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1. Introduction

This paper deals with the existence of multiple solutions to some classes of systems of second order
ordinary differential equations of the type

x′′ + γ(t, x) = 0, x = (x1, . . . , xd) ∈ R
d, t ∈ [0, T ], (1.1)

together with Dirichlet boundary conditions

x(0) = x(T ) = 0. (1.2)

In (1.1), γ = (γ1, . . . , γd) : [0, T ] × R
d → R

d is a continuous function. Incidentally notice that, since we are
not assuming γ(t, x) = ∇xΓ (t, x), system (1.1) is not in general Hamiltonian and cannot be treated in a
variational framework.

We are interested in situations in which the components γi(t, x) of the vector field γ(t, x) have a different
behavior. For instance, systems which will be covered by our results are

{
x′′

1 + x3
1 = p(t, x1, x2),

x′′
2 − x3

2 = r(t, x1, x2),
(1.3)
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with p, r bounded, and {
x′′

1 + q(t, x1, x2)
(
βx1 + (α− β) arctan(x1)

)
= 0,

x′′
2 + μx2 = r(t, x1, x2),

(1.4)

with μ �= ( jπT )2 for every j = 1, 2, . . . (that is, μ is not an eigenvalue of the differential operator x2 �→ −x′′
2

with Dirichlet boundary conditions on [0, T ]) and r bounded, q positive, bounded and bounded away from
zero and α, β > 0 with |β − α| large enough.

The common feature of systems (1.3) and (1.4) is that the equation for x1(t) has (for any fixed continuous
function x2(t)) a large number of solutions, which can be distinguished through their nodal behavior. More
precisely, the first equation in (1.3) is superlinear in x1 and possesses infinitely many solutions, with an
arbitrarily large number of zeros in [0, T ), while the first equation in (1.4) is asymptotically linear for x1
near zero and near infinity, thus having a finite number (larger and larger as the quantity β − α increases)
of solutions. These results are nowadays well known (see, among many others, [9,18] for the superlinear
case and [8,16] for the asymptotically linear one). On the other hand, the equation for x2(t) (both in (1.3)
and in (1.4), and for any fixed continuous function x1(t)) is also solvable, but no multiplicity is in general
available and the nodal properties of the solution found cannot be described. Such existence results can be
established via topological degree theory, proving suitable a priori-bounds and showing that the associated
global Leray–Schauder degree is equal to ±1 (see, for instance, [13,17]).

The main aim of the present paper is to show that corresponding results can be obtained for systems like
(1.3) and (1.4), which couple (in suitable weak ways, via the terms p, q, r) such different scenarios. Multiple
solutions (infinitely many for (1.3) and a finite number for (1.4)) will be detected and distinguished via
the nodal properties of the component x1(t) (more in general, in case of system (1.1), of the components
giving rise to multiplicity). To this aim, a global continuation technique in the framework of Leray–Schauder
degree theory, introduced in [4] and developed in some subsequent papers [6,14], will be used.

We point out that the plan of extending multiplicity results valid for scalar second order ODEs to weakly
coupled second order systems has been already initiated in previous papers (see [3,7,15] for superlinear
systems and [2] for asymptotically linear ones). However, to the best of our knowledge, this natural idea of
coupling equations with different growth assumptions has not been developed yet. In particular, we think
that the main novelty of our result is the coupling of equations with a large number of solutions with
equations for which multiplicity is not available. From the point of view of the proof, this requires a slight
variant in the continuation technique, matching the evaluation of some local degrees (for the components xi

giving rise to the multiplicity of solutions) with global ones (for the components xj for which only existence
can be proved).

The plan of the paper is the following. In Section 2, we state the main result, Theorem 2.1, together with
some comments. For simplicity, we have chosen to deal with a system in R

3, with a superlinear behavior
in its first component, an asymptotically linear behavior (at zero and at infinity) in its second component,
and global a priori-bounds for its third one. This case should show the main idea of the paper, keeping
the notation at a reasonable level. In Remark 2.2, we briefly discuss how to extend the result to systems
with more degrees of freedom. The final part of the section is devoted to a concise description of the global
continuation technique which is used in the proof. In Section 3, we prove the technical estimates from which
Theorem 2.1 follows.

Notation. We denote by C1
0 ([0, T ];Rd) (C1

0 ([0, T ]) if d = 1) the Banach space of all functions x : [0, T ] → R
d

of class C1 such that x(0) = x(T ) = 0, endowed with the norm

‖x‖ = sup
t∈[0,T ]

√∣∣x(t)
∣∣2 +

∣∣x′(t)
∣∣2.

Here | · | stands for the Euclidean norm of an n-dimensional vector.
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2. Statement of the main result

We consider the following system of ODEs
⎧⎪⎨
⎪⎩

u′′ + f(u) = p(t, u, v, w),
v′′ + q(t, u, v, w)g(v) = 0,
w′′ + h(t, u, v, w) = 0,

(u, v, w) ∈ R
3, t ∈ [0, T ], (2.1)

where all the functions considered are continuous on their variables and real-valued. We are interested in
the existence of solutions to (2.1) satisfying Dirichlet boundary conditions

u(0) = u(T ) = 0, v(0) = v(T ) = 0, w(0) = w(T ) = 0. (2.2)

The set of assumptions which we are going to consider on system (2.1) is the following:

(Hu) the function f : R → R is superlinear at infinity, i.e.

lim
|u|→+∞

f(u)
u

= +∞; (2.3)

the function p : [0, T ] × R
3 → R is bounded as a function of (u, v), precisely, for every M > 0 there

exists pmax(M) > 0 such that

∣∣p(t, u, v, w)
∣∣ � pmax(M), for every t ∈ [0, T ], (u, v) ∈ R

2, |w| � M ;

(Hv) the function g : R → R is asymptotically linear at zero and at infinity, i.e. g(0) = 0 and there exist
g0, g∞ > 0 such that

lim
v→0

g(v)
v

= g0, lim
|v|→+∞

g(v)
v

= g∞;

the function q : [0, T ] × R
3 → R is positive, bounded and bounded away from zero, that is to say,

there exist qmin, qmax > 0 such that

qmin � q(t, u, v, w) � qmax, for every t ∈ [0, T ], (u, v, w) ∈ R
3;

(Hw) there exist R∗ > 0 and h̃ : [0, T ] × R
3 × [0, 1] → R with h̃(t, u, v, w, 1) = h(t, u, v, w) and

h̃(t, u, v, w, 0) = μw, for μ �=
(
jπ

T

)2

∀j ∈ N0,

such that for every λ ∈ [0, 1], for every u, v ∈ C1
0 ([0, T ]) and for every w ∈ C1

0 ([0, T ]) solving
w′′ + h̃(t, u, v, w, λ) = 0, it holds that ‖w‖ � R∗.

We recall that typical situations in which (Hw) is satisfied are the sublinear case

h(t, u, v, w) = k(w) + r(t, u, v, w),

with k(w)w < 0 for |w| large and r bounded (with homotopy given by h̃(t, u, v, w, λ) = λh(t, u, v, w)), and
the non-resonant case
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h(t, u, v, w) = μw + r(t, u, v, w),

with μ �= ( jπT )2 for any j ∈ N0 and r bounded (with homotopy given by h̃(t, u, v, w, λ) = μw+λr(t, u, v, λ)).
It is also worth noticing that whenever one is able to find explicitly the constant R∗ bounding ‖w‖, then it
is enough to verify the assumptions in (Hu) and (Hv) for |w| � R∗. This will be clear from the proof.

We are now in position to state the main result of the paper.

Theorem 2.1. Assume (Hu), (Hv), (Hw). Then there exists n∗ ∈ N0 such that, for every (nu, nv) ∈ N
2 with

nu � n∗, nv ∈
(
T

π

√
qmaxg0,

T

π

√
qming∞

)
,

(if any), there exist 4 solutions (u, v, w) to the boundary value problem (2.1)–(2.2) such that u(t) has exactly
nu zeros on and v(t) has exactly nv zeros on [0, T ). Precisely, such solutions can be distinguished via the
signs of the initial derivatives u′(0), v′(0), according to the four possibilities u′(0), v′(0) > 0, u′(0), v′(0) < 0,
v′(0) < 0 < u′(0) and u′(0) < 0 < v′(0).

Notice that solutions (u, v, w) are distinguished by means of the number of zeros of the components u

and v; in general, due to the very mild assumptions on the function h in the equation satisfied by w, we
cannot expect to be able to describe the oscillating properties of w.

Remark 2.1. We can rewrite the condition for the integer nv in term of the spectrum of the linear differential
operator v �→ −v′′ with Dirichlet boundary conditions on [0, T ]. Precisely, denoting by λj = ( jπT )2 (j ∈ N0)
the eigenvalues and by σ = {λj}j∈N0 the spectrum, we are assuming

(qmaxg0, qming∞) ∩ σ �= ∅. (2.4)

Then, if j∗1 , j∗2 are, respectively, the smallest and the largest integer number such that

qmaxg0 < λj∗1 � λj∗2 < qming∞,

the conditions for nv are written as j∗1 � nv � j∗2 . The symmetric condition (qmaxg∞, qming0)∩ σ �= ∅ could
be considered, as well.

It is worth noticing that, if (2.4) is not satisfied, one can construct solutions to (2.1)–(2.2) of the type
(u, 0, w), with the same nodal information for u as in Theorem 2.1.

Remark 2.2. Variants of Theorem 2.1 can be obtained. For instance, one can consider a slightly different
system, where the first equation in (2.1) is replaced by

u′′ + q1(t, u, v, w)f(u) = 0,

with f satisfying (2.3) and f(0) = 0, and q1 fulfilling the same assumptions as q in hypothesis (Hv). In
this case, suitable conditions on the behavior of f near zero can lead to precise estimates for the number
n∗ appearing in the statement of the theorem. For instance, if f(u)/u → 0 for u → 0, then it is possible
to show (argue as in Proposition 3.3, but for the u-components of solutions) that n∗ = 1, that is, we can
obtain solutions (u, v, w) with u(t) > 0 for t ∈ ]0, T [.

Another variant can be obtained by dealing with classes of systems in which only two of the three
equations of (2.1) are present, namely, systems in (u,w) (compare with (1.3)), in (v, w) (see (1.4)) or in
(u, v) (with, of course, the corresponding assumptions (Hu), (Hv) and (Hw) satisfied). In each case, the
statement of the result has to be modified accordingly, giving respectively: two families of solutions (u,w),
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with nodal information on the component u; two families of solutions (v, w), with nodal information on v;
four families of solutions (u, v) with nodal characterization for both u and v.

Finally, one could consider systems in higher dimension, like
⎧⎪⎨
⎪⎩

u′′
i + fi(ui) = pi(t, u, v, w),

v′′j + qj(t, u, v, w)gj(v) = 0,
w′′

k + hk(t, u, v, w) = 0,

with u = (u1, . . . , udu
) ∈ R

du , v = (v1, . . . , vdv
) ∈ R

dv , w = (w1, . . . , wdw
) ∈ R

dw and the functions fi, pi, qj ,
gj and hk satisfying assumptions like the ones in (Hu), (Hv) and (Hw) of Theorem 2.1 (which corresponds
to the case du = dv = dw = 1). Indeed, the equations for ui give rise to a weakly-coupled superlinear system
[3,15] and the ones for vj to a weakly-coupled asymptotically linear (at zero and at infinity) system [2]. In
this case, 2(du+dv) solutions, with nodal information on the components ui, vj , can be provided. The proof
of this result follows the same line of the one for Theorem 2.1.

Remark 2.3. We point out that, in a standard manner, multiple periodic solutions of (2.1) can be provided
when the system exhibits suitable symmetry conditions. Precisely, if we assume that all the functions
involved are defined for t ∈ R, with 2T -periodicity in time, and satisfy, for every (t, u, v, w) ∈ R

4,

f(u) = −f(−u), g(v) = −g(−v),

p(t, u, v, w) = −p(−t,−u,−v,−w), h(t, u, v, w) = −h(−t,−u,−v,−w),

q(t, u, v, w) = q(−t,−u,−v,−w),

then it is easy to see that each solution (u, v, w) of (2.1)–(2.2) can be extended to an odd 2T -periodic
solution of the system.

In the absence of symmetry conditions, one could likely obtain (by arguing as in [5]) an existence re-
sult for T -periodic solutions to (2.1), while multiplicity cannot be in general obtained if (2.1) is not of
Hamiltonian type. We remark that results proving the existence of multiple periodic solutions (with nodal
characterization) to weakly coupled (Hamiltonian) systems of second order ODEs have appeared only very
recently (see [1,12]), but the arguments therein do not seem to be well suited to deal with systems like (2.1).

The proof of Theorem 2.1 follows from the application of a continuation theorem given in [3] (on the
lines of [4,6,14]) for an abstract equation of the form

x = N (x, λ), (2.5)

where X is a Banach space and N : X × [0, 1] −→ X is a completely continuous operator. It is standard to
prove that (2.12) can be written in the form (2.5), for a suitable choice of N , with X = {x = (u, v, w) ∈
C1([0, T ],R3): x(0) = x(T ) = 0}.

For the statement of the continuation theorem, we shall consider two open sets A and B such that
A ⊂ Ā ⊂ B ⊂ B̄ and (B̄ \A) ⊂ X. Let Σ be the set of the solutions of (2.5), i.e.

Σ =
{
(x, λ) ∈ X × [0, 1]: x = N (x, λ)

}
and, for any subset D ⊂ X× [0, 1], let us denote the section of D at λ ∈ [0, 1] by Dλ = {x ∈ X: (x, λ) ∈ D};
we also set Nλ = N (·, λ). We have the following:

Theorem 2.2. (See Theorem 3.4 in [3].) Let k : Σ ∩ (B̄ \ A) −→ N
2 be a continuous function; suppose that

there exists n ∈ N
2 satisfying the following conditions:
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n /∈ k
(
∂(B̄ \A)

)
(2.6)

and

k−1(n) is bounded. (2.7)

Then, for an open set Un
0 such that (k−1(n))0 ⊂ Un

0 ⊂ Un
0 ⊂ (B̄ \ A)0 and Σ0 ∩ Un

0 = (k−1(n))0, the
Leray–Schauder degree deg(I −N0, U

n
0 ) is defined. If

deg
(
I −N0, U

n
0
)
�= 0, (2.8)

then there is a continuum Cn ⊂ Σ ∩ (B \ Ā) whose projection on the λ-component covers [0, 1] and such
that k(x, λ) = n for every (x, λ) ∈ Cn. In particular there exists at least one x̃ ∈ (B \ Ā)1 such that

x̃ = N (x̃, 1) and k(x̃, 1) = n.

We point out that [3, Th. 3.4] actually dealt with the case k : Σ ∩ (B̄ \ A) −→ N
3 (having in mind

the application to a weakly coupled superlinear system, with k taking into account the number of zeros of
each component of a solution). However, the proof remains the same here, since only the discreteness of the
codomain of the functional k matters. In our case, k(x) ∈ N

2 will take into account the number of zeros of
u and v only, for x = (u, v, w). For a proof of Theorem 2.2, we refer to [14].

In order to apply Theorem 2.2 we need to define a suitable homotopy; to this aim, let h̃ be the function
given in (Hw) and let us define, for λ ∈ [0, 1],

f̃(u, λ) = λf(u) + (1 − λ)u3 (2.9)

(for technical reasons, we will assume henceforth that f(u)u > 0 for every u �= 0; this is not restrictive,
since it can by achieved by modifying f in a compact neighborhood of u = 0 and adding a corresponding
bounded term to the function p), and

g̃(t, u, v, w, λ) = λq(t, u, v, w)g(v) + (1 − λ)ĝ(v), (2.10)

where ĝ : R → R is a continuous function such that ĝ(v)v > 0 for v �= 0 and

lim
v→0

ĝ(v)
v

= qmaxg0, lim
|v|→+∞

ĝ(v)
v

= qming∞. (2.11)

For every λ ∈ [0, 1] we then consider the system⎧⎪⎨
⎪⎩

u′′ + f̃(u, λ) = λp(t, u, v, w),
v′′ + g̃(t, u, v, w, λ) = 0,
w′′ + h̃(t, u, v, w, λ) = 0.

(2.12)

Of course, system (2.12) for λ = 1 just coincides with system (2.1), while for λ = 0 it reduces to the
autonomous uncoupled system ⎧⎪⎨

⎪⎩
u′′ + u3 = 0,
v′′ + ĝ(v) = 0,
w′′ + μw = 0.

(2.13)

For this system, it is possible to construct suitable open sets Un
0 such that the degree condition (2.8) is

fulfilled (the precise definition will be given in Section 3 – see (3.14) – along the proof of the main result).
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3. Qualitative properties of the solutions and proof of the result

We start this section with the introduction of the so-called elastic properties for the components u and
v of the solutions to system (2.12) (see Lemma 3.1 and Lemma 3.2).

The proof of these properties is based on the following version of Gronwall’s lemma: if e : I → R is a
function of class C1 (where I ⊂ R is an interval) and L > 0 a constant such that |e′(t)| � Le(t), then
e(t) � e(t0) exp(L|t − t0|) for every t, t0 ∈ I. This fact is an easy consequence of the monotonicity of the
function e1(t) = e(t)/ exp(L|t− t0|); indeed, e1 is non-increasing for t > t0 and non-decreasing for t < t0.

Lemma 3.1. For every R > 0 and μ > 0, there exists ρ(R,μ) � R such that, for every (u, v, w, λ) ∈ Σ,

min
t∈[0,T ]

(
μ2u(t)2 + u′(t)2

)
� R2 =⇒ max

t∈[0,T ]

(
μ2u(t)2 + u′(t)2

)
� ρ(R,μ)2. (3.1)

Proof. Let us set F̃ (x, λ) =
∫ x

0 f̃(u, λ) du. In view of (Hu), F̃ (x, λ) → +∞ for |x| → +∞, uniformly in
λ ∈ [0, 1]; moreover, F̃ (x, λ) > 0 for x �= 0. We define the function

E(x, y, λ) = 1
2y

2 + F̃ (x, λ) + 1
2pmax

(
R∗)2;

we have E(x, y, λ) → +∞ for x2 + y2 → +∞, uniformly in λ ∈ [0, 1]. For (u, v, w, λ) ∈ Σ, let us take
t0, t1 ∈ [0, T ] such that

μ2u(t0)2 + u′(t0)2 = R2, μ2u(t1)2 + u′(t1)2 = max
t∈[0,T ]

(
μ2u(t)2 + u′(t)2

)
> R2

(otherwise, one could take ρ(R,μ) = R). For e(t) = E(u(t), u′(t), λ) (it is not necessary to emphasize the
dependence on λ), one has, in view of (Hu) and (Hw)

∣∣e′(t)∣∣ =
∣∣u′(t)

(
u′′(t) + f̃

(
u(t), λ

))∣∣ =
∣∣λu′(t)p

(
t, u(t), v(t), w(t)

)∣∣
� 1

2u
′(t)2 + 1

2pmax
(
R∗)2 � e(t).

Hence Gronwall’s lemma yields

e(t1) � L(R,μ) exp(T ), for L(R,μ) = max
{
E(x, y, λ): λ ∈ [0, 1], μ2x2 + y2 = R2}.

The thesis now follows choosing ρ(R,μ) > 0 such that E(λ, x, y) > L(R,μ) exp(T ) for λ ∈ [0, 1] and
μ2x2 + y2 > ρ(R,μ)2. �
Lemma 3.2. For every R > 0 and μ > 0, there exist σ(R,μ), τ(R,μ) with 0 < τ(R,μ) � R � σ(R,μ) such
that, for every (u, v, w, λ) ∈ Σ,

min
t∈[0,T ]

(
μ2v(t)2 + v′(t)2

)
� R2 =⇒ max

t∈[0,T ]

(
μ2v(t)2 + v′(t)2

)
� σ(R,μ)2 (3.2)

and

max
t∈[0,T ]

(
μ2v(t)2 + v′(t)2

)
> R2 =⇒ min

t∈[0,T ]

(
μ2v(t)2 + v′(t)2

)
> τ(R,μ)2. (3.3)
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Proof. The proof of the first assertion is similar to the one of Lemma 3.1, but even simpler. Indeed, consider
the function

E(x, y) = 1
2
(
y2 + μ2x2)

and, as before, take t0, t1 ∈ [0, T ] such that

μ2v(t0)2 + v′(t0)2 = R2, μ2v(t1)2 + v′(t1)2 = max
t∈[0,T ]

(
μ2v(t)2 + v′(t)2

)
> R2.

For e(t) = E(v(t), v′(t)), one has, in view of (Hv)

∣∣e′(t)∣∣ =
∣∣v′(t)(v′′(t) + μ2v(t)

)∣∣ =
∣∣v′(t)(μ2v(t) − g̃

(
λ, u(t), v(t), w(t)

))∣∣
� Lμ

∣∣v′(t)v(t)∣∣ � Lμ

2
(
v′(t)2 + v(t)2

)
= Lμ max

(
1, μ2)e(t)

where Lμ > μ2 is a constant such that |g̃(λ, u, v, w)| � (Lμ − μ2)|v|. Hence Gronwall’s lemma yields

e(t1) � R2

2 exp
(
Lμ max

(
1, μ2)T ),

giving the explicit estimate σ(R,μ) = R exp(Lμ max(1, μ2)T/2).
At this point, the proof of the second assertion follows with the choice τ(R,μ) = R exp(−Lμ max(1, μ2)T/

2). Indeed, if by contradiction

min
t∈[0,T ]

(
μ2v(t)2 + v′(t)2

)
� R exp

(
−Lμ max

(
1, μ2)T/2),

then the first part of the proof shows that maxt∈[0,T ](μ2v(t)2 + v′(t)2) � R. �
Now, let us concentrate on the oscillating behavior of the solutions of (2.12); to this aim, for every

β ∈ C1
0 ([0, T ]), we denote by n(β) the number of zeros of β in [0, T ). We recall that if β ∈ C2 and has only

simple zeros, than n(β) (is finite and) can be evaluated via the integral formula (given in [10], see also [11])

n(β) = ν

π

T∫
0

β′(t)2 − β(t)β′′(t)
ν2β(t)2 + β′(t)2 dt, ∀ν > 0. (3.4)

We will estimate the number of zeros of the components u and v of solutions (u, v, w, λ) of (2.12).

3.1. The oscillating properties of the u-component of solutions

Let us first observe that we cannot ensure that for every (u, v, w, λ) ∈ Σ the function u has finitely
many zeros in [0, T ]. However, this is certainly true for solutions such that u has sufficiently large initial
values. Indeed, an application of Lemma 3.1 with μ = 1 proves that there exists u∗

0 � 1 such that for every
(u, v, w, λ) ∈ Σ we have

∣∣u′(0)
∣∣ � u∗

0 =⇒ u(t)2 + u′(t)2 � 1, ∀t ∈ [0, T ];

as a consequence, if |u′(0)| � u∗
0 the number n(u) is well defined. Moreover, we are able to prove some

bounds on this number; the first one is an upper estimate:
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Proposition 3.1. There exists n∗ ∈ N such that for every (u, v, w, λ) ∈ Σ we have

∣∣u′(0)
∣∣ = u∗

0 =⇒ n(u) � n∗ − 1. (3.5)

Proof. Let us consider a nontrivial solution (u, v, w, λ) ∈ Σ such that |u′(0)| = u∗
0; from Lemma 3.1 we

deduce that there exists ρ0 := ρ(u∗
0, 1) such that

u(t)2 + u′(t)2 � ρ2
0, ∀t ∈ [0, T ].

On the other hand, by the choice of u∗
0 we also have

u(t)2 + u′(t)2 � 1, ∀t ∈ [0, T ].

Using (3.4) with ν = 1 and recalling (2.9), we obtain

n(u) � 1
π

T∫
0

u(t)[f̃(u(t), λ) − λp(t, u(t), v(t), w(t))] + u′(t)2

u(t)2 + u′(t)2 dt

� T

π

(
ρ0
(
Cρ0 + ρ3

0 + pmax
(
R∗)) + ρ2

0
)
,

where

Cρ0 = max
|ξ|�ρ0

∣∣f(ξ)
∣∣

and pmax(R∗) is as in assumption (Hu). �
Now, let us prove that the u-component of solutions of (2.12) has an arbitrarily large number of zeros

for sufficiently large initial values:

Proposition 3.2. For every n � n∗ there exists u∗
∞,n > 0 such that for every (u, v, w, λ) ∈ Σ we have

∣∣u′(0)
∣∣ � u∗

∞,n =⇒ n(u) > n. (3.6)

Proof. Let us observe that assumption (Hu) and (2.9) imply that

lim
|u|→+∞

f̃(u, λ) − λp(t, u, v, w)
u

= +∞,

uniformly in (t, v, w, λ) ∈ [0, T ] × R × [−R∗, R∗] × [0, 1]. As a consequence, for every n � n∗ there exists
Kn > 0 such that

u
(
f̃(u, λ) − λp(t, u, v, w)

)
> 4π2n2u2 −Kn, (3.7)

for every (t, u, v, w, λ) ∈ [0, T ] × R × R × [−R∗, R∗] × [0, 1]. Now, from an application of Lemma 3.1 with
μ = 2πn we deduce that there exists u∗

∞,n > 0 such that for every (u, v, w, λ) ∈ Σ with |u′(0)| � u∗
∞,n we

have

4π2n2u(t)2 + u′(t)2 � 2Kn, ∀t ∈ [0, T ]. (3.8)
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Assume now that (u, v, w, λ) ∈ Σ is such that |u′(0)| � u∗
∞,n; hence, from (3.4) with ν = 2πn/T and from

(3.7) and (3.8) we obtain

n(u) � 2πn
Tπ

T∫
0

u(t)[f̃(u(t), λ) − λp(t, u(t), v(t), w(t))] + u′(t)2

4π2n2u(t)2 + u′(t)2 dt

>
2n
T

T∫
0

4π2n2u(t)2 + u′(t)2 −Kn

4π2n2u(t)2 + u′(t)2 dt

= 2n
T

(
T −

T∫
0

Kn

4π2n2u(t)2 + u′(t)2 dt

)

� 2n
T

(
T −

T∫
0

1
2 dt

)
= n. �

3.2. The oscillating properties of the v-component of solutions

In this subsection we study the rotating behavior of the v-component of nontrivial solutions of (2.12);
let us first observe that (3.3) of Lemma 3.2 shows that for every solution (u, v, w, λ) of (2.12) with v �≡ 0 it
holds

v(t)2 + v′(t)2 > 0, ∀t ∈ [0, T ].

Hence, for every solution (u, v, w, λ) of (2.12) with v �≡ 0 the number n(v) is finite. We are able to estimate
this number, using the asymptotic assumptions on g given in (Hv):

Proposition 3.3. For every ε1 > 0 there exists v∗0 > 0 such that for every (u, v, w, λ) ∈ Σ we have

∣∣v′(0)
∣∣ � v∗0 =⇒ n(v) � T

π

√
qmaxg0 + ε1. (3.9)

Proof. Let us observe that assumption (Hv) and (2.10) and (2.11) imply that for every ε1 > 0 there exists
v∗0 > 0 such that

vg̃(t, u, v, w, λ) � (qmaxg0 + ε1)v2, (3.10)

for every (t, u, v, w, λ) ∈ [0, T ] × R×R× [−R∗, R∗] × [0, 1] with |v| � v∗0 . Assume now that (u, v, w, λ) ∈ Σ

is such that |v′(0)| � v∗0 ; hence, from (3.4) with ν =
√
qmaxg0 + ε1 and from (3.10) we obtain

n(v) �
√
qmaxg0 + ε1

π

T∫
0

v(t)g̃(t, u(t), v(t), w(t), λ) + v′(t)2

(qmaxg0 + ε1)v(t)2 + v′(t)2 dt

�
√
qmaxg0 + ε1

π

T∫
0

dt = T

π

√
qmaxg0 + ε1. �



620 A. Boscaggin, W. Dambrosio / J. Math. Anal. Appl. 415 (2014) 610–622
Proposition 3.4. For every ε2 > 0 and ε3 > 0 there exists v∗∞ > 0 such that for every (u, v, w, λ) ∈ Σ we
have

∣∣v′(0)
∣∣ � v∗∞ =⇒ n(v) � (1 − ε3)

T

π

√
qming∞ − ε2. (3.11)

Proof. We first observe that assumption (Hv) and (2.10) and (2.11) imply that for every ε2 > 0 there exists
M > 0 such that

vg̃(t, u, v, w, λ) � (qming∞ − ε2)v2 −M, (3.12)

for every (t, u, v, w, λ) ∈ [0, T ] × R × R × [−R∗, R∗] × [0, 1]. Now, for every ε3 > 0, from an application of
Lemma 3.2 with μ =

√
qming∞ − ε2 we deduce that there exists v∗∞ > 0 such that for every (u, v, w, λ) ∈ Σ

with |v′(0)| � u∗
∞ we have

(qming∞ − ε2)v(t)2 + v′(t)2 � M

ε3
, ∀t ∈ [0, T ]. (3.13)

The proof continues now as the one of Proposition 3.6 using formula (3.4) with ν =
√
qming∞ − ε2. �

3.3. Proof of the result

Let us fix (nu, nv) ∈ N
2 such that nu � n∗, with n∗ as in Proposition 3.1, and

nv ∈
(
T

π

√
qmaxg0,

T

π

√
qming∞

)
.

Let us fix εi > 0 (i = 1, 2, 3) such that

T

π

√
qmaxg0 + ε1 < nv <

T

π
(1 − ε3)

√
qming∞ − ε2.

Let us consider u∗
0, u

∗
∞,nu

, v∗0 , v
∗
∞ as in Propositions 3.1, 3.2, 3.3 and 3.4 and let R∗ > 0 be as in assumption

(Hw); we apply Theorem 2.2 with n = (nu, nv),

B =
{
(u, v, w, λ) ∈ X × [0, 1]: u′(0) < u∗

∞,nu
, v′(0) < v∗∞, ‖w‖ < R∗ + 1

}
and

A =
{
(u, v, w, λ) ∈ X × [0, 1]: u′(0) > u∗

0, v′(0) > v∗0
}
.

We also set C = B \A and define

k(u, v, w, λ) =
(
n(u), n(v)

)
, ∀(u, v, w, λ) ∈ Σ ∩ C.

The continuity of k follows from the integral formula (3.4) (indeed, when used for u, v with (u, v, w, λ) ∈
Σ, the term involving the second derivative can be always expressed in terms of continuous functions of
(u, v, w, λ)). From assumption (Hw) and Propositions 3.1, 3.2, 3.3 and 3.4 it is easy to see that the set

{
(u, v, w, λ) ∈ Σ ∩ (∂C): k(u, v, w, λ) = (nu, nv)

}
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is empty; as a consequence, (2.6) is satisfied. Now, an application of Lemma 3.1 and Lemma 3.2 proves that

‖u‖ � ρ
(
u∗
∞,nu

, 1
)
, ‖v‖ � σ

(
v∗∞, 1

)
when (u, v, w, λ) ∈ Σ∩C; on the other hand, by definition we obviously have ‖w‖ � R∗+1 when (u, v, w, λ) ∈
Σ ∩ C. This is sufficient to conclude that (2.7) is fulfilled.

Finally, we have to check the validity of (2.8). For λ = 0 the problem is uncoupled, so that we can write
N0(u, v, w) = (N u

0 (u),N v
0 ,Nw

0 (w)). Accordingly, we define the open set Un
0 as a product

Un
0 = Unu

0 × Unv
0 ×BR∗+1, (3.14)

where BR∗+1 denotes the open ball of radius R∗ + 1 in C1
0 ([0, T ]) and Unu

0 , Unv
0 ⊂ C1

0 ([0, T ]) are open
sets constructed as in [4,6,14] (using well-known arguments based on the use of time-maps associated with
autonomous second order equations), such that the “local” degrees deg(I −N u

0 , U
nu
0 ),deg(I −N v

0 , U
nv
0 ) are

different from zero. An elementary property of the Leray–Schauder degree gives

deg
(
I −N0, U

n
0
)

= deg
(
I −N u

0 , U
nu
0

)
deg

(
I −N v

0 , U
nv
0

)
deg

(
I −Nw

0 , BR∗+1
)

which is different from zero as well, since the “global” degree deg(I − Nw
0 , BR∗+1) equals 1 or −1 (see

[13,17]).
Hence, all the assumptions of Theorem 2.2 are fulfilled and we deduce the existence of a solution (u, v, w)

of (2.1) such that n(u) = nu, n(v) = nv and u′(0) > 0, v′(0) > 0.
A straightforward modification of the definition of the sets A and B leads to the proof of the existence

of the solutions (u, v, w) of (2.1) with n(u) = nu, n(v) = nv and the different signs of the initial derivatives
of u and v.
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