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Abstract

Following the work of Sun and Wei (2014), we investigate the ruin probabilities of a
discrete-time insurance risk model with dependent insurance and financial risks. Assume
that the one-period net insurance losses and discount factors form a sequence of indepen-
dent and identically distributed copies of a random pair (X, θ). When the product Xθ
is heavy tailed, we establish an asymptotic formula for the finite-time ruin probability
without any restriction on the dependence structure of (X, θ) and extend the result to
the infinite time ruin probability.

Keywords: asymptotic estimate, ruin probability, dependent insurance and financial
risk, heavy tail

1. Introduction

Let x be a positive real number, {Xn}n≥1 be a sequence of real-valued random variables
and {θn}n≥1 be a sequence of nonnegative random variables. In this paper, we consider
a discrete-time risk model as follows:

U0 = x, Un = Un−1θ
−1
n −Xn, n ≥ 1. (1.1)

In the insurance risk context, x is interpreted as the initial wealth of an insurance company
and Xn is interpreted as the net insurance loss, i.e., the total claim amount minus the
total incoming premium during period n. Assume that the payment of the claims and
the collection of the premiums happen at the end of each period. The insurance company
can invest surplus into a portfolio consisting of risk-free assets and risky assets at time
n − 1, leading to the stochastic discount factor θn from time n to time n − 1. Thus, Un

is interpreted as the surplus of the insurance company at time n. In the terminology of
Norberg (1999), we call {Xn}n≥1 insurance risks and call {θn}n≥1 financial risks. Thus,
the sum

Sn =
n∑

i=1

Xi

i∏
j=1

θj, n ∈ N,
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represents the stochastic present value of aggregate net losses up to time n.
Now we can define the ruin probability up to time n and the ultimate ruin probability,

respectively, by

Ψ(x, n) = P

{
min

1≤m≤n
Um < 0 | U0 = x

}
= P

{
max

1≤m≤n
Sm > x

}
(1.2)

and

Ψ(x) = P

{
min

1≤m<∞
Um < 0 | U0 = x

}
= P

{
max

1≤m<∞
Sm > x

}
. (1.3)

Sun and Wei (2014) established an asymptotic formula for (1.2) under the conditions
that the distribution of Xθ, denoted by H, belongs to the intersection of the dominated
variation class (D) and the long-tailed class (L), θ fulfills certain moment condition and

lim
A→∞

lim sup
x→∞

P(Xθ > x, θ > A)

P(Xθ > x)
= 0. (1.4)

It’s not easy to verify (1.4).
In this paper, we obtain an asymptotic estimate for Ψ(x, n) and another for Ψ(x)

when H belongs to D ∩ L. Notice that we do not need the specific assumption (1.4),
but we need some other certain conditions. Then, the certain conditions also can be
simplified when H belongs to the consistent variation class (C). Furthermore, we apply
these two results to the special case that H belongs to the regular variation class (R)
and get two asymptotic estimates, which are of more transparent forms.

The remaining part of this paper is organized as follows. In Section 2, we introduce
some notations and state our main results. In Section 3, we provide some lemmas and
prove the main results of the paper.

2. Notations and main results

In this paper, C represents a positive constant without relation to x and may vary
from place to place. Hereafter, all limit relations are for x → ∞ unless stated other-
wise. For two positive functions a(·) and b(·), we write a(x) � b(x) or b(x) � a(x)
if lim sup a(x)/b(x) ≤ 1 and write a(x) ∼ b(x) if lim a(x)/b(x) = 1. Also, we write
a(x) 	 b(x) if 0 < lim inf a(x)/b(x) ≤ lim sup a(x)/b(x) < ∞.

In order to facilitate subsequent expression, we denote

κi �
i∏

j=1

θj, i ≥ 1.

Now we recall several classes of heavy-tailed distributions. A distribution F belongs
to the dominated variation class (denoted by D) if F (x) = 1 − F (x) > 0 for all x ∈ R

and

lim sup
x→∞

F (xy)

F (x)
< ∞ for any 0 < y < 1.
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A distribution F belongs to the long-tailed class (denoted by L) if F (x) > 0 for all x ∈ R

and

lim
x→∞

F (x+ y)

F (x)
= 1 for any y > 0. (2.1)

Relation (2.1) holds uniformly for every compact set of y. That is to say, there exists a
function L(x), with 0 ≤ L(x) ≤ x/2 and L(x) ↑ ∞, such that (2.1) holds uniformly for
−L(x) ≤ y ≤ L(x). A distribution F belongs to the consistent variation class (denoted
by C) if F (x) > 0 for all x ∈ R and

lim
y↑1

lim sup
x→∞

F (xy)

F (x)
= 1, or equivalently, lim

y↓1
lim inf
x→∞

F (xy)

F (x)
= 1.

A distribution F belongs to the regular variation class (denoted by R−α) if F (x) > 0 for
all x ∈ R and

lim
x→∞

F (xy)

F (x)
= y−α for some α > 0 and all y > 0.

It’s well known that R ⊂ C ⊂ D ∩ L.
Besides that, the upper Matuszewska index J

+
F and lower Matuszewska index J

−
F (see

Bingham et al.(1987,Ch.2.1)) are used. It’s well known that J
+
F < ∞ if F ∈ D and

J
−
F = J

+
F = α if F ∈ R−α.

For making concise statements of our results, we present two assumptions.
Assumption A. There exists some function L(x) : [0,∞) → [0,∞) satisfying that

L(x)

xν
→ ∞,

L(x)

x
→ 0,

for some p > J
+
H and J

+
H/p < ν < 1 such that for each i ≥ 1,

P {Xiκi > x± L(x)} ∼ P {Xiκi > x} . (2.2)

Assumption B. There exists some function L(x) : [0,∞) → [0,∞) satisfying that

L(x) → ∞,
L(x)

x
→ 0,

such that

H(x) 	 H(L(x)). (2.3)

Now, we state the main results.

Theorem 2.1. Let X be a real-valued random variable, θ be a nonnegative random vari-
able and {(Xn, θn)}n≥1 be i.i.d. copies of the random pair (X, θ). If the distribution of

Xθ, denoted by H, belongs to D ∩ L, Eθp < ∞ for some p > J
+
H and there exists L(x)

satisfying Assumption A, then it holds that for any integer n ≥ 1,

Ψ(x, n) ∼
n∑

i=1

P {Xiκi > x} . (2.4)
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Remark 2.1. In fact, the distributions of Xiκi, i ≥ 1 belong to D ∩ L, which will be
proved in Section 3.2. So, introducing (2.2) into Theorem 2.1 is reasonable.

Corollary 2.1. Let X be a real-valued random variable, θ be a nonnegative random
variable and {(Xn, θn)}n≥1 be i.i.d. copies of the random pair (X, θ). If the distribution

of Xθ, denoted by H, belongs to C and Eθp < ∞ for some p > J
+
H , then (2.4) still holds.

Corollary 2.2. Let X be a real-valued random variable, θ be a nonnegative random
variable and {(Xn, θn)}n≥1 be i.i.d. copies of the random pair (X, θ). If the distribution
of Xθ, denoted by H, belongs to R−α for some 0 < α < ∞ and Eθp < ∞ for some p > α,
then

Ψ(x, n) ∼ H(x)
n∑

i=1

(Eθα)i−1 = H(x)
1− (Eθα)n

1− Eθα
. (2.5)

Theorem 2.2. Let X be a real-valued random variable, θ be a nonnegative random vari-
able and {(Xn, θn)}n≥1 be i.i.d. copies of the random pair (X, θ). If the distribution of

Xθ, denoted by H, belongs to D ∩ L with J
−
H > 0, Eθp < 1 for some p > J

+
H and there

exists L(x) satisfying Assumption B, then it holds that

Ψ(x) ∼
∞∑
i=1

P {Xiκi > x} . (2.6)

Corollary 2.3. Let X be a real-valued random variable, θ be a nonnegative random
variable and {(Xn, θn)}n≥1 be i.i.d. copies of the random pair (X, θ). If the distribution

of Xθ, denoted by H, belongs to C with J
−
H > 0 and Eθp < 1 for some p > J

+
H , then (2.6)

still holds.

Corollary 2.4. Let X be a real-valued random variable, θ be a nonnegative random
variable and {(Xn, θn)}n≥1 be i.i.d. copies of the random pair (X, θ). If the distribution
of Xθ, denoted by H, belongs to R−α for some 0 < α < ∞ and Eθp < 1 for some p > α,
then

Ψ(x) ∼ H(x)
∞∑
i=1

(Eθα)i−1 =
H(x)

1− Eθα
. (2.7)

3. Proofs of the main results

By convention, we have
∑

Φ · = 0,
∏

Φ · = 1 and X+ = max{X, 0}.
3.1. Some lemmas

By Proposition 2.2.1 in Bingham et al.(1987), for a distribution F ∈ D and arbitrarily
fixed p > J

+
F , there exist positive constants Cp and Dp such that

F (y)

F (x)
≤ Cp

(
x

y

)p

(3.1)

holds for all x ≥ y ≥ Dp. Fixing the variable y leads to

x−p = o
(
F (x)

)
for any p > J

+
F . (3.2)

The following fundamental lemmas will be used.
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Lemma 3.1. Let X and Y be two independent and nonnegative random variables, where
X is distributed by F . If F ∈ D, then for arbitrarily fixed δ > 0 and p > J

+
F , there exists

a positive constant C without relation to δ and Y such that for all large x,

P(XY > δx | Y ) ≤ CF (x)
(
δ−pY p1[Y≥δ] + 1[Y <δ]

)
.

Proof. See Lemma 3.2 in Heyde and Wang (2009).

Lemma 3.2. Let X and Y be two independent and nonnegative random variables, where
X is distributed by F . If F ∈ D with J

−
F > 0, then, for any fixed δ > 0 and 0 < p1 <

J
−
F ≤ J

+
F < p2 < ∞, there exists a positive constant C without relation to δ and Y , such

that for all large x,

P (XY > δx | Y ) ≤ CF (x)
(
δ−p1Y p1 + δ−p2Y p2

)
.

Proof. See Lemma 3 in Guo and Wang (2013).

Lemma 3.3. Let X and Y be two independent and nonnegative random variables, where
X is distributed by F and Y is nondegenerate at 0. If F ∈ D∩L and EY p < ∞ for some
p > J

+
F , then the distribution of XY belongs to D ∩ L and P(XY > x) 	 F (x).

Proof. As a direct result of Lemma 3.8 and Lemma 3.10 of Tang and Tsitsiashvili (2003)
(see also Lemma 4.1.2 in Wang and Tang (2006)).

Lemma 3.4. Let X and Y be two independent random variables, X be real-valued and
distributed by F and Y be nonnegative and nondegenerate at 0. If F ∈ C and EY p < ∞
for some p > J

+
F , then the distribution of XY belongs to C and P(XY > x) 	 F (x).

Proof. See Lemma 2.4 and Lemma 2.5 in Wang et al.(2005).

Lemma 3.5. Let X and Y be two independent random variables, X be real-valued and
distributed by F and Y be nonnegative and nondegenerate at 0. If F ∈ R−α for some
0 < α < ∞ and EY p < ∞ for some p > α. Then, the distribution of XY belongs to R−α

and P(XY > x) ∼ EY αF (x).

Proof. The complete proof can be found in Breiman (1965) or Cline and Samorodnitsky
(1994).

The following lemmas will be used in the proof of Theorem 2.1.

Lemma 3.6. Under the conditions of Theorem 2.1, for any ε > 0 and any fixed n ∈ N,
(a) there exists x∗ such that

n∑
i=1

∑
1≤l≤n,l 	=i

P

{
X+

l κl >
x

n
,X+

i κi >
L(x)

n− 1

}
≤ CεH(x) (3.3)

holds for all x > x∗, where L(x) is as in Assumption A;
(b) there exists x∗ such that for all x > x∗,

n∑
i=1

∑
1≤l≤n,l 	=i

P {Xlκl > x,Xiκi > x} ≤ CεH(x). (3.4)
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Proof. (a)By the fact P{X+θ > x} = P{Xθ > x} for all x > 0, we know that the
distribution of X+θ, denoted by H+, belongs to D ∩ L and

H+(x) = H(x), x > 0. (3.5)

If i > l, by Lemma 3.1, Chebyshev’s inequality and (3.2), we can derive

P

{
X+

l κl >
x

n
,X+

i κi >
L(x)

n− 1

}

≤ P

{
X+

l κl >
x

n
,X+

i κi >
L(x)

n− 1
, θl ≤ xν

}
+ P {θl > xν}

≤ P

{
X+

l θl

(
l−1∏
j=1

θj

)
>

x

n
,X+

i

( ∏
1≤j≤i,j 	=l

θj

)
>

L(x)

(n− 1)xν

}
+

Eθp

xpν

≤ CH(x)E

[
np

(
l−1∏
j=1

θpj

)
1{X+

i (
∏i

j=1,j �=l θj)>
L(x)

(n−1)xν } + 1{X+
i (

∏i
j=1,j �=l θj)>

L(x)
(n−1)xν }

]

+ CεH(x).

Because {θn}n≥1 are independent and Eθp < ∞,we can obtain

E

(
l−1∏
j=1

θpj

)
= (Eθp)l−1 < ∞. (3.6)

Then, we can take x∗
1 such that for all x > x∗

1,

E

[
np

(
l−1∏
j=1

θpj

)
1{X+

i (
∏i

j=1,j �=l θj)>
L(x)

(n−1)xν }
]
< ε

and

P

{
X+

i (
i∏

j=1,j 	=l

θj) >
L(x)

(n− 1)xν

}
< ε.

If i < l, we can derive

P

{
X+

l κl >
x

n
,X+

i κi >
L(x)

n− 1

}

= P

{
X+

l θl

(
l−1∏
j=1

θj

)
>

x

n
,X+

i κi >
L(x)

n− 1

}

≤ CH(x)E

[
np

(
l−1∏
j=1

θpj

)
1{X+

i κi>
L(x)
n−1} + 1{X+

i κi>
L(x)
n−1}

]
.

Similarly, we can take x∗
2 such that for all x > x∗

2,

E

[
np

(
l−1∏
j=1

θpj

)
1{X+

i κi>
L(x)
n−1}

]
< ε
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and

P

{
X+

i κi >
L(x)

n− 1

}
< ε.

Hence, taking x∗ = max{x∗
1, x

∗
2}, it holds that for all x > x∗ and 1 ≤ l �= i ≤ n,

P

{
X+

l κl >
x

n
,X+

i κi >
L(x)

n− 1

}
< CεH(x).

Thus, we know that (3.3) holds for all x > x∗.
(b)If we notice

P {Xlκl > x,Xiκi > x} ≤ P

{
Xlκl >

x

n
,Xiκi >

L(x)

n− 1

}

= P

{
X+

l κl >
x

n
,X+

i κi >
L(x)

n− 1

}
,

we can get (3.4) easily.

Lemma 3.7. Under the conditions of Theorem 2.1, for any ε > 0 and any fixed n ∈ N,
there exists x∗ such that

n∑
k=1

n∑
i=1,i 	=k

P

{
|Xi|κi ≥ L(x)

n− 1
, Xkκk > x

}
≤ CεH(x) (3.7)

holds for all x > x∗, where L(x) is as in Assumption A.

Proof. If i > k, by (3.5), Lemma 3.1, Chebyshev’s inequality and (3.2), we can derive

P

{
|Xi|κi ≥ L(x)

n− 1
, Xkκk > x

}

≤ P

{
X+

k κk > x, |Xi|κi ≥ L(x)

n− 1
, θk ≤ xν

}
+ P {θk > xν}

≤ P

{
X+

k θk

(
k−1∏
j=1

θj

)
> x, |Xi|

( ∏
1≤j≤i,j 	=k

θj

)
≥ L(x)

(n− 1)xν

}
+

Eθp

xpν

≤ CH(x)E

[(
k−1∏
j=1

θpj

)
1{|Xi|(

∏
1≤j≤i,j �=k θj)≥ L(x)

(n−1)xν } + 1{|Xi|(
∏

1≤j≤i,j �=k θj)≥ L(x)
(n−1)xν }

]

+ CεH(x).

By (3.6), we can take x∗
1 such that for all x > x∗

1,

E

[(
k−1∏
j=1

θpj

)
1{|Xi|(

∏i
j=1,j �=k θj)≥ L(x)

(n−1)xν }
]
< ε

and

P

{
|Xi|(

i∏
j=1,j 	=k

θj) ≥ L(x)

(n− 1)xν

}
< ε.
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If i < k, we can derive

P

{
|Xi|κi ≥ L(x)

n− 1
, Xkκk > x

}

= P

{
X+

k θk

(
k−1∏
j=1

θj

)
> x, |Xi|κi ≥ L(x)

n− 1

}

≤ CH(x)E

[(
k−1∏
j=1

θpj

)
1{|Xi|κi≥L(x)

n−1} + 1{|Xi|κi≥L(x)
n−1}

]
.

Similarly, we can take x∗
2 such that for all x > x∗

2,

E

[(
k−1∏
j=1

θpj

)
1{|Xi|κi≥L(x)

n−1}
]
< ε

and

P

{
|Xi|κi ≥ L(x)

n− 1

}
< ε.

Hence, taking x∗ = max{x∗
1, x

∗
2}, it holds that for all x > x∗ and 1 ≤ k �= i ≤ n,

P

{
|Xi|κi ≥ L(x)

n− 1
, Xkκk > x

}
< CεH(x).

Thus, we know that (3.7) holds for all x > x∗.

The following lemmas will be used in the proof of Theorem 2.2.

Lemma 3.8. Under the conditions of Theorem 2.2, for any ε > 0,
(a) there exist x∗ and k∗ such that the relation

P

{ ∞∑
i=k+1

X+
i κi > L(x)

}
≤ CεH(x) (3.8)

holds for any fixed k ≥ k∗ and all x > x∗, where L(x) is as in Assumption B;
(b) there exist x∗ and k∗ such that the relation

∞∑
i=k+1

P {Xiκi > x} ≤ CεH(x) (3.9)

holds for any fixed k ≥ k∗ and all x > x∗.

Proof. (a)By Lyapounov’s inequality and Eθp < 1, we can get that for any p1, p2 satis-
fying 0 < p1 < J

−
H ≤ J

+
H < p2 < p,

Eθpl ≤ (Eθp)
pl
p < 1, l = 1, 2.

Then, we can derive

∞∑
i=1

i(1+η)pl (Eθpl)i−1 < ∞, l = 1, 2. (3.10)
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We can take k1 such that
∑∞

i=k+1 1/i
1+η < 1 holds for any η > 0 and k ≥ k1. Thus,

we can get that for any η > 0 and fixed k ≥ k1,

P

{ ∞∑
i=k+1

X+
i κi > L(x)

}
≤ P

{ ∞∑
i=k+1

X+
i κi >

∞∑
i=k+1

1

i1+η
L(x)

}

≤
∞∑

i=k+1

P

{
X+

i κi >
L(x)

i1+η

}
. (3.11)

By Lemma 3.2, there exist x1 such that for all x > x1,

P

{
X+

i κi >
L(x)

i1+η

}
≤ CH+(L(x))

{
i(1+η)p1E

(
i−1∏
j=1

θp1j

)
+ i(1+η)p2E

(
i−1∏
j=1

θp2j

)}

= CH(L(x))
{
i(1+η)p1 (Eθp1)i−1 + i(1+η)p2 (Eθp2)i−1

}
, (3.12)

where C has no relation to i.
By (3.10)-(3.12) and (2.3), there exist x∗ ≥ x1 and k∗ ≥ k1 such that for any fixed

k ≥ k∗ and all x > x∗,

P

{ ∞∑
i=k+1

X+
i κi > L(x)

}
≤ CH(L(x))

∞∑
i=k+1

{
i(1+η)p1 (Eθp1)i−1 + i(1+η)p2 (Eθp2)i−1

}
< CεH(x).

(b)By the method used in (3.12), there exists x∗ such that for all x > x∗ and any p1, p2
satisfying 0 < p1 < J

−
H ≤ J

+
H < p2 < p,

P {Xiκi > x} = P
{
X+

i κi > x
}

≤ CH+(x)

{
E

(
i−1∏
j=1

θp1j

)
+ E

(
i−1∏
j=1

θp2j

)}

= CH(x)
{
(Eθp1)i−1 + (Eθp2)i−1

}
, (3.13)

where C has no relation to i. Then, by (3.10), there exists k∗ such that for any fixed
k ≥ k∗ and all x > x∗,

∞∑
i=k+1

P {Xiκi > x} ≤ CH(x)
∞∑

i=k+1

{
(Eθp1)i−1 + (Eθp2)i−1

}

≤ CH(x)
∞∑

i=k+1

{
i(1+η)p1 (Eθp1)i−1 + i(1+η)p2 (Eθp2)i−1

}
≤ CεH(x).

3.2. Proof of Theorem 2.1

After rewriting the expression (1.2), we have that for n ≥ 1,

Ψ(x, n) = P

{
max

1≤m≤n

m∑
i=1

Xiκi > x

}
. (3.14)
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By (3.6), Lemma 3.3 and (3.5), the distributions of Xiκi = Xiθi(
∏i−1

j=1 θj) and X+
i κi =

X+
i θi(

∏i−1
j=1 θj) belongs to D ∩ L and

P {Xiκi > x} = P
{
X+

i κi > x
} 	 H(x) = H+(x). (3.15)

Then, by (2.2), it holds that for all i = 1, 2, ..., n,

P {Xiκi > x± L(x)} = P
{
X+

i κi > x± L(x)
} ∼ P

{
X+

i κi > x
}
= P {Xiκi > x} .

(3.16)

Firstly, we deal with the upper bound. For any ε > 0, we get

Ψ(x, n) ≤ P

{
n∑

i=1

X+
i κi > x

}

≤ P

{
n⋃

i=1

{
X+

i κi > x− L(x)
}}

+ P

{
n∑

i=1

X+
i κi > x,

n⋂
i=1

{
X+

i κi ≤ x− L(x)
}}

:= P1 + P2. (3.17)

Thus, by (3.16), there exists xup
1 such that for all x > xup

1 and 1 ≤ i ≤ n,

P
{
X+

i κi > x− L(x)
} ≤ (1 + ε)P {Xiκi > x} .

Then, we can get

P1 ≤
n∑

i=1

P
{
X+

i κi > x− L(x)
} ≤ (1 + ε)

n∑
i=1

P {Xiκi > x} (3.18)

holds for all x > xup
1 . By Lemma 3.6(a), there exists xup

2 > xup
1 such that for all x > xup

2 ,

P2 = P

{
n∑

i=1

X+
i κi > x,

n⋂
i=1

{
X+

i κi ≤ x− L(x)
}
,

n⋃
l=1

{
X+

l κl >
x

n

}}

≤
n∑

l=1

P

{
X+

l κl >
x

n
,

∑
1≤i≤n,i 	=l

X+
i κi > L(x)

}

≤
n∑

l=1

∑
1≤i≤n,i 	=l

P

{
X+

l κl >
x

n
,X+

i κi >
L(x)

n− 1

}

≤ CεH(x). (3.19)

Combining (3.17), (3.18), (3.19) and using (3.15), we can get that for all x > xup
2 ,

Ψ(x, n) ≤ (1 + Cε)
n∑

i=1

P {Xiκi > x} .
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Secondly, we deal with the lower bound. For any ε > 0, we have

Ψ(x, n) ≥ P

{
n∑

i=1

Xiκi > x

}

≥ P

{
n∑

i=1

Xiκi > x,

n⋃
k=1

{Xkκk > x+ L(x)}
}

≥
n∑

k=1

P

{
n∑

i=1

Xiκi > x,Xkκk > x+ L(x)

}
−

n∑
k=1

∑
1≤l≤n,l 	=k

P {Xkκk > x,Xlκl > x}

=
n∑

k=1

P {Xkκk > x+ L(x)} −
n∑

k=1

P

{
n∑

i=1

Xiκi ≤ x,Xkκk > x+ L(x)

}

−
n∑

k=1

∑
1≤l≤n,l 	=k

P {Xkκk > x,Xlκl > x}

:= L1 − L2 − L3. (3.20)

By (3.16), there exists xlow
1 such that for all x > xlow

1 and 1 ≤ k ≤ n,

P {Xkκk > x+ L(x)} ≥ (1− ε)P {Xkκk > x} .

Then, we can get

L1 ≥ (1− ε)
n∑

k=1

P {Xkκk > x} (3.21)

holds for all x > xlow
1 . By Lemma 3.7, there exists xlow

2 > xlow
1 such that for all x > xlow

2 ,

L2 ≤
n∑

k=1

P

{
n∑

i=1,i 	=k

Xiκi ≤ −L(x), Xkκk > x+ L(x)

}

≤
n∑

k=1

n∑
i=1,i 	=k

P

{
Xiκi ≤ −L(x)

n− 1
, Xkκk > x

}

≤
n∑

k=1

n∑
i=1,i 	=k

P

{
|Xi|κi ≥ L(x)

n− 1
, Xkκk > x

}

≤ CεH(x). (3.22)

By Lemma 3.6(b), there exists xlow
3 > xlow

2 such that for all x > xlow
3 ,

L3 ≤ CεH(x). (3.23)

Combining (3.20)-(3.23) and using (3.15), we can obtain that for all x > xlow
3 ,

Ψ(x, n) ≥ (1− Cε)
n∑

k=1

P {Xkκk > x} .
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3.3. Proof of Corollary 2.1

The proof is parallel to that of Theorem 2.1 with some modifications. By (3.6),
Lemma 3.4 and (3.5), the distributions of Xiκi and X+

i κi belongs to C and

P {Xiκi > x} = P
{
X+

i κi > x
} 	 H(x) = H+(x). (3.24)

For any μ, ν satisfying J
+
H/p < ν < μ < 1,

Ψ(x, n) ≤ P

{
n⋃

i=1

{
X+

i κi > x− xμ
}}

+ P

{
n∑

i=1

X+
i κi > x,

n⋂
i=1

{
X+

i κi ≤ x− xμ
}}

.

Because the distribution of X+
i κi belongs to C, it holds that for 1 ≤ i ≤ n,

P
{
X+

i κi > x− xμ
}
� P {Xiκi > x} ,

where we notice x− xμ = x(1− xμ−1) and xμ−1 → 0. Clearly Lemma 3.6 still holds if we
replace L(x) with xμ. Hence, following the proof of Theorem 2.1, we can derive

Ψ(x, n) �
n∑

i=1

P {Xiκi > x} .

For any μ, ν satisfying J
+
H/p < ν < μ < 1, we have

Ψ(x, n) ≥
n∑

k=1

P {Xkκk > x+ xμ} −
n∑

k=1

P

{
n∑

i=1

Xiκi ≤ x,Xkκk > x+ xμ

}

−
n∑

k=1

∑
1≤l≤n,l 	=k

P {Xkκk > x,Xlκl > x} .

Because the distribution of X+
i κi belongs to C, it holds that for 1 ≤ k ≤ n,

P {Xkκk > x+ xμ} � P {Xkκk > x} ,

where we notice x+ xμ = x(1 + xμ−1) and xμ−1 → 0. Clearly Lemma 3.7 still holds if we
replace L(x) with xμ. Hence, following the proof of Theorem 2.1, we can derive

Ψ(x, n) �
n∑

i=1

P {Xiκi > x} .

3.4. Proof of Corollary 2.2

By R−α ⊂ C and Corollary 2.1, we can get (2.4). By H ∈ R−α, (3.6) and Lemma 3.5,
we can get that the distribution of Xiκi belongs to R−α and

P {Xiκi > x} ∼ (Eθα)i−1 H(x) (3.25)

holds for 1 ≤ i ≤ n. Substituting (3.25) into (2.4), we can get (2.5).
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3.5. Proof of Theorem 2.2

After rewriting the expression (1.3), we have

Ψ(x) = P

{
max

1≤m<∞

m∑
i=1

Xiκi > x

}
. (3.26)

Firstly, we deal with the upper bound. For any ε > 0 and fixed k ≥ 1,

Ψ(x) ≤ P

{ ∞∑
i=1

X+
i κi > x

}

≤ P

{
k∑

i=1

X+
i κi > x− L(x)

}
+ P

{ ∞∑
i=k+1

X+
i κi > L(x)

}

:= P ′
1 + P ′

2. (3.27)

For P ′
1, by the proof of the upper bound of Theorem 2.1, we can get xup

1′ > 0 such that
for any fixed k ≥ 1,

P ′
1 ≤ (1 + Cε)

k∑
i=1

P {Xiκi > x− L(x)}

holds for all x > xup
1′ . Because the distribution of Xiκi belongs to L (see (3.15)), there

exists xup
2′ > xup

1′ such that for all x > xup
2′ ,

P {Xiκi > x− L(x)} ≤ (1 + ε)P {Xiκi > x}
holds for 1 ≤ i ≤ k. Thus, we can obtain that for all x > xup

2′ ,

P ′
1 ≤ (1 + Cε)(1 + ε)

k∑
i=1

P {Xiκi > x}

≤ (1 + Cε)
k∑

i=1

P {Xiκi > x}

≤ (1 + Cε)
∞∑
i=1

P {Xiκi > x} . (3.28)

For P ′
2, by Lemma 3.8(a), there exist xup

3′ > xup
2′ and kup ≥ 1 such that for k = kup and

all x > xup
3′ ,

P ′
2 ≤ CεH(x). (3.29)

Combining (3.27), (3.28) and (3.29), we can obtain that for all x > xup
3′ ,

Ψ(x) ≤ (1 + Cε)
∞∑
i=1

P {Xiκi > x}+ CεH(x)

≤ (1 + Cε)
∞∑
i=1

P {Xiκi > x} ,

where we used (3.15) in the last step.
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Secondly, we deal with the lower bound. By the proof of the lower bound of Theorem
2.1, we can get that for any ε > 0 and fixed k ≥ 1,

Ψ(x) ≥ P

{
k∑

i=1

Xiκi > x

}

≥ (1− Cε)
k∑

i=1

P {Xiκi > x}

= (1− Cε)

( ∞∑
i=1

−
∞∑

i=k+1

)
P {Xiκi > x} . (3.30)

In the last equality of (3.30), by Lemma 3.8(b), there exist klow > 1 and xlow
3′ > xlow

2′ such
that for k = klow and all x > xlow

3′ ,

∞∑
i=k+1

P {Xiκi > x} ≤ CεH(x).

Then, by (3.15), we can get that for all x > xlow
3′ ,

Ψ(x) ≥ (1− Cε)

( ∞∑
i=1

P {Xiκi > x} − CεH(x)

)

≥ (1− Cε)
∞∑
i=1

P {Xiκi > x} .

3.6. Proof of Corollary 2.3

The proof is parallel to that of Theorem 2.2 with some modifications. The distribu-
tions of Xiκi and X+

i κi belongs to C and we have (3.24).
For any fixed 0 < δ < 1/2 andk ≥ 1,

Ψ(x) ≤ P

{
k∑

i=1

X+
i κi > (1− δ)x

}
+ P

{ ∞∑
i=k+1

X+
i κi > δx

}
.

Because the distribution of Xiκi belongs to C, there exists δ∗ such that for any fixed
0 < δ ≤ δ∗ and all 1 ≤ i ≤ k,

P {Xiκi > (1− δ)x} � P {Xiκi > x} .
Lemma 3.8(a) still holds if we replace L(x) with δx and notice (3.1). That is to say, in
the proof of Lemma 3.8(a), there exists k∗ such that for any fixed k ≥ k∗,

P

{ ∞∑
i=k+1

X+
i κi > δx

}
≤ CH(δx)

∞∑
i=k+1

{
i(1+η)p1 (Eθp1)i−1 + i(1+η)p2 (Eθp2)i−1

}
< CεH(x).

Hence, following the proof of Theorem 2.2, we can obtain

Ψ(x) �
∞∑
i=1

P {Xiκi > x} .
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Lemma 3.8(b) still holds without L(x). Hence, following the proof of Theorem 2.2
and using (3.24) instead of (3.15), we can get

Ψ(x) �
∞∑
i=1

P {Xiκi > x} .

3.7. Proof of Corollary 2.4

By R−α ⊂ C and Corollary 2.3, we can get (2.6). Substituting (3.25) into (2.6), we
can get (2.7).
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