, and for the corresponding values of yk shows that

•

Ω4(yk) =
( 3∏

j=0
(k − j)

)
· u7−kvk−4

[(
v

u

)′]4

, 0 � k � 3, (57)
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•

Ω5(yk) =
( 4∏

j=0
(k − j)

)
· u9−kvk−5

[(
v

u

)′]5

, 0 � k � 4, (58)

and
•

Ω6(yk) =
( 5∏

j=0
(k − j)

)
· u11−kvk−6

[(
v

u

)′]6

, for 0 � k � 5, (59)

which are equal to zero for 0 � k � 5. It clearly follows from the expressions of Ωn(yk) obtained for
n = 3, 4, 5, 6 that the general expression for an arbitrary n � 3 is

Ωn(yk) =
(

n−1∏
j=0

(k − j)
)

· u2n−1−kvk−n

[(
v

u

)′]n
= 0, (60)

for 0 � k � n− 1, n � 3. A formal proof of the validity of (60) could be done by induction on n.
We deduce from (52) that the solutions of (50) and (51) are given by

f(x) = c1u
2 + c2uv + c3v

2, h(x) =
n+3∑
k=4

cku
n−1−kvk, (61)

where u and v are solutions of (13).
Therefore, the general infinitesimal symmetry generator v = ξ∂x +φ∂y of the linear iterative equation of

order n is given by

ξ(x) = c1u
2 + c2uv + c3v

2, (62)

φ(x, y) =
[
n− 1

2
(
2c1u′u + c2u

′v + c2uv
′ + 2c3vv′

)
+ c0

]
y +

n+3∑
k=4

cku
n−1−kvk, (63)

where c0, . . . , cn+3 are arbitrary constants. There are n+4 arbitrary constants, meaning that the Lie algebra
has maximal dimension. Letting vk be the generators obtained by setting cj = δkj in (62) allows us to find
the n + 4 vector fields [1] (although this result is not an original one of [1])

v0 = y∂y, v1 = u2∂x + (n− 1)uu′y∂y, v2 = uv∂x + n− 1
2

(
u′v + uv′

)
y∂y,

v3 = v2∂x + (n− 1)vv′y∂y, vk = un−1−kvk∂y, k = 4, . . . , n + 3, (64)

that span the Lie algebra. This has been obtained in [1] by a slightly different method. Note indeed that
this is simply based on the substitution of (61) into (49), which was clearly obtained in [1].

3. Parameters of the transformed equation under equivalence transformations

The group of equivalence transformations G of a family A of differential equations of a specified form
and labeled by a set of arbitrary functions is the largest group of invertible point transformations that map
each element of A to another element of A. On the other hand, we know that two equations are said to be
equivalent if they can be mapped to each other by an invertible point transformation. In this section, we
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shall be interested in finding the parameters of the source equation for the transformed equation under an
equivalence transformation of a given iterative equation.

3.1. Equivalence transformations

Let us consider the linear equation

y(n) + A1
n(x)y(n−1) + A2

n(x)y(n−2) + · · · + An
n(x)y = 0, (65)

where x is the independent variable and y the dependent variable. If we suppose that

x = α(z, w), y = β(z, w) (66)

is an equivalence transformation mapping (65) to an equivalent equation then the latter must have the same
form as (65). The substitution of x and y in terms of new variables z and w in (65) must yields an equation
of the form

w(n) + B1
n(z)w(n−1) + B2

n(z)w(n−2) + · · · + Bn
n(z)w = 0, (67)

where z is the independent variable and w is the dependent variable. However, it is well known [5,6] that
the group of equivalence transformations of the general linear equation in standard form (65) is given by
transformations of the form

x = f(z), y = g(z)w, (68)

where f and g are arbitrary functions. Moreover, we note that by assuming Eq. (65) to be in its normal
form, (68) reduces to

x = f(z), y = λ
[
f ′(z)

]n−1
2 w, (69)

where λ is an arbitrary constant while f is an arbitrary function.
Also note that a symmetry group transforms the differential equation into the same equation. So, the

transformed equation of (65) will then be of the form

w(n) + A1
n(z)w(n−1) + A2

n(z)w(n−2) + · · · + An
n(z)w = 0 (70)

under a symmetry group. We can say that a symmetry transformation is a special case of an equivalence
transformation because it preserves not only the form but also the equation itself, as it leaves the equation
locally unchanged.

As we already mentioned, the symmetry algebra of two given equivalent equations are isomorphic, and
thus if one of them has maximal dimension, the other one will also be of maximal dimension, but having
maximal dimension is equivalent to being iterative. Therefore under an equivalence transformation an it-
erative equation remains iterative. In the next section, we shall be interested in finding the parameters of
the source equation for the transformed equation under an equivalence transformation of a given iterative
equation.
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3.2. Parameters of the transformed equations

Consider the linear iterative equation in the standard form

Ψny ≡ K0
ny

(n) + K1
ny

(n−1) + K2
ny

(n−2) + · · · + Kn−1
n y′ + Kn

ny = 0 (71)

and let

y(n) + A2
ny

(n−2) + · · · + Aj
ny

(n−j) + · · · + An
ny = 0 (72)

be the normal reduced form of (71). Suppose that Eq. (71), which may be written again as

Δn(y) ≡ Ψny = 0 (73)

has the first-order source equation

r(x)y′ + s(x)y ≡ Ψ(y). (74)

Let

Ωn(w) ≡ Φnw = 0 (75)

be an equivalent equation with source equation

R(z)w′ + S(z)w = Φ(w) (76)

obtained from Δn(y) = 0 by the transformations (68). We may assume that

Φn(w) ≡ Z0
nw

(n) + Z1
nw

(n−1) + Z2
nw

(n−2) + · · · + Zn−1
n w′ + Zn

nw = 0 (77)

and let

w(n) + B2
nw

(n−2) + · · · + Bn−1
n w′ + Bn

nw = 0 (78)

be its normal reduced form. We want to find out the parameters R and S of the first-order source equation
of the transformed equation R(z)w′+S(z)w = Φ(w) in terms of the parameters r, s defined in (74). To do so
we may assume that the equation is in its reduced form, which also assumes the equality S = −(n−1)R′/2.

For simplicity, but without loss of generality, we may assume that the equations are in their reduced
normal form (72) and (78). As already mentioned, suppose that the parameter of the source equation
generating (72) is r = r(x). Given that equivalent equations have isomorphic symmetry algebras, Eq. (78)
is also iterative and we wish to find the corresponding parameter R = R(z) of its source equation. We also
need to recall that by considering the equation to be in its normal form, the point transformations (68)
reduces to (69), i.e.

x = f(z), y = λ
[
f ′(z)

]n−1
2 w. (79)

A direct calculation (we let g = [f ′(z)]n−1
2 w and Bi

n = Z
i
n|Z1

n=0 in the above calculation) shows that in
terms of the parameters λ and f of the equivalence transformation and the coefficients Ai

n of the original
equation, we have
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B2
2 = 1

f ′2

[
A2

2f
′4 − 3

4f
′′2 + 1

2f
′f (3)

]
, for n = 2, (80)

B2
3 = 1

f ′2
[
A2

3f
′4 − 3f ′′2 + 2f ′f (3)], for n = 3, (81)

B2
4 = 1

2f ′2
[
2A2

4f
′4 − 15f ′′2 + 10f ′f (3)], for n = 4. (82)

On the other hand we know that by assuming r and R to be the parameters of the source equations for
(72) and (78) respectively, we have for n � 2

A2
n(x) =

(
n + 1

3

)
A(r), B2

n(z) =
(
n + 1

3

)
A(R), (83)

where

A
(
r(x)

)
= r′2 − 2rr′′

4r2 . (84)

Consequently substituting the above expressions for A2
n and B2

n in terms of r and R respectively in (81)
would yield the determining equation for R when n = 3. Namely, we have

R′2 − 2RR′′

R2 = 1
f ′2

[
r′(f)2 − 2r(f)r′′(f)

r(f)2 f ′4 − 3f ′′2 + 2f ′f (3)
]
, (85)

where f = f(z). Similarly, for n = 4, the determining equation for R takes the form

10
4
R′2 − 2RR′′

R2 = 1
2f ′2

[
10
4 · 2r

′(f)2 − 2r(f)r′′(f)
r(f)2 f ′4 − 15f ′′2 + 10f ′f (3)

]
(86)

which is equivalent to

R′2 − 2RR′′

R2 = 1
f ′2

[
r′(f)2 − 2r(f)r′′(f)

r(f)2 f ′4 − 3f ′′2 + 2f ′f (3)
]
. (87)

As it should be expected, Eqs. (85) and (87) are the same and correspond to that derived from (80), which
is due to the fact that in reality the expression for R does not depend on the order of the equation. In order
word, we only need to know this expression for the second-order source equation.

Note that Eq. (85) has the form

R′2 − 2RR′′

R2 = H(z), (88)

where H is a given function. Therefore, if we let r or f be arbitrary functions, we may not be able to solve
(85) for R, because the solution of the differential equation (88) is not available for B2

2 an arbitrary function.

4. Conclusion

In this paper, we have reviewed the results obtained by Krause and Michel [1], i.e. the expression of the
symmetry generator of the linear iterative equation in terms of the solutions of the second-order source
equation. We have obtained their results by a slightly different method which consists of substituting (61)
into (49). We made use of the expression (9) to reduce the condition on the infinitesimal ξ. We have
proved that the condition on the infinitesimal function ξ = f(x) does not depend on the order of the linear
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iterative equation. Some results concerning the parameters of the transformed equation under equivalence
transformation were obtained for the linear iterative equation of order n.
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