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The central configurations given by an equilateral triangle and a regular tetrahedron 
with equal masses at the vertices and a body at the barycenter have been widely 
studied in [9] and [14] due to the phenomena of bifurcation occurring when the 
central mass has a determined value m∗. We propose a variation of this problem 
setting the central mass as the critical value m∗ and letting a mass at a vertex to 
be the parameter of bifurcation. In both cases, 2D and 3D, we verify the existence 
of bifurcation, that is, for a same set of masses we determine two new central 
configurations. The computation of the bifurcations, as well as their pictures have 
been performed considering homogeneous force laws with exponent a < −1.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the classical Newtonian n-body problem the unique explicit solutions which are known until now are 
the homographic solutions, characterized by the fact that their configurations are invariant up to rotations 
and scaling, and in which each body describes a Keplerian orbit. These particular solutions are generated by 
initial configurations called central configurations (see [15] for details) and are, certainly the most celebrated 
of them. More precisely, let be E a finite dimensional Euclidean vector space; q1, · · · , qn ∈ E the position 
vectors; m1, · · · , mn the masses given by n positives numbers; a a negative real number; M =

∑
mi the 
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total mass of the system and qG = 1
M

∑
miqi the center of mass of the system, we can then give the 

following definition:

Definition 1. A configuration q = (q1, · · · , qn) ∈ E
n is a central configuration (cc by short) for the masses 

m1, · · · , mn if there exists a constant λ ∈ R such that

λ(qi − qG) =
∑
j �=i

mj‖qi − qj‖2a(qi − qj), ∀ i = 1, · · · , n. (1)

When a = −3/2 we have the Newtonian case and when a = −1 the vortex case.

Technically, central configurations are zeros of a system of n equations with n vectorial variables and n
positive parameters. In some special cases, e.g., when all masses are equal, some quite simple solutions having 
well-defined positions can be obtained in a trivial way. In effect, we can verify easily that any regular n-gon 
is a central configuration. If we add any additional mass at the origin, we still get a central configuration. 
A regular simplex of n points on an affine subspace n − 1 dimensional is a central configuration no matter 
the values of the masses at the vertices. Other symmetric configurations like rhombus, kites and pyramids 
exist for systems with some equal masses [3,4,6,7,11,13,15].

As zeros of systems of equations with many parameters, it is expected that bifurcation phenomena arise. 
This happens if the Jacobian of the system becomes degenerate for some values of the parameters at a given 
trivial solution. This type of question has been approached in many works. In [9], the authors proved the 
existence of bifurcations at the neighborhood of the following planar central configurations: the equilateral 
triangle with equal masses at the vertices and a fourth mass m∗ at the barycenter and the square with 
equal masses at the vertices and a fifth mass m∗∗ at the center. In [8] Meyer studied the continuation of 
central configurations from the restricted (3 + 1)-body problem with two equal masses 1 − μ and a third 
mass 2μ forming an equilateral triangle to the full 4-body problem. He proved that for small values of the 
fourth mass, there are central configurations degenerated which undergo bifurcation for specific values of 
the parameter μ. The same bifurcation analysis was applied in [14] to show the existence of four branches 
of central configurations which arise from the regular tetrahedron with a critical mass at the barycenter. 
In [12], by using the S4-equivariance of equations defining Dziobek’s configurations, three new branches of 
bifurcations were found improving the previous result.

In this paper we investigate bifurcations arising from two concave central configurations in the 4 and 
5-body problem. In the former case, we consider the equilateral triangle with masses m1 = m2 = m4 = 1
at the vertices and a mass m3 = m at the barycenter. For any non-negative value of m, this is a central 
configuration. In [10], Palmore showed that m∗ = 81+64

√
3

249 is the unique value of m for which, this central 
configuration is degenerate. Unlike the analysis performed by Schmidt and Meyer [9], which have considered 
the mass at the barycenter as the bifurcation parameter, we set m4 = 1 +ε and m = m∗, so that at ε = 0 we 
verify that the system of equations undergo a bifurcation producing symmetric and non symmetric central 
configurations for ε near zero. The S2-equivariance of the equations and the Implicit Function Theorem (IFT 
for shorting) are applied in a singular case as in [5], and they will be the main tools in the proof of existence. 
For m �= m∗ the equilateral triangle is non-degenerate and so, it can be continued in a neighborhood of 
ε = 0 as a family of isosceles triangles.

In the five body problem, we consider the regular tetrahedron with masses m1 = m2 = m3 = m5 = 1
at the vertices and a mass m4 = m at the barycenter. By setting m4 = m∗∗ = 10368+1701

√
6

54952 as in [14], we 
proceed to the bifurcation analysis in a similar way, as in the former case, but taking into account that the 
equations present an S3-equivariance. The fact that in this case one has a biggest system entails some extra 
difficulties, however still in this case, the equations present S3 instead S2-equivariance, so the computations 
can be reduced significantly and allows us to show the existence of several branches of central configurations 
emanating from the tetrahedron.
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A remarkable note about this work is that in both cases, the existence of bifurcations was carried out 
considering the exponent a < −1. That is, our results are valid for any potential of the homogeneous family.

After the introduction where we give the preliminaries of the problems to be studied here, the paper is 
organized as follows: In Section 2 we define Dziobek’s configurations and characterize the central configu-
rations of n bodies in dimension n − 2 through them. In Section 3 we prove that the cc with equilateral 
triangle shape and a mass other than m∗ at the barycenter can be continued to a symmetric family of cc
and we study the bifurcation phenomena when one of the masses located at one vertex of the equilateral 
triangle crosses the value 1 and m∗ is located at the barycenter. Section 4 is dedicated to the study of 
concave cc formed by a regular tetrahedron with a mass at the barycenter. First we prove that the above cc
can be continued to a symmetrical family of cc and finally we analyze the bifurcation phenomena following 
the same strategy as in the triangular case.

2. Equations for Dziobek’s configurations

Given n points q = (q1, · · · , qn) in an Euclidean space E, we define the dimension of the configuration q
as the number

dim[q1 − qi, · · · , qn − qi],

which is independent of the chosen point qi and where the brackets [ ] mean the vectorial space generated 
by the list of vectors in there.

If the dimension of q is exactly n −2 then there exists a non-zero n-tuple, X = (x1, · · · , xn) ∈ R
n unique 

up to a factor such that

n∑
i=1

xi = 0 and
n∑

i=1
xiqi = 0. (2)

Let q be a configuration associated to n positive masses, then we can define a Dziobek configuration as 
following

Definition 2. A Dziobek configuration is a configuration of n particles such that there exists a non-zero 
X ∈ R

n satisfying (2) and such that for some λ ∈ R+

λ

M
− saij = xixj

mimj
, (3)

where sij = ‖qi − qj‖2.

In [1], it is shown that Dziobek’s configurations are central configurations of dimension at most n − 2
and any central configuration of dimension exactly n − 2 is a Dziobek configuration.

If we define the quantities ti =
∑
j �=i

sijxj then equations (2) are equivalent to

n∑
i=1

xi = 0 and ti = tj for all i, j,

so central configurations of dimension n − 2 associated to n positive masses mj are given by the following 
system
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n∑
i=1

xi = 0,

ti = tj , (4)
λ

M
− saij = xixj

mimj
.

Remark 1. The constant λ required in Definition 2 is the Lagrange multiplier associated to the central 
configuration. It is not difficult to see that two homothetic Dziobek configurations satisfy the same equations 
(4) for different values of λ. In the calculations of Dziobek configurations, we set an appropriate value for λ.

Remark 2. If two masses are equal, e.g. m1 = m2, then for a Dziobek configuration, the equality x1 = x2 is 
equivalent to a symmetry with respect to the segment q1q2. This is because the function ϕ(s) = λ

M − sa is 
increasing for a < −1 and according to (3), for all j �= 1, 2 we have

x1 = x2 ⇔ x1xj

m1mj
= x2xj

m2mj
⇔ ϕ(s1j) = ϕ(s2j),

from where follows the identities s1j = s2j .

3. The equilateral triangle with a mass at the barycenter

Consider the system (4) with n = 4 and masses m1 = m2 = 1, m3 = m and m4 = 1 +ε. In order that the 
equilateral triangle with the squares of the mutual distances s0

12 = s0
14 = s0

24 = 3 and s0
13 = s0

23 = s0
34 = 1 be 

a solution for ε = 0 we must have λ = m + 31+a. This central configuration of the 4-body problem will be 
called simply concave equilateral triangle leaving implied the occurrence of a fourth mass at the barycenter. 
The values for the variables x’s corresponding to the concave equilateral triangle are

x0
1 = x0

2 = x0
4 = k and x0

3 = −3k, (5)

where k =
√

m

3 + m
(1 − 3a).

By using the third equation in (4) we can express the six squares of the mutual distances in terms of 
oriented areas xi. Besides, from the first equation in (4) we insert x3 = −x1 −x2 −x4 into equations ti = tj
to get a system of three equations, three variables X = (x1, x2, x4) and one parameter ε ∈ R given by the 
functions:

F1(X, ε) = x2

(
λ

M
− x1x2

)1/a

+ x3

(
λ

M
− x1x3

m

)1/a

+ x4

(
λ

M
− x1x4

1 + ε

)1/a

− t4,

F2(X, ε) = x1

(
λ

M
− x1x2

)1/a

+ x3

(
λ

M
− x2x3

m

)1/a

+ x4

(
λ

M
− x2x4

1 + ε

)1/a

− t4,

F3(X, ε) =
2∑

j=1
xj

(
λ

M
− xjx3

m

)1/a

+ x4

(
λ

M
− x3x4

m(1 + ε)

)1/a

− t4,

where m > 0 and a < −1 are fixed and

t4 = x1

(
λ

M
− x1x4

1 + ε

)1/a

+ x2

(
λ

M
− x2x4

1 + ε

)1/a

+ x3

(
λ

M
− x3x4

m(1 + ε)

)1/a

.

Calling F = (F1, F2, F3) : R3 × R → R
3, we have F (X0, 0) = (0, 0, 0) for any m > 0. Observe also that 

F is S2-equivariant, that is
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F (σ ·X, ε) = σ · F (X, ε) (6)

for σ : (x1, x2, x4) �→ (x2, x1, x4) and its first derivative must satisfy

DXF (σ ·X, ε) · σ = σ ·DXF (X, ε).

Take into account that σ ·X0 = X0, we have that the derivative DXF (X0, 0) is a linear transformation 
that commutes with σ. Therefore, it is a matrix of the form

DXF (X0, 0) =

⎛
⎜⎝

b c d

c b d

e e f

⎞
⎟⎠ . (7)

The calculations of the first partial derivative of F with respect to X evaluated at (X0, m, 0) give us

b = ∂F1

∂x1

∣∣∣∣
(X0,0)

= −3 − k2

a

(
9
m

+ 31−a

)
= −d,

c = ∂F1

∂x2

∣∣∣∣
(X0,0)

= 0,

e = ∂F3

∂x1

∣∣∣∣
(X0,0)

= −1 + k2

a

(
9
m

+ 31−a

)
= d− 4,

f = ∂F3

∂x4

∣∣∣∣
(X0,0)

= 2 + 2k
2

a

(
9
m

+ 31−a

)
= 2d− 4.

With the above values, the determinant below is easily obtained
∣∣DXF (X0, 0)

∣∣ = 4d2(d− 3). (8)

The factor d − 3 is negative for any a < −1 and m > 0, whereas the factor d is zero if, and only if, the 
mass m is equal to

m∗ = 3 3a − a− 1
3−a + a− 1 . (9)

Proposition 1. For a < −1, the value of m∗ is in the interval (0, 1).

Proof. First we observe that m∗ = 3 3a−a−1
3−a+a−1 > 33a−a−1

3−a > 0 for all a < −1.
Now, on one hand the derivative of m∗ with respect to a is

dm∗

da
= 3(1 − 3−a) (log (3) a3a − log (3) 3a − 3a + log (3) a + log (3) + 1)

(3−a + a− 1)2

and on the other hand, the derivative of the numerator with respect to a is

log2(3)
(
3a(a− 1) + (a + 1)3−a

)
,

which is negative for a < −1. Thus the numerator of dm
∗

da is a decreasing function on (−∞, −1), this implies 
that it reaches its minimum at a = −1. Since dm

∗

da |a=−1 = 4(log(3) − 1) we get that dm
∗

da > 0 on (−∞, −1).
Finally, it is easy to verify that
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lim
a→−∞

m∗ = 0 and m∗(−1) = 1,

which proves the stated. �
Remark 3. In the Newtonian case with a = −3/2, the value of m∗ agrees with that found by Meyer–Schmidt 
in [9] and by Palmore in [10], that is m∗ = 81+64

√
3

249 .

3.1. Continuation

By a straightforward application of the Implicit Function Theorem, we have the

Theorem 1. For every a < −1 and 0 < m �= m∗, there exists ε0 ∈ R such that the concave equilateral 
triangle (X0, 0) can be continued to a symmetric family of concave central configurations X(ε) defined for 
|ε| < ε0 and having isosceles shape given by

x1(ε) = k + αε + O(ε2),

x2(ε) = k + αε + O(ε2),

x4(ε) = k + βε + O(ε2),

(10)

where α and β are well-defined functions of m and a.

Proof. If 0 < m �= m∗, then |DXF (X0, 0)| �= 0 and the Implicit Function Theorem can be applied to 
the equation F (X, ε) = (0, 0, 0) near the trivial solution (X0, 0), ensuring the existence of a unique curve 
X(ε) ∈ R

3 defined on an interval (−ε0, ε0) and such that

F (X(ε), ε) = (0, 0, 0),

X(0) = X0.

The S2-equivariance of F implies that (σ ·X(ε), ε) is also solution for F = 0. By the local uniqueness of the 
implicit function we must have

σ ·X(ε) = X(ε) ⇒ x1(ε) = x2(ε).

By Remark 2, the central configurations given by F = 0, which are continuation of X0 in a neighborhood 
of ε = 0, are symmetric with respect to the segment q1q2, that is

s13(ε) = s23(ε) and s14(ε) = s24(ε),

for any ε ∈ (−ε0, ε0).

By multiplying the derivative 
∂F

∂ε

∣∣∣∣
(X0,0)

by the matrix −DXF (X0, 0)−1 we obtain the expression of X(ε)

at the first order in ε

x1(ε) = k + αε + O(ε2),

x2(ε) = k + αε + O(ε2),

x4(ε) = k + βε + O(ε2).

The expressions for α and β are:
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α = k3p(m, a)
6 · 3a(1 − 3a)(m + 31+a)(3−a + a− 1)(m−m∗) ,

β = k3q(m, a)
6 · 3a(1 − 3a)(m + 31+a)(3−a + a− 1)(m−m∗) ,

where

p(m, a) = 2a3am2 +
[
31+a(3a + (a + 1)3a) − 3

]
m

+ 3a+2 [32a + (a + 1)3a + 3a + a− 3
]
− 2(1 − 3a)33+2a

m
,

q(m, a) = 2 · 3am2(31−a + a− 3) + m
[
3a+1(3a(a− 11) + 3(a + 2)) + 15

]

+ 3a+2 [9 + a + 3a(a− 4) − 5 · 32a] + 4(1 − 3a)33+2a

m
.

Thus we have proved the theorem. �
Note that p(m, a) is a sum of negative terms for a < −1 so that the sign of α is defined by the difference 

m −m∗. On the other hand, it is not possible to give a complete description of the continuation in terms 
of the parameter ε because the signal of β is undefined due to the third term in the expression of q(m, a).

However, for the particular value a = −3/2 which corresponds to the Newtonian case, we can make a 
complete analysis of the central configurations given by (10). In this case we have

x1(ε) = k + αε + O(ε2),

x2(ε) = k + αε + O(ε2),

x3(ε) = −3k + γε + O(ε2),

x4(ε) = k + βε + O(ε2),

where

α = −
k3 [18m3 + (55

√
3 + 81)m2 + (241 − 3

√
3)m + 12(3

√
3 − 1)

]
2(59 − 21

√
3)m(

√
3m + 1)(m−m∗)

,

β =
k3 [54(2

√
3 − 1)m3 + (245

√
3 + 27)m2 + (395 − 33

√
3)m + 24(3

√
3 − 1)

]
2(59 − 21

√
3)m(

√
3m + 1)(m−m∗)

,

γ = −(2α + β) = −
3k3 [(36

√
3 − 30)m + 49

√
3 − 27

]
2(59 − 21

√
3)(

√
3m + 1)

.

Clearly, we see that the sign of γ is negative for all m > 0 while

m < m∗ ⇒ α > 0 and β < 0,

m > m∗ ⇒ α < 0 and β > 0.

Considering that

sij(ε) =
(

λ

M
− xixj

mimj

)−2/3

,

and remembering that M = m + 3 + ε, m4 = 1 + ε and λ = m + 3−1/2, we can obtain the derivatives of sij
at ε = 0 in terms of the mass m. After some tedious calculations we obtain
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Table 1
Behavior of sij(ε) in a small neighborhood 
of ε = 0.

0 < m < m∗ m > m∗

s12(ε) increasing decreasing
s13(ε) decreasing increasing
s14(ε) indefinite increasing
s34(ε) increasing decreasing

Fig. 1. Continuation for m < m∗ and a = −3/2.

Fig. 2. Continuation for m > m∗ and a = −3/2.

sij(ε) = s0
ij + vij(m)ε + O(ε2),

where

v12(m) = −2
9

(54
√

3 − 18)m2 + (36 −
√

3)m + 2 + 3
√

3
λ(6

√
3 − 5)(m−m∗)

,

v13(m) = 2
27

(45 − 8
√

3)m + 6
√

3 − 5
λ(6

√
3 − 5)(m−m∗)

,

v14(m) = 2
9

(27
√

3 − 9)m2 + (45 − 8
√

3)m− 2 − 3
√

3
λ(6

√
3 − 5)(m−m∗)

,

v34(m) = − 2
27

(36 −
√

3)m + 21
√

3 − 4
λ(6

√
3 − 5)(m−m∗)

.

All coefficients vij(m) have well-defined sign for each m > m∗, whereas for m < m∗ only v14(m) has a 
change of sign on the interval (0, m∗). In fact, to see this just make m = 0 and m = m∗ in the numerator 
of the expression. Nevertheless, we can draw the behavior of central configurations given by the equation 
F (X, ε) = 0 in a small neighborhood of (X0, 0) for all m �= m∗ (see Table 1, Figs. 1 and 2).

3.2. Bifurcation

Now, we consider the problem
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Fi(x1, x2, x4, ε) = 0, i = 1, 2, 3,

where we set m3 = m∗. At the point (X0, 0), the matrix (7) is given by

DXF (X0, 0) =

⎛
⎜⎝

0 0 0
0 0 0
−4 −4 −4

⎞
⎟⎠ .

We make some transformations, following the Liapunov–Schmidt reduction process. If L = DXF (X0, 0)
then we have that

ker{L} = {(x1, x2, x4) ∈ R
3 / x1 + x2 + x4 = 0}, Im{L} = {(0, 0, x) : x ∈ R}.

By taking, u1 = (1, 0, −1), u2 = (0, 1, −1) and u3 = (0, 0, −1) we proceed the following change of 
variables

(x1, x2, x4) = y1 · u1 + y2 · u2 + y3 · u3, (11)

so that

x1 = y1, x2 = y2, x4 = −y1 − y2 − y3 and x3 = y3.

Let G(Y, ε) = F (X(Y ), ε) be the new functions defining the Dziobek’s configurations on the plane after 
the change of variables. We get that

G1(y1, y2, y3, ε) = y2

(
λ

M
− y1y2

)1/a

+ y3

(
λ

M
− y1y3

m∗

)1/a

− (y1 + y2 + y3)
(

λ

M
+ y1(y1 + y2 + y3)

1 + ε

)1/a

− y1

(
λ

M
+ y1(y1 + y2 + y3)

1 + ε

)1/a

− y2

(
λ

M
+ y2(y1 + y2 + y3)

1 + ε

)1/a

− y3

(
λ

M
+ y3(y1 + y2 + y3)

m∗(1 + ε)

)1/a

,

G2(y1, y2, y3, ε) = y1

(
λ

M
− y1y2

)1/a

+ y3

(
λ

M
− y2y3

m∗

)1/a

− (y1 + y2 + y3)
(

λ

M
+ y2(y1 + y2 + y3)

1 + ε

)1/a

− y1

(
λ

M
+ y1(y1 + y2 + y3)

1 + ε

)1/a

− y2

(
λ

M
+ y2(y1 + y2 + y3)

1 + ε

)1/a

− y3

(
λ

M
+ y3(y1 + y2 + y3)

m∗(1 + ε)

)1/a

,

G3(y1, y2, y3, ε) = y1

(
λ

M
− y1y3

m∗

)1/a

+ y2

(
λ

M
− y2y3

m∗

)1/a

− (y1 + y2 + y3)
(

λ

M
+ y3(y1 + y2 + y3)

m∗(1 + ε)

)1/a

− y1

(
λ

M
+ y1(y1 + y2 + y3)

1 + ε

)1/a

− y2

(
λ

M
+ y2(y1 + y2 + y3)

1 + ε

)1/a

− y3

(
λ

M
+ y3(y1 + y2 + y3)

m∗(1 + ε)

)1/a

,

where λ = m∗ + 31+a, M = 3 + m∗ + ε and k =
√

m∗

∗ (1 − 3a).
3 + m
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By construction we have

DY G(Y 0, 0) = DXF (X0, 0) ·DY X =

⎛
⎜⎝

0 0 0
0 0 0
0 0 4

⎞
⎟⎠ . (12)

Since the change of variables (11) is S2-equivariant, the S2-equivariance of F remains in G so that the 
equation G3(Y, ε) = 0 is S2-invariant.

The strategy to calculate the central configurations near the concave equilateral triangle consists of 
solving the equation G3 = 0 for y3 in terms of (y1, y2, ε), insert it into G1 and G2 and solve the remaining 
bifurcation problem.

In order to study the bifurcation problem

G(y1, y2, y3, ε) = (0, 0, 0), G(k, k,−3k, 0) = (0, 0, 0), (13)

we only need two properties of G to know, the analyticity around the trivial solution (k, k, −3k, 0) and the 
S2-equivariance. In view of this, we firstly make a translation yi → yi + k (i = 1, 2) and y3 → y3 − 3k in 
the expression of G. We have adopted the following notation for its Taylor’s series around the trivial root 
(0, 0, 0, 0),

G1(Y, ε) = b4ε + 2b22y1y2 + b22y
2
2 + b33y

2
3 + b13y1y3 + b23y2y3

+ b14y1ε + b24y2ε + b34y3ε + b44ε
2 + O(3),

G2(Y, ε) = b4ε + 2b22y1y2 + b22y
2
1 + b33y

2
3 + b13y2y3 + b23y1y3 (14)

+ b14y2ε + b24y1ε + b34y3ε + b44ε
2 + O(3),

G3(Y, ε) = 4y3 + c4ε + c11y
2
1 + c11y

2
2 + c33y

2
3 + c12y1y2 + c13y1y3

+ c13y2y3 + c14y1ε + c14y2ε + c34y3ε + c44ε
2 + O(3).

The above expressions are due to the S2-equivariance of G. The derivatives of G1, G2 and G3 at (0, 0, 0, 0)
are given by

G1 = G2 = G3 = 0,

∂G1

∂y1
= ∂G1

∂y2
= ∂G2

∂y1
= ∂G2

∂y2
= 0,

b4 = ∂G1

∂ε
= ∂G2

∂ε
= 3

√
3a(3a − a− 1)

1 − 3a > 0,

b11 = 1
2
∂2G1

∂y2
1

= 0,

b22 = 1
2
∂2G1

∂y2
2

= −6k31−a

2a + k3(1 − a)
2a2

(
31−2a + 27

m∗2

)
> 0,

b12 = ∂2G1

∂y2∂y1
= −6k31−a

a
+ k3(1 − a)

a2

(
31−2a + 27

m∗2

)
= 2b22,

c4 = ∂G3 = 6k
[
λ(3−a − 1)

∗ 2 − k2
(

2
∗ + 3−a

)]
,

∂ε a (3 + m ) m
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c11 = 1
2
∂2G3

∂y2
1

= k

2a

[(
12
m∗ − 2 · 31−a

)
+ k2(1 − a)

a

(
45
m∗2 − 31−2a

)]
,

c12 = ∂2G3

∂y2∂y1
= k

a

[
6
m∗ − 4 · 31−a + 36k2(1 − a)

am∗2

]
.

By solving G3 = 0 for y3 through the IFT, we get a unique analytical function y3 = W (y1, y2, ε) defined 
on an invariant neighborhood V of (0, 0, 0).

Lemma 1. The function W (y1, y2, ε) guaranteed by the IFT is S2-invariant.

Proof. Let σ : (y1, y2) �→ (y2, y1) be the non-trivial permutation of S2. From S2-invariance of G3 we have 
for all y = (y1, y2) ∈ V and ε small

G3(y,W (σ · y, ε), ε) = G3(σ · y,W (σ · y, ε), ε) = 0.

That is, W (σ · y, ε) also solves G3 = 0 locally. By uniqueness of the implicit solution, we must have

W (σ · y, ε) = W (y, ε), ∀ y ∈ V and ε small. �
Now we write the power series for W in a small neighborhood of (0, 0, 0) and insert it into the third 

equation of (14). By comparison of coefficients we get up to order 2

W (y1, y2, ε) = −c4
4 ε− c11

4 y2
1 − c11

4 y2
2 − c12

4 y1y2 +
(c4c13

16 − c14
4

)
y1ε (15)

+
(c4c13

16 − c14
4

)
y2ε +

[
c34c4
16 − c24c33

64 − c44
4

]
ε2 + O(3).

With this, we turn back to the bifurcation problem:

G̃1(y1, y2, ε) = G1(y1, y2,W (y1, y2, ε), ε) = 0, (16)
G̃2(y1, y2, ε) = G2(y1, y2,W (y1, y2, ε), ε) = 0.

The Taylor’s series expansion for these functions are

G̃1(y1, y2, ε) = b4ε + 2b22y1y2 + b22y
2
2 +

(
b14 −

b13c4
4

)
y1ε

+
(
b24 −

b23c4
4

)
y2ε +

(
b44 −

b34c4
4 + b33c

2
4

16

)
ε2 + O(3),

G̃2(y1, y2, ε) = b4ε + 2b22y1y2 + b22y
2
1 +

(
b14 −

b13c4
4

)
y2ε

+
(
b24 −

b23c4
4

)
y1ε +

(
b44 −

b34c4
4 + b33c

2
4

16

)
ε2 + O(3).

Proposition 2. The system G̃1 = G̃2 = 0 does not admit a differentiable solution y(ε) = (y1(ε), y2(ε)) defined 
around ε = 0

Proof. If it did, we would have G̃(y(ε), ε) = 0 whose differentiation at (0, 0, 0) would furnish

DyG̃(y(0), 0) · y′(0) + ∂G̃

∂ε
(y(0), 0) = 0.

However by (12), we have DyG̃(y(0), 0) = 0 and G̃ε �= 0 so the above equation is impossible. �
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Now we solve the equation G̃1(y1, y2, ε) = 0 for ε by writing it as an analytic function of (y1, y2)

ε(y1, y2) = −b22
b4

y2
2 − 2b22

b4
y1y2 + O(3). (17)

The last equation to be solved is

H(y1, y2) = G̃2(y1, y2, ε(y1, y2)) = 0, (18)

but such H(y1, y2) is analytic in a small neighborhood of (0, 0) and satisfy

H(0, 0) = 0 and DyH(0, 0) = (0, 0).

Lemma 2. If H(x, y) is an analytic function defined on a neighborhood of the origin (0, 0), such that 
H(x, x) = 0 then

H(x, y) = (x− y) · h(x, y),

where h(x, y) is analytic in a neighborhood of (0, 0).

Proof. By defining Ĥ(ξ, η) = H(ξ+ η, ξ− η) for (ξ, η) near the origin, we have that Ĥ is analytic in a small 
neighborhood of (0, 0) and Ĥ(ξ, 0) = 0. Therefore, in the Taylor’s series of Ĥ(ξ, η) all coefficients of the 
powers of ξn must be zero so that the series of Ĥ has a factor η. Thus

H(x, y) = (x− y) · h(x, y). �
The function (18) satisfies the conditions of Lemma 2. In fact, from the S2-equivariance of G̃ we have 

the identity

G̃2(y2, y1, ε(y1, y2)) = G̃1(y1, y2, ε(y1, y2)) = 0,

for all (y1, y2) near (0, 0). Thus

H(t, t) = G̃2(t, t, ε(t, t)) = 0,

for all t near 0.
By Lemma 2, we have that

H(y1, y2) = (y1 − y2) · h(y1, y2). (19)

By replacing the series of ε(y1, y2) into G̃2 we obtain

H(y1, y2) = b22(y2
1 − y2

2) + O(3). (20)

Comparing with (19) and remembering that the Taylor series is unique, we have that

h(y1, y2) = b22(y1 + y2) + O(2). (21)

Thus, the equation h(y1, y2) = 0 can be solved for y1 = τ(y2) defined in a neighborhood of y0
2 = 0 such 

that τ(0) = 0. From the factorization (19), we see that the equation H(y1, y2) = 0 has two analytic branches 
at the neighborhood of y0

2 = 0 given by
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y1 = y2 and y1 = −y2 + O(2).

In order to write the bifurcation branches, we undo the translation of variables yi and we introduce a 
small parameter t by setting y2 = k + t. Writing the expressions of y1, y3 and ε in terms of t we have only 
two families of central configurations given by the system G(Y, ε) = 0 near the concave equilateral triangle 
with masses m1 = m2 = 1, m3 = m∗ and m4 = 1, where Y = (y1, y2, y3)

I:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 = k + t,

y2 = k + t,

ε = −3b22
b4

t2 + O(3),

y3 = −3k +
(

3c4b22
4b4

− c11
2 − c12

4

)
t2 + O(3),

II:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 = k − t + O(2),
y2 = k + t,

ε = b22
b4

t2 + O(3),

y3 = −3k +
(
−c4b22

4b4
− c11

2 + c12
4

)
t2 + O(3).

The family I has symmetry with respect to the bisector of the segment q1q2 and it exists for ε < 0 whereas 
the family II is non symmetric and it exists for ε > 0.

However, the concept of bifurcation involves a change in the number of roots of the corresponding equation 
when the parameter crosses the critical point ε = 0. That is, the bifurcation is verified if, for any ε �= 0, 
we have two or more values for Y = (y1, y2, y3) satisfying the equation G(Y, ε) = 0. In order to see this, 
note that the function ε(t) has a relative maximum and a relative minimum in family I and family II, 
respectively. So, e.g., in family II, for every ε > 0 sufficiently small there exist two values t1 < 0 < t2 such 
that ε(t1) = ε = ε(t2). Consequently, associated to that ε we will have two values for the Y variables. For 
the family I the argument is analogous.

With all the above we have the following result.

Theorem 2. For every a < −1, the concave equilateral triangle with vertices m1 = m2 = m4 = 1 and a mass 
m3 = m∗ at the barycenter, experiences a bifurcation when the mass m4 crosses the value 1. More precisely, 
there is a δ > 0 such that for any 1 − δ < m4 < 1 we have two concave central configurations coming from 
the bifurcation presenting a symmetry type axes and for any 1 < m4 < 1 + δ we have two concave central 
configurations without symmetry.

In the case of continuation, the coefficients depend on the mass m and the exponent a, while in the 
study of bifurcation, the coefficients depend only on the exponent. So, we can sketch the behavior of two 
bifurcation branches. By using that

sij =
(

λ

m∗ + 3 + ε(t) − xixj

mimj

)−2/3

,

we write the power series expansion of t for the two families.

sI,IIij (ε) = s0
ij + wI,II

ij t + O(t2).
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Table 2
Behavior of the two families of bifurcation 
as a function of parameter t.

Family I Family II
ε(t) negative positive
s12(t) increasing indefinite
s13(t) decreasing increasing
s14(t) decreasing decreasing
s23(t) decreasing decreasing
s24(t) decreasing increasing
s34(t) increasing indefinite

Fig. 3. Family I: with m1 = m2 = 1, m3 = m∗ and m4 = 1 +ε, for each ε < 0 one has two symmetric concave central configurations.

Fig. 4. Family II: with m1 = m2 = 1, m3 = m∗ and m4 = 1 + ε, for each ε > 0 one has two non symmetric concave central 
configurations.

I:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wI
12 = −2·31−a·k

a > 0,

wI
13 = wI

23 = 3·k
m∗·a < 0,

wI
14 = wI

24 = k·31−a

a < 0,

wI
34 = − 6·k

m∗·a > 0,

II:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wII
12 = 0,

wII
13 = − 3·k

m∗·a > 0,

wII
23 = 3·k

m∗·a < 0,

wII
14 = k·31−a

a < 0,

wII
24 = −k·31−a

a > 0,

wII
34 = 0.

In Table 2 we show the behavior of both families in terms of the sign of ε and the mutual distances. In 
Fig. 3 we show the two symmetric concave families of central configurations coming from Family 1. Fig. 4
shows two non symmetric families of concave central configurations.

In [2], the authors found numerically a non-symmetric concave central configuration in the four body 
problem. We observe that, since in their example m1 = m2 = m3 = 1 and m4 = 0.992, it does not belong 
to our Family II of non-symmetric concave central configurations.



JID:YJMAA AID:20760 /FLA Doctopic: Miscellaneous [m3L; v1.190; Prn:5/10/2016; 17:22] P.15 (1-26)
A.A. Santos et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 15
4. The regular tetrahedron with a mass at the barycenter

Now, consider the system (4) with n = 5 and masses m1 = m2 = m3 = 1, m4 = m and m5 = 1 + ε. In 
order that the regular tetrahedron with the squares of the mutual distances s0

12 = s0
13 = s0

15 = s0
23 = s0

25 =
s0
35 = 8/3 and s0

14 = s0
24 = s0

34 = s0
45 = 1 be a solution for ε = 0 we must have λ = m + 4 · ρa in which 

ρ = 8/3. This central configuration of the 5-body problem will be called simply concave regular tetrahedron
leaving implied the occurrence of a fifth mass at the barycenter. The values for variables x’s corresponding 
to the concave regular tetrahedron are

x0
1 = x0

2 = x0
3 = x0

5 = k and x0
4 = −4k, (22)

where k =
√

m

4 + m
(1 − ρa).

In this case, we insert x4 = −x1 − x2 − x3 − x5 into the equations ti = tj in (4) to get a system of four 
equations, four variables X = (x1, x2, x3, x5) and one parameter ε ∈ R given by the functions

F1(X, ε) =
4∑

j=1
j �=1

xj

(
λ

M
− x1xj

mj

)1/a

+ x5

(
λ

M
− x1x5

1 + ε

)1/a

− t5,

F2(X, ε) =
4∑

j=1
j �=2

xj

(
λ

M
− xjx2

mj

)1/a

+ x5

(
λ

M
− x2x5

1 + ε

)1/a

− t5,

F3(X, ε) =
4∑

j=1
j �=3

xj

(
λ

M
− xjx3

mj

)1/a

+ x5

(
λ

M
− x3x5

1 + ε

)1/a

− t5,

F4(X, ε) =
3∑

j=1
xj

(
λ

M
− xjx4

m

)1/a

+ x5

(
λ

M
− x4x5

m(1 + ε)

)1/a

− t5,

where m > 0 and a < −1 are fixed and

t5 =
3∑

j=1
xj

(
λ

M
− xjx5

1 + ε

)1/a

+ x4

(
λ

M
− x4x5

m(1 + ε)

)1/a

.

Calling F = (F1, F2, F3, F4) : R4 × R → R
4, we have F (X0, 0) = (0, 0, 0, 0) for any m > 0. Observe also 

that F is S3-equivariant, that is

F (σ ·X, ε) = σ · F (X, ε) (23)

for any permutation in Σ4 = {σ ∈ S4 : σ(4) = 4} and so, its first derivative must satisfy

DXF (σ ·X, ε) · σ = σ ·DXF (X, ε).

Taking into account that σ ·X0 = X0, we have that the derivative DXF (X0, 0) is a linear transformation 
that commutes with every σ ∈ Σ4. Therefore, it can be represented as a matrix of the form

DXF (X0, 0) =

⎛
⎜⎜⎜⎝

b c c d

c b c d

c c b d

e e e f

⎞
⎟⎟⎟⎠ (24)
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The computation of the first partial derivatives of F with respect to X evaluated at (X0, m, 0) gives us

b = ∂F1

∂x1

∣∣∣∣
(X0,0)

= −ρ− k2

a

(
16
m

+ 2ρ1−a

)
= −d,

c = ∂F1

∂x2

∣∣∣∣
(X0,0)

= 0,

e = ∂F4

∂x1

∣∣∣∣
(X0,0)

= 2 − ρ + k2

a

(
12
m

+ ρ1−a

)
,

f = ∂F4

∂x5

∣∣∣∣
(X0,0)

= 2 + k2

a

(
28
m

+ 3ρ1−a

)
= e− b.

With the above values, the determinant is easily obtained

∣∣DXF (X0, 0)
∣∣ = b3(4e− b). (25)

The factor b − 4e is positive for any a < −1 and m > 0, whereas the factor b is zero if, and only if, the 
mass m is equal to

m∗∗ = 2 3ρa − 2a− 3
2ρ−a + a− 2 . (26)

Proposition 3. For all a < −1, the value of m∗∗ is positive.

Proof. By labeling n(a) = 3ρa − 2a − 3 and d(a) = 2ρ−a + a − 2 we have for any a < −1

n′(a) = 3ρa ln(ρ) − 2 < 33
8 ln(e) − 2 < 0,

d′(a) = 1 − 2ρ−a ln(ρ) < 1 − 2ρ ln(ρ) < 0,

so that both functions are decreasing on (−∞, −1) implying that they reach their minima at a = −1. Since 
n(−1) = 3ρ−1 − 1 > 0 and d(−1) = 2ρ − 3 > 0, we get that m∗∗ > 0 on (−∞, −1). �
Remark 4. In the Newtonian case with a = −3/2, the value of m∗∗ agrees with that found by Meyer and 
Schmidt in [14], that is m∗∗ = 10368+1701

√
6

54952 . Moreover, it is worth noting that in terms of m∗∗, the expression 
for b becomes

b = − (2ρ−a + a− 2) · (m−m∗∗) · ρ
a · (4 + m) ,

which shows that b > 0 if and only if m > m∗∗.

4.1. Continuation

Analogously to Theorem 1, we have the

Theorem 3. For every a < −1 and 0 < m �= m∗∗, there exists ε0 ∈ R such that the concave regular 
tetrahedron (X0, 0) can be continued to a symmetric family of concave central configurations X(ε) defined 
for |ε| < ε0 and with symmetry axis type given by
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x1(ε) = k + αε + O(ε2),

x2(ε) = k + αε + O(ε2),

x3(ε) = k + αε + O(ε2),

x4(ε) = −4k + γε + O(ε2),

x5(ε) = k + βε + O(ε2),

(27)

where γ = −(3α + β) and α and β are well-defined functions of m and a.

Proof. If 0 < m �= m∗∗, then |DXF (X0, 0)| �= 0 and the IFT can be applied to the equation F (X, ε) =
(0, 0, 0) near the trivial solution (X0, 0), ensuring the existence of a unique curve X(ε) ∈ R

4 defined on an 
interval (−ε0, ε0) and such that

F (X(ε), ε) = (0, 0, 0),

X(0) = X0.

The S3-equivariance of F implies that (σ ·X(ε), ε) is also a solution for F = 0. By the local uniqueness of 
the implicit function we must have

∀ σ ∈ Σ4, σ ·X(ε) = X(ε) ⇒ x1(ε) = x2(ε) = x3(ε).

By Remark 2, the central configurations given by F = 0, which are continuation of X0 in a neighborhood 
of ε = 0, present a symmetry axis type, that is

s1i(ε) = s2i(ε) = s3i(ε), i ∈ {4, 5}

for any ε ∈ (−ε0, ε0).

By multiplying the derivative 
∂F

∂ε

∣∣∣∣
(X0,0)

by the matrix −DXF (X0, 0)−1 we obtain the expression for 

α = dx1

dε

∣∣∣∣
(X0,0)

and β = dx5

dε

∣∣∣∣
(X0,0)

:

α = 32k(1 − ρa)p(m, a)
(b− 4e)ba2(4 + m)3ρa ,

β = 32k(1 − ρa)q(m, a)
(b− 4e)ba2(4 + m)3ρa ,

where

p(m, a) = a

3m
3 + 2

3

[
a(3 + ρa) − 2(1 − ρ2a)

ρa

]
m2

+ 4
3 [2a(1 + ρa) − (1 − ρa)(11 + 3ρa)]m− 32(1 − ρa)ρa,

q(m, a) = 1
3

[
a + 81 − ρa

ρa

]
m3 + 2

3

[
2(7 + 13ρa)(1 − ρa)

ρa
+ a(3 + ρa)

]
m2

+ 4
[
(15 + 7ρa)(1 − ρa) + 2a(1 + ρa)

3

]
m + 96(1 − ρa)ρa.

Thus we have proved the theorem. �
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As in Theorem 1, it’s not possible to give a complete description for the behavior of the solution X(ε)
independently of the exponent a, so in order to show how the solution X(ε) behaves, we analyze the 
particular value a = −3/2 which corresponds to the Newtonian case, in this case we can make a complete 
analysis of the central configurations given by (27). We compute

α = − k(1 − ρa)p̃(m)
22 · 33 · (b− 4e)ba2(4 + m)3ρa ,

β = k · (1 − ρa)q̃(m)
22 · 33 · (b− 4e)ba2(4 + m)3ρa ,

γ = −(3α + β) = −4k(1 − ρa)m(m−m∗∗)(16m + 32 + 3
√

6)(64
√

6 − 63)
33 · (b− 4e)ba2(4 + m)3ρa ,

where

p̃(m) = 1728m3 + (10368 + 8084
√

6)m2 + (63783 − 2160
√

6)m

+ 10368
√

6 − 5832,

q̃(m) = (16384
√

6 − 10944)m3 + (51404
√

6 + 17280)m2

+ (188433 − 11664
√

6)m + 31104
√

6 − 17496.

Since b > 0 if, and only if m > m∗∗, we see that the sign of γ is negative for all m > 0 while

m < m∗∗ ⇒ α > 0 and β < 0,

m > m∗∗ ⇒ α < 0 and β > 0.

Considering that

sij(ε) =
(

λ

M
− xi(ε)xj(ε)

mimj

)1/a

,

and remembering that M = m + 4 + ε, m5 = 1 + ε and λ = m + 4ρ−3/2, we can obtain the derivatives of 
sij at ε = 0 in terms of the mass m. After some tedious calculations we get

sij(ε) = s0
ij + vij(m)ε + O(ε2),

where

v12(m) = −64(16
√

6 − 9)m2 + 12(3
√

6 + 64)m + 243
3 · (64

√
6 − 63) · (8m + 3

√
6) · (m−m∗∗)

,

v14(m) = − 8(56
√

6 − 45)m + 27(16 − 3
√

6)
4 · (21

√
6 − 128) · (8m + 3

√
6) · (m−m∗∗)

,

v15(m) = 64(16
√

6 − 9)m2 + 12(320 − 39
√

6)m− 243
3 · (64

√
6 − 63) · (8m + 3

√
6) · (m−m∗∗)

,

v45(m) = 8(40
√

6 − 9)m + 81(16 −
√

6)
4 · (21

√
6 − 128) · (8m + 3

√
6) · (m−m∗∗)

.

All coefficients vij(m) have well-defined sign for each m > m∗∗, whereas for m < m∗∗ only v15(m) has a 
change of sign on the interval (0, m∗∗). In fact, to see this, just make m = 0 and m = m∗∗ in the numerator 



JID:YJMAA AID:20760 /FLA Doctopic: Miscellaneous [m3L; v1.190; Prn:5/10/2016; 17:22] P.19 (1-26)
A.A. Santos et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 19
Table 3
Behavior of sij(ε) at the neighborhood of ε = 0.

0 < m < m∗∗ m > m∗∗

s12(ε), s13(ε), s23(ε) increasing decreasing
s14(ε), s24(ε), s34(ε) decreasing increasing
s15(ε), s25(ε), s35(ε) indefinite increasing
s45(ε) increasing decreasing

Fig. 5. Continuation for m < m∗∗ and a = −3/2.

Fig. 6. Continuation for m > m∗∗ and a = −3/2.

of the expression. Nevertheless, we can draw the behavior of central configurations given by the equation 
F (X, ε) = 0 at the neighborhood of (X0, 0) for all m �= m∗∗ (see Table 3, Figs. 5 and 6).

4.2. Bifurcation

Now, we consider the problem

Fi(x1, x2, x3, x5, ε) = 0, i = 1, 2, 3, 4,

where we set m4 = m∗∗. At the point (X0, 0), the matrix (24) is

DXF (X0, 0) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
f f f f

⎞
⎟⎟⎟⎠

where f = −4(1−ρa)(1−2a)
a(4−3ρa) . As in the planar triangular case we make some transformations, following the 

Liapunov–Schmidt reduction process. Let L be the matrix DXF (X0, 0). We have that

ker{L} = {(a1, a2, a3, a4)/
∑

ai = 0}, Im{L} = {(0, 0, 0, x) : x ∈ R}.

By taking,
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u1 = (1, 0, 0,−1), u2 = (0, 1, 0,−1), u3 = (0, 0, 1,−1) and u4 = (0, 0, 0,−1)

we proceed the change of variables

(x1, x2, x3, x5) = y1 · u1 + y2 · u2 + y3 · u3 + y4 · u4, (28)

so that

x1 = y1, x2 = y2, x3 = y3 and x5 = −y1 − y2 − y3 − y4.

Let G(Y, ε) = F (X(Y ), ε) be the new functions defining the Dziobek configurations on the space after 
the change of variables. We have that

G1(Y, ε) = y2

(
λ

M
− y1y2

)1/a

+ y3

(
λ

M
− y1y3

)1/a

+ y4

(
λ

M
− y1y4

m∗∗

)1/a

− y1

(
λ

M
+ y1 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y2

(
λ

M
+ y2 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y3

(
λ

M
+ y3 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y4

(
λ

M
+ y4 (y1 + y2 + y3 + y4)

m∗∗(ε + 1)

)1/a

− (y1 + y2 + y3 + y4)
(

λ

M
+ y1 (y1 + y2 + y3 + y4)

ε + 1

)1/a

,

G2(Y, ε) = y1

(
λ

M
− y1y2

)1/a

+ y3

(
λ

M
− y2y3

)1/a

+ y4

(
λ

M
− y2y4

m∗∗

)1/a

− y1

(
λ

M
+ y1 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y2

(
λ

M
+ y2 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y3

(
λ

M
+ y3 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y4

(
λ

M
+ y4 (y1 + y2 + y3 + y4)

m∗∗(ε + 1)

)1/a

− (y1 + y2 + y3 + y4)
(

λ

M
+ y2 (y1 + y2 + y3 + y4)

ε + 1

)1/a

,

G3(Y, ε) = y1

(
λ

M
− y1y3

)1/a

+ y2

(
λ

M
− y2y3

)1/a

+ y4

(
λ

M
− y3y4

m∗∗

)1/a

− y1

(
λ

M
+ y1 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y2

(
λ

M
+ y2 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y3

(
λ

M
+ y3 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y4

(
λ

M
+ y4 (y1 + y2 + y3 + y4)

m∗∗(ε + 1)

)1/a

− (y1 + y2 + y3 + y4)
(

λ

M
+ y3 (y1 + y2 + y3 + y4)

ε + 1

)1/a

,

G4(Y, ε) = y1

(
λ

M
− y1y4

m∗∗

)1/a

+ y2

(
λ

M
− y2y4

m∗∗

)1/a

+ y3

(
λ

M
− y3y4

m∗∗

)1/a

− y1

(
λ + y1 (y1 + y2 + y3 + y4)

)1/a

− y2

(
λ + y2 (y1 + y2 + y3 + y4)

)1/a
M ε + 1 M ε + 1
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− y3

(
λ

M
+ y3 (y1 + y2 + y3 + y4)

ε + 1

)1/a

− y4

(
λ

M
+ y4 (y1 + y2 + y3 + y4)

m∗∗(ε + 1)

)1/a

− (y1 + y2 + y3 + y4)
(

λ

M
+ y4 (y1 + y2 + y3 + y4)

m∗∗(ε + 1)

)1/a

,

where λ = m∗∗ + 4ρa, M = 4 + m∗∗ + ε and k =
√

m∗∗

4 + m∗∗ (1 − ρa).
By construction we have

DY G(Y 0, 0) = DXF (X0, 0) ·DY X =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −f

⎞
⎟⎟⎟⎠ . (29)

Since the change of variables (11) is S3-invariant, the S3-equivariance of F remains in G so that the 
equation G4(Y, ε) = 0 is S3-invariant.

As before, we will solve the equation G4 = 0 for y4 in terms of (y1, y2, y3, ε), inserting it into G1, G2
and G3 and finally solve the remaining bifurcation problem in order to describe the bifurcations from the 
concave regular tetrahedron.

In order to study the bifurcation problem

G(y1, y2, y3, y4, ε) = (0, 0, 0, 0), G(k, k, k,−4k, 0) = (0, 0, 0, 0), (30)

we only need to know two properties of G, the analyticity around the trivial solution (k, k, k, −4k, 0) and 
the S3-equivariance. In view of this, we first make a translation yi → yi +k (i = 1, 2, 3) and y4 → y4 − 4k in 
the expression of G. Observe that G1 is invariant by σ = (23) so that its analytical expression is given by:

G1(Y, ε) = b5ε + b11y
2
1 + b22(y2

2 + y2
3) + b44y

2
4 + b55ε

2 + b12y1(y2 + y3)

+ b23y2y3 + b14y1y4 + b24(y2 + y3)y4 + b15y1ε + b25(y2 + y3)ε + b45y4ε + O(3),

and due to S3-equivariance of G we must have

G2(y1, y2, y3, y4, ε) = G1(y2, y1, y3, y4, ε),

G3(y1, y2, y3, y4, ε) = G1(y3, y2, y1, y4, ε), (31)

G4(Y, ε) = −fy4 + c5ε + c11(y2
1 + y2

2 + y2
3) + c44y

2
4 + c12(y1y2 + y1y3 + y2y3)

+c14(y1 + y2 + y3)y4 + c15(y1 + y2 + y3)ε + c45y4ε + c55ε
2 + O(3).

The derivatives of G at (0, 0, 0, 0, 0) are given by

G1 = G2 = G3 = G4 = 0,

b1 = ∂G1

∂y1
= ∂G1

∂y2
= ∂G2

∂y1
= ∂G2

∂y2
= 0,

b5 = ∂G1

∂ε
= ∂G2

∂ε
= −2k3(m∗∗ρ1−a + 8)

am∗∗ > 0,

b11 = 1
2
∂2G1

∂y2
1

= 0,

b12 = ∂2G1 = −6kρ1−a

+ 64k3(1 − a)
2 ∗2 > 0,
∂y2∂y1 a a m
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b22 = 1
2
∂2G1

∂y2
2

= b12
2 > 0,

b23 = ∂2G1

∂y2∂y3
= b12 > 0.

By solving G4 for y4 through the IFT, we get a unique analytical function y4 = W (y1, y2, y3, ε) defined 
on an invariant neighborhood V of (0, 0, 0, 0) such that W (0, 0, 0, 0) = 0.

Lemma 3. The function W (y1, y2, y3, ε) guaranteed by the IFT is S3-invariant.

Proof. Let σ ∈ S3. From the S3-invariance of G4, for all y = (y1, y2, y3) ∈ V and ε small, we have that

G4(y,W (σ · y, ε), ε) = G4(σ · y,W (σ · y, ε), ε) = 0.

That is, W (σ · y, ε) also solves G4 = 0 locally. By the uniqueness of the implicit solution, we must have

W (σ · y, ε) = W (y, ε), ∀ y ∈ V and ε small. �
Now we write the power series for W in a small neighborhood of (0, 0, 0, 0) and insert it into the third 

equation of (31). By comparison of coefficients we get up to order 2.

W (y1, y2, y3, ε) = 1
f

(c5ε + c11(y2
1 + y2

2 + y2
3) + c12(y1y2 + y1y3 + y2y3)

+ ε(c14c5 + c15)(y1 + y2 + y3) + (c44c25 + c45c5 + c55)ε2 + O(3).

With this we go back to the bifurcation problem

G̃1(y1, y2, y3, ε) = G1(y1, y2, y3,W (y1, y2, y3, ε), ε) = 0,

G̃2(y1, y2, y3, ε) = G2(y1, y2, y3,W (y1, y2, y3, ε), ε) = 0, (32)

G̃3(y1, y2, y3, ε) = G3(y1, y2, y3,W (y1, y2, y3, ε), ε) = 0.

The Taylor’s series expansion for these functions are

G̃1(y1, y2, y3, ε) = b5ε + b22(y2 + y3) (2y1 + y2 + y3) +
(
b15 + b14c5

f

)
y1ε

+
(
b25 + b24c5

f

)
(y2 + y3)ε +

(
b55 + b45c5

f
+ b44c

2
5

f2

)
ε2 + O(3),

G̃2(y1, y2, y3, ε) = G̃1(y2, y1, y3, ε),

G̃3(y1, y2, y3, ε) = G̃1(y3, y2, y1, ε).

Since DyG̃(y(0), 0) = 0 and G̃ε �= 0, the system G̃1 = G̃2 = G̃3 = 0 does not admit a differentiable 
solution y(ε) = (y1(ε), y2(ε), y3(ε)) defined around ε = 0. So, we solve the equation G̃3(y1, y2, y3, ε) = 0 for 
ε by writing it as an analytic function of (y1, y2, y3) given by

ε(y1, y2, y3) = −b22
b5

(y1 + y2) (2y3 + y2 + y1) + O(3). (33)

Finally we define the last two equations to be solved:
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H1(y1, y2, y3) = G̃1(y1, y2, y3, ε(y1, y2, y3)) = 0,

H2(y1, y2, y3) = G̃2(y1, y2, y3, ε(y1, y2, y3)) = 0.

Note that the functions Hi, i = 1, 2 are analytic in a small neighborhood of (0, 0, 0) and satisfy

Hi(0, 0, 0) = 0 and DyHi(0, 0, 0) = (0, 0, 0) for i = 1, 2.

We also observe that Hi(τ, y2, τ) = 0 for i = 1, 2. In fact, by definition

H1(τ, y2, τ) = G̃1(τ, y2, τ, ε(τ, y2, τ))

and since G̃1(y3, y2, y1, ε(y1, y2, y3)) = G̃3(y1, y2, y3, ε(y1, y2, y3)) = 0, we get

H1(τ, y2, τ) = 0.

Clearly the same argument works for H2 so that we can apply Lemma 2 to both H1 and H2 to show that 
they can be written as

H1(y1, y2, y3) = (y1 − y3) · h1(y1, y2, y3), (34)

H2(y1, y2, y3) = (y2 − y3) · h2(y1, y2, y3),

where

h1(y1, y2, y3) = −b22(y1 + y3) + O(2), (35)

h2(y1, y2, y3) = −b22(y2 + y3) + O(2).

Thus, the equations h1(y1, y2, y3) = 0 and h2(y1, y2, y3) = 0 can be solved for y1 = τ1(y3) and y2 = τ2(y3)
defined on a neighborhood of y0

3 = 0 such that τi(0) = 0. From the factorization (34), we see that the 
equations H1(y1, y2, y3) = 0 and H2(y1, y2, y3) = 0 have four analytic branches at the neighborhood of 
y0
3 = 0 given by

(I) y1 = y3 and y2 = y3,

(II) y1 = −y3 + O(2) and y2 = −y3 + O(3),

(III) y1 = y3 and y2 = −y3 + O(2),

(IV) y1 = −y3 + O(2) and y2 = y3.

In order to write the bifurcation branches, we first introduce a small parameter t by setting y3 = t and 
after we undo the translation of variables yi �→ yi − k. Writing the expressions of y1, y2 and ε in terms of t
we have four families of central configurations given by the system G(Y, ε) = 0 near the regular tetrahedron 
with masses m1 = m2 = m3 = 1, m4 = m∗∗ and m5 = 1 + ε, where

I:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 = k + t,

y2 = k + t,

y3 = k + t,

ε = −8b22
b5

t2 + O(3),
y = −8c5b22+3b5(c11+c12) t2 + O(3),

II:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 = k − t + O(2),
y2 = k − t + O(2),
y3 = k + t,

ε = O(3),
y = 3c11−c12 t2 + O(3),
4 fb5 4 f
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III:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 = k + t,

y2 = k − t + O(2),
y3 = k + t,

ε = O(3),
y4 = 3c11−c12

f t2 + O(3),

IV:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 = k − t + O(2),
y2 = k + t,

y3 = k + t,

ε = O(3),
y4 = 3c11−c12

f t2 + O(3).

The family I has the segment q4q5 as an axis of symmetry and it is defined for ε < 0. Again, we observe 
a bifurcation for the function ε(t), since it has a local maximum at t = 0 we get that for each ε sufficiently 
small, there are two values t1 < 0 < t2 such that ε(t1) = ε(t2) and Y (t1) �= Y (t2), that is, we have two 
central configurations for each ε < 0. On the other hand the families II, III, IV are essentially the same 
up to a reordering of the bodies at the vertices. According to the Remark 2, each of them has a plane 
of symmetry, e.g., the family II is symmetric with respect to the plane perpendicular to the segment q1q2
passing by its middle point.

With all the above we have the following result:

Theorem 4. For every a < −1, the regular tetrahedron with vertices m1 = m2 = m3 = 1, m5 = 1 + ε and 
a mass m4 = m∗∗ at the barycenter, presents a bifurcation when the mass m5 crosses the value 1. More 
precisely, there is a δ > 0 such that for any 1 − δ < m5 < 1 we have two central configurations coming from 
the bifurcation presenting a symmetry axis type and for any m5 ∈ (1 − δ, 1 + δ) one has three families of 
central configurations with symmetry plane type.

We can draw the behavior of four bifurcations branches. Using that

sij =
(

λ

m∗∗ + 4 + ε(t) − xixj

mimj

)−2/3

,

we write the power series expansion of t for the two families.

sνij(ε) = s0
ij + vνijt + O(t2),

where ν = I, II , III , IV .

I:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vI12 = vI13 = vI23 = −2kρ1−a

a > 0,

vI15 = vI25 = vI35 = 2kρ1−a

a < 0,

vI14 = vI24 = vI34 = 4k
am∗∗ < 0,

vI45 = − 12k
am∗∗ > 0,

II:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vII
13 = vII

23 = 0,

vII
12 = −2kρ1−a

a > 0,

vII
15 = vII

25 = 0,

vII
35 = 2kρ1−a

a < 0,

vII
14 = vII

24 = 4k
am∗∗ < 0,

vII
34 = vII

45 = − 4k
am∗∗ > 0,

III:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vIII
12 = vIII

23 = 0,

vIII
13 = −2kρ1−a

a > 0,

vIII
15 = vIII

35 = 0,

vIII
25 = 2kρ1−a

a < 0,

vIII
14 = vIII

34 = 4k
am∗∗ < 0,

vIII = vIII = − 4k > 0,

IV:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vIV
12 = vIV

13 = 0,

vIV
23 = −2kρ1−a

a > 0,

vIV
25 = vIV

35 = 0,

vIV
15 = 2kρ1−a

a < 0,

vIV
24 = vIV

34 = 4k
am∗∗ < 0,

vIV = vIV = − 4k > 0.
24 45 am∗∗ 14 45 am∗∗
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Table 4
Behavior of the two families of bifurcation as a function of parameter t in the tetra-
hedron case.

Family I Family II Family III Family IV
ε(t) negative indefinite indefinite indefinite
s12(t) increasing increasing indefinite indefinite
s13(t) increasing indefinite increasing indefinite
s14(t) decreasing decreasing decreasing increasing
s15(t) decreasing indefinite indefinite decreasing
s23(t) increasing indefinite indefinite increasing
s24(t) decreasing decreasing increasing decreasing
s25(t) decreasing indefinite decreasing indefinite
s34(t) decreasing increasing decreasing decreasing
s35(t) decreasing decreasing indefinite indefinite
s45(t) increasing increasing increasing increasing

Fig. 7. Family I: with m1 = m2 = m3 = 1, m4 = m∗∗ and m5 = 1 + ε, with symmetry type axis.

Fig. 8. Family II: with m1 = m2 = m3 = 1, m4 = m∗∗ and m5 ≈ 1, symmetric with respect the plane orthogonal to the segment 
q1q2.

In Table 4 we show the behavior of both families in terms of the sign of ε and the mutual distances. 
In Fig. 7 we show the two symmetric concave branches of central configurations coming from Family 1. In 
Fig. 8 we show the branches of concave central configurations coming from family II with its symmetry 
planes. For the families III and IV the shapes are the same up to a reordering of the bodies at the base of 
tetrahedron.

The central configurations coming from the bifurcation when the parameter is the mass at one of the ver-
tices present the same symmetries occurring in the bifurcations found by Santos in [12] where the parameter 
of bifurcation was the mass at the barycenter.

5. Conclusions

We succeeded carry out the explicit calculations of central configurations near the equilateral triangle and 
the regular tetrahedron, both with a specific mass at their barycenter. In the analysis, the Lemma 2 allowed 
us write the complete factorization of the equations, thus we can draw the diagram of bifurcation. In the four 
body problem, in the neighborhood of the equilateral triangle with m1 = m2 = 1 at the vertices, m3 = m∗

at the barycenter and m4 near 1, we have two symmetric central configurations for each m4 < 1 and two 
non-symmetric central configurations for each m4 > 1. In the five body problem, in the neighborhood of the 
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regular tetrahedron with m1 = m2 = m3 = 1 at the vertices, m4 = m∗∗ at the barycenter and m5 near 1, 
we have two central configurations with symmetry type axis for each m5 < 1 and two central configurations 
with symmetry type plane for each m5 ≈ 1.
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