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Abstract

Examples constructed by the first author and Charles Read make it clear that
many of the hereditary properties of amenability no longer hold for approxi-
mate amenability. These and earlier results of the authors also show that the
presence of a bounded approximate identity often entails positive results. Here
we show that the tensor product of approximately amenable algebras need not
be approximately amenable, and investigate conditions under which A and B
being approximately amenable implies, or is implied by, A⊗̂B or A#⊗̂B# being
approximately amenable. Once again, the role of having a bounded approximate
identity comes to the fore. Our methods also enable us to prove that if A⊗̂B
is amenable, then so are A and B, a result proved by Barry Johnson in 1996
under an additional assumption.
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In memoriam
Charles John Read – mathematician, gentleman and friend

1. Introduction

The concept of amenability for a Banach algebra, introduced by Johnson in
[17], has proved to be of enormous importance in Banach algebra theory. In [10],
and subsequently in [14], several modifications of this notion were introduced, in
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particular that of approximate amenability; and much work has been done in the
last 10 years or so, [8, 5, 4, 13, 7, 11, 12], for example. See also [21] for a recent
survey. In this paper the focus is on these newer notions for tensor products.
In particular, we investigate relations between the approximate amenability of
A and B and that of A⊗̂B or A#⊗̂B#.

As a by-product of our investigations, we show in Theorem 4.9 that amenabil-
ity of A⊗̂B implies amenability of A and of B. This is a new result, although
it was known in many special cases by previous results of Johnson [18, Section
3].

Let A be an algebra, and let X be an A-bimodule. A derivation is a linear
map D : A → X such that

D(ab) = a · D(b) +D(a) · b (a, b ∈ A) .

For x ∈ X, set adx : a �→ a · x−x · a, A → X. Then adx is a derivation; these
are the inner derivations.

Let A be a Banach algebra, and letX be a Banach A-bimodule. A continuous
derivation D : A → X is approximately inner if there is a net (xα) in X such
that

D(a) = lim
α
(a · xα − xα · a) (a ∈ A) ,

so that D = limα adxα in the strong-operator topology of B(A,X).

Definition 1.1. [10, 14] Let A be a Banach algebra. Then A is approximately
amenable (resp. approximately contractible) if, for each Banach A-bimodule X,
every continuous derivation D : A → X∗ (resp. D : A → X), is approximately
inner. If it is always possible to choose the approximating net (adxα) to be
bounded (with the bound dependent only on D) then A is boundedly approx-
imately amenable (resp. boundedly approximately contractible).

Of course A is amenable (resp. contractible) if every continuous derivation
D : A → X∗ (resp. D : A → X), is inner, for every Banach A-bimodule X.

Of these various notions, amenability, contractibility, approximate amen-
ability, bounded approximate amenability and bounded approximate contract-
ibility are all distinct, while approximate contractibility and approximate amen-
ability coincide, [14, 11, 12]. Requiring the approximating net of derivations to
converge weak∗ is the same as approximate amenability [14]. This latter no-
tion will arise naturally below. If, instead of requiring the nets of approximat-
ing inner derivations to be bounded in bounded approximate amenability and
bounded approximate contractibility, one requires boundedness on the nets of
implementing elements, then one recovers amenability, [15].

2. Some observations

Recall the result of Johnson [17, Proposition 5.4]:

Proposition 2.1. Let A and B be amenable Banach algebras. Then A⊗̂B is
amenable.
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A version of this for the approximately amenable case was stated in [10,
Proposition 2.3], but the argument there is incomplete. The matter is clarified
in [4, Proposition 4.1], from which we state:

Theorem 2.2. Suppose that A is a boundedly approximately amenable Banach
algebra with a bounded approximate identity, and that B is an amenable Banach
algebra. Then A⊗̂B is boundedly approximately amenable.

In [4] the question is raised whether the tensor product of two (boundedly)
approximately amenable Banach algebras is itself (boundedly) approximately
amenable. We begin by answering this question in the negative. Note that A is
boundedly approximately amenable if and only A# is boundedly approximately
amenable, [14, Lemma 5.9].

Theorem 2.3. The tensor product of two boundedly approximately amenable
Banach algebras need not be approximately amenable.

Proof. Let A be the Banach algebra constructed in [11] such that A is bound-
edly approximately amenable yet A⊕ Aop is not approximately amenable. For
convenience, set B = Aop. Adjoin identities 1A to A and 1B to B, and set
A = A#⊗̂B#. Then we have the decomposition into closed subspaces:

A = (C1A ⊗ 1B) + (1A ⊗B) + (A⊗ 1B) + (A⊗̂B) .

Now A⊗̂B is a closed two-sided ideal in A, and the quotient algebra A/A⊗̂B is
isomorphic to (A⊕B)# via the map

(λ1A ⊗ 1B) + (1A ⊗ b)⊕ (a⊗ 1B) + c⊗ d �→ λ1A⊕B + (a⊕ b) .

Thus by [10, Proposition 2.4] (A⊕ B)# is approximately amenable, whence so
is A ⊕ B. But this contradicts the specific choice of A and B. Thus A cannot
be approximately amenable.

Note that the argument sheds no light on whether in this case the subalgebra
A⊗̂B is approximately amenable.

Remark 2.4. The same example from [11] also answers Question 1 raised in
[10, §9]. Namely A ⊕ B is not approximately amenable, yet the ideal A is
boundedly approximately amenable, as is the quotient B.

We now build on this example to give a slightly sharper result.

Lemma 2.5. For Banach algebras C and D, there is a natural epimorphism
(C ⊕D)⊗̂(C ⊕D) → C⊗̂D.

Proof. We have

(C ⊕D)⊗̂(C ⊕D) = (C⊗̂C)⊕ (D⊗̂D)⊕ (D⊗̂C)⊕ (C⊗̂D) ,

and
I = (C⊗̂C)⊕ (D⊗̂D)⊕ (D⊗̂C)

is a closed two-sided ideal in (C ⊕D)⊗̂(C ⊕D) with quotient C⊗̂D.
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Corollary 2.6. There exists a unital boundedly approximately amenable Banach
algebra A such that A⊗̂A is not approximately amenable.

Proof. Let A and B be the boundedly approximately amenable algebras as
above, and set A = A# ⊕ B#, boundedly approximately amenable by [14,
Proposition 6.1]. By Lemma 2.5, A#⊗̂B# is a quotient, and this latter is not
approximately amenable from Theorem 2.3. Thus by [10, Proposition 2.4] A⊗̂A
is not approximately amenable.

In comparison, note that since boundedly approximately contractible al-
gebras have bounded approximate identities [5, Theorem 2.5], the direct sum
of boundedly approximately contractible algebras is boundedly approximately
contractible by a variant of [10, Proposition 2.7].

There is a special situation when approximate amenability of the tensor
product comes for free.

Proposition 2.7. Let A and B be Banach function algebras on their respective
carrier spaces, and suppose that A and B have bounded approximate identities
consisting of elements of finite support. Then A⊗̂B is approximately amenable.

Proof. That A and B are approximately amenable follows from [13, Proposition
4.2]. Now A and B have the bounded approximation property, so by [19, §3.2.18]
A⊗̂B is semisimple, and so is again a Banach function algebra. It also has a
bounded approximate identity of elements of finite support, built from those of
A and B, and once more [13, Proposition 4.2] applies.

The same style of argument as above using compositions can also give some
positive results.

Theorem 2.8. Suppose that A#⊗̂B# is approximately amenable. Then A, B
and A⊕B are approximately amenable.

Proof. The algebra A# admits a character ϕ, and a⊗̂b �→ ϕ(a)b defines an
epimorphism A#⊗̂B# → B# so that B#, and hence B, is approximately amen-
able. Similarly for A.

We have the decomposition into closed subalgebras,

A#⊗̂B# = (C1A ⊗ 1B) + (1A ⊗B) + (A⊗ 1B) + (A⊗̂B) .

HereA⊗̂B is a closed ideal, with approximately amenable quotientA#⊗̂B#/A⊗̂B
given by

(C1A ⊗ 1B) + (1A ⊗A)⊕ (B ⊗ 1B)

having zero product between the second and third summands. But this latter
is isomorphic to the unitization of A⊕B.

The obvious omission here is whether A⊗̂B is approximately amenable. This
is certainly the case under an additional hypothesis.
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Theorem 2.9. Suppose that A#⊗̂B# is (boundedly) approximately amenable
and that A and B have bounded approximate identities. Then A⊗̂B is (bound-
edly) approximately amenable.

Proof. The argument of [9, Proposition 2.5] will show that since A⊗̂B has a
bounded approximate identity, it suffices to show that for every neo-unital Ba-
nach A⊗̂B-bimodule X, continuous derivations from A⊗̂B into X∗ are approx-
imately inner.

Let D : A⊗̂B → X∗ be a continuous derivation. Then D extends uniquely
to a derivation D̂ : Δ(A⊗̂B) → X∗, where Δ(A⊗̂B) is the double centralizer

algebra of A⊗̂B, [16, 17]. Then restrict D̂ to A#⊗̂B#. By hypothesis this
restriction is approximately inner, a fortiori, so is D.

Remark 2.10. An alternate proof would be to use the argument of [10, Corol-
lary 2.3].

Remark 2.11. 1. A possibly related question is whether c0(A) is approx-
imately amenable given that A is approximately amenable. The argument of
[10, Example 6.1] shows that c0(A

#) will be approximately amenable. For the
algebra A of [11], c0(A) is again of the specified form of [11, Theorem 3.1], and
so is approximately amenable. The more general question as to whether c0(An)
is approximately amenable, where the (An) are approximately amenable, has a
negative answer in general, as shown by the example A⊕Aop of [11].

2. Note that c0⊗̂A will be approximately amenable if A is boundedly approx-
imately amenable and has a bounded approximate identity (Proposition 2.2).
For more general A the question is open. Of course there is a natural homo-
morphism c0⊗̂A → c0(A) determined by (αn) ⊗ x �→ (αnx). Since elements
of the range are summable sequences of elements of A, the homomorphism has
properly dense range. Supposing that c0⊗̂A is approximately amenable it is not
known whether c0(A) must be approximately amenable. However the epimor-
phism c0⊗̂A → A⊕A determined by (αn)⊗ x �→ (α1x, α2x) shows that A⊕A
would be.

3. Semi-inner derivations

We first introduce a new notion which will arise in later arguments of §4.
The concept itself is not new, but the variant we wish to use seems to be.

Definition 3.1. Let A be a algebra, X an A-bimodule. A derivationD : A → X
is semi-inner2 if there are m,n ∈ X such that

D(a) = adm,n(a) = a ·m− n · a (a ∈ A) .

2Such maps, without the derivation condition, are called generalized inner, or ‘general-
ized inner derivations’ in the literature [3, 2, 6]. We require the approximate version, and
view ‘approximately generalized’ as an oxymoron, and so will use ‘semi-inner’, but only for
derivations.
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More generally, for A a Banach algebra, X a Banach A-bimodule, a continuous
derivation D : A → X is approximately semi-inner if there are nets (mi), (ni)
in X with

D(a) = lim
i
(a ·mi − ni · a) (a ∈ A) ,

that is, D is the limit in the strong operator topology of the net (admi,ni).

Here m and n may be distinct but are highly constrained. The derivation
identity shows that if adm,n is a semi-inner derivation then

a · (m− n) · b = 0 (a, b ∈ A) . (1)

Conversely, if m,n ∈ X satisfy (1) then it is immediate that adm,n is a
derivation.

Example 3.2. To see that semi-inner is indeed a strictly weaker notion than
inner, consider the following simple example. Suppose that A is commutative
and A3 = 0. By commutativity the only inner derivation on A is the zero map,
but multiplication by any element is a semi-inner derivation since A3 = 0, and
some such will be non-zero provided A2 �= {0}.

For an specific example, take A = C
4 with product

(a1, a2, a3, a4)(b1, b2, b3, b4) = (0, 0, a1b1, a2b2) .

However, in many situations of interest the notions coincide.

Proposition 3.3. Let A be a Banach algebra, X a Banach A-bimodule, D :
A → X (resp D : A → X∗) a derivation. Suppose that D is semi-inner:
D = adm,n. Then in each of the following cases D is inner:

(i) A has left and right approximate identities for X;

(ii) D : A → X∗ and X is neo-unital;

(iii) D : A → X∗ and A has a bounded approximate identity;

Proof. (i). Immediate from (1).
(ii) The hypothesis implies that for x ∈ X,

0 = 〈a · (m− n) · b, x〉 = 〈m− n, b · x · a〉 ,
so that m− n vanishes on Xess. Thus m = n if X is neo-unital, so D is inner.

(iii). Let (ei) be a bounded approximate identity of A. Let E be a limit
point in the weak∗-operator topology of the left multiplication operators on X∗

by the elements ei, F similarly for right multiplication. Then E and F are
commuting A-bimodule morphisms of X∗ into itself, and give a decomposition

X∗ = EFX∗ ⊕ E(I − F )X∗ ⊕ (I − E)X∗ . (2)

Correspondingly, set

D1 = EFD,D2 = E(I − F )D,D3 = (I − E)D .
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These are easily seen to be derivations into the corresponding summands in (2).
Since A has trivial action on the right of E(I−F )X∗, and has a bounded approx-
imate identity, we conclude that D2 is approximately inner, with a bounded net
of implementing elements, whence D2 is inner. Similarly for D3. Now for a ∈ A,

D1(a) = EFadm,n(a) = EF (a ·m− n · a)
= weak∗ − lim

i
lim
j
[eia ·m · ej − ei · n · aej ] .

But from (1), ei · n · eja = ei ·m · eja, so we have

D1(a) = EF (a ·m−m · a) = a · EF (m)− EF (m) · a (a ∈ A) .

Remark 3.4. In (i) and (ii) it is clear that m = n. This is not clear in (iii) and
indeed need not be the case. For suppose there is a non-zero p ∈ X, satisfying
Ap = 0, take k ∈ X and set m = k + p. Then adm,k = adk is a semi-inner (in
fact inner) derivation with m �= k.

Corollary 3.5. Let A be a Banach algebra and suppose that for any Banach
A-bimodule X, any continuous derivation D : A → X∗ is semi-inner. Then A
is amenable (and such D are inner).

Proof. The standard argument, [17, Proposition 1.6], showing that amenable
algebras have a bounded approximate identity, uses bimodules with trivial ac-
tion on one side, in which case semi-inner means the same as inner. Thus the
argument to applies to A, and it follows that A has a bounded approximate
identity, so that Proposition 3.3(iii) applies.

Remark 3.6. The property of A in the hypothesis of Corollary 3.5 could be
taken to define semi-amenability, but as just shown there is no use for this term.

On the other hand, we can define a Banach algebra A to be approximately
semi-amenable if for any Banach A-bimodule X, any continuous derivation D :
A → X∗ is approximately semi-inner. This is a strictly weaker notion than
approximate amenability, as the following examples show.

Example 3.7. For 1 � p < ∞, the algebra �p under pointwise operations is
not approximately amenable, [8, 4]. However, derivations from �p are always
approximately semi-inner. For let D : �p → X be a continuous derivation into
a Banach �p- bimodule. Set (En) to be the standard (unbounded) approximate
identity of �p. Then Dn = D|En�

p : En�
p → X is a derivation from a finite-

dimensional semisimple algebra and hence is inner, say implemented by ξn ∈ X.
Thus for a ∈ �p,

D(a) = lim
n

D(Ena) = lim
n
(Ena · ξn − ξn · Ena)

= lim
(
a · (En · ξn)− (ξn · En) · a

)
,

and so D is approximately semi-inner.
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Example 3.8. Let G be an amenable SIN group. Then any non-trivial Se-
gal subalgebra of L1(G) is approximately semi-amenable. The proof of this
is nontrivial, and will appear elsewhere. No such algebras are approximately
amenable, [1]; see also [7, §4], [4, §3].

4. Approximately amenable tensor products

Theorem 4.1. Let A and B be Banach algebras. Suppose that A⊗̂B is

(i) approximately amenable , or

(ii) boundedly approximately amenable , or

(iii) boundedly approximately contractible .

Then any continuous derivation D from A or B

• into any bimodule is approximately semi-inner in clause (i) ,

• into any dual bimodule is boundedly approximately semi-inner in clause
(ii) ,

• into any bimodule is boundedly approximately semi-inner in clause (iii) .

Proof. Given a Banach A-bimodule X, we make X⊗̂B into a Banach A⊗̂B-
bimodule as follows: for a ∈ A, b1 ∈ B, b2 ∈ B, x ∈ X,

(a⊗ b1) · (x⊗ b2) = a · x⊗ b1b2 , (x⊗ b2) · (a⊗ b1) = x · a⊗ b2b1 .

Given a continuous derivation D : A → X, we define Δ : A⊗̂B → X⊗̂B by
setting

Δ(a⊗ b) = D(a)⊗ b (a ∈ A, b ∈ B) .

Then

Δ((a1 ⊗ b1)(a2 ⊗ b2)) = Δ(a1a2 ⊗ b1b2)

=
(
D(a1) · a2 + a1 ·D(a2)

)⊗ (b1b2)

=
(
(D(a1) · a2)⊗ b1b2

)
+

(
(a1 ·D(a2))⊗ b1b2

)
=

(
(D(a1)⊗ b1) · (a2 ⊗ b2)

)
+

(
(a1 ⊗ b1) · (D(a2)⊗ b2

)
,

so that Δ is a derivation.
In clause (i), since approximate amenability and approximate contractibility

coincide, [14, Proposition 2.1], there is a net (mi) in X⊗̂B such that for all
a ∈ A, b ∈ B,

Δ(a⊗ b) = lim
i

(
(a⊗ b) ·mi −mi · (a⊗ b)

)
. (3)

Let

mi =
∞∑
k=1

xk,i ⊗ bk,i ,
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where xk,i ∈ X, bk,i ∈ B. Then

D(a)⊗ b = Δ(a⊗ b)

= lim
i

(∑
k

(a · xk,i)⊗ bbk,i −
∑
k

(xk,i · a)⊗ bk,ib

)
. (4)

Fix b0 ∈ B non-zero, and take b∗0 ∈ B∗ with 〈b∗0, b0〉 = 1. Applying the
operator T : X⊗̂B → X specified by T (x ⊗ b) = 〈b∗0, b〉x to both sides of (4)
yields

D(a) = lim
i
(a ·m′

i − n′
i · a) , (5)

where m′
i =

∑
k〈b∗0, b0bk,i〉xk,i, n

′
i =

∑
k〈b∗0, bk,ib0〉xk,i.

In clause (iii), the same argument with the extra condition that

‖(a⊗ b) ·mi −mi · (a⊗ b)‖ � K‖a‖‖b‖,
yields

‖a ·m′
i − n′

i · a‖ � K ′‖a‖ .
For clause (ii), let D : A → X∗ be a continuous derivation into a dual

bimodule. Since X∗⊗̂B is unlikely to be a dual space, let alone a dual module,
view the derivation Δ as mapping into (X∗⊗̂B)∗∗. Then there is a net (mi) in
(X∗⊗̂B)∗∗ and a constant K > 0 such that for a ∈ A, b ∈ B,

D(a)⊗ b = Δ(a⊗ b) = lim
i

(
(a⊗ b) ·mi −mi · (a⊗ b)

)
, (6)

and
‖(a⊗ b) ·mi −mi · (a⊗ b)‖ � K‖a‖ ‖b‖ . (7)

Fix b0 ∈ B of unit norm and take b∗0 ∈ B∗ with b∗0(b0) = 1. Let S : X →
(X∗⊗̂B)∗ be specified by

〈S(x), x∗ ⊗ b〉 = 〈x∗, x〉〈b∗0, b〉 , (x ∈ X,x∗ ∈ X∗, b ∈ B) ,

and set T = S∗ : (X∗⊗̂B)∗∗ → X∗. Now take m ∈ (X∗⊗̂B)∗∗, a ∈ A, b ∈ B,
and x ∈ X. Then

〈T ((a⊗ b) ·m), x〉 = 〈(a⊗ b) ·m,S(x)〉 = 〈m,S(x) · (a⊗ b)〉 .
For x∗ ∈ X∗ and c ∈ B,

〈S(x) · (a⊗ b0), x
∗ ⊗ c〉 = 〈S(x), (a⊗ b0) · (x∗ ⊗ c)〉 (8)

= 〈S(x), a · x∗ ⊗ b0c〉 = 〈a · x∗, x〉〈b∗0, b0c〉 . (9)

Thus, setting m =
∑

k x
∗
k ⊗ bk, and ϕ(m) =

∑
k〈b∗0, b0bk〉x∗

k ,

T ((a⊗ b0) ·m) =
∑
k

〈b∗0, b0bk〉a · x∗
k = a · ϕ(m) ,

9



where we have the estimate

‖ϕ(m)‖ � ‖b0‖ ‖b∗0‖ ‖m‖ .
A generalm ∈ (X∗⊗̂B)∗∗ is the weak∗-limit of a net (μα) ⊂ X∗⊗̂B, bounded

by ‖m‖, and as an adjoint T is weak∗-weak∗ continuous. It follows that the
associated net (ϕ(μα)) is bounded and so has a weak∗ limit point ξ∗ ∈ X∗

(depending on m) which satisfies

T ((a⊗ b0) ·m) = a · ξ∗ (a ∈ A) . (10)

Similarly, there is η∗ ∈ X∗ with

T (m · (a⊗ b0)) = η∗ · a (a ∈ A) . (11)

Applying T to (6) and (7) with b = b0, gives nets (m
′
i) and (n′

i) in X∗ with

D(a) = lim
i
(a ·m′

i − n′
i · a) (a ∈ A) , (12)

‖a ·m′
i − n′

i · a‖ � K‖T‖ ‖a‖ (a ∈ A) . (13)

To get beyond semi-inner we first observe that if

D(a) = lim
i
(a ·m′

i − n′
i · a) (a ∈ A) , (14)

and D is a continuous derivation, then for a1, a2 ∈ A,

D(a1a2) = D(a1)a2 + a1D(a2)

= lim
i

[
(a1 ·m′

i − n′
i · a1)a2 + a1(a2 ·m′

i − n′
i · a2)

]
(15)

and
D(a1a2) = lim

i
(a1a2 ·m′

i − n′
i · a1a2) . (16)

Comparing (15) and (16) yields

lim
i
(a1 · (m′

i − n′
i) · a2) = 0 . (17)

Moreover, in the “bounded” case, we have

‖a1 · (m′
i − n′

i) · a2‖ � 3K‖a1‖ · ‖a2‖ . (18)

We can now look at conditions that enable us to show that m′
i = n′

i, or at
least m′

i − n′
i → 0.

Theorem 4.2. Let A and B be Banach algebras such that A⊗̂B is approx-
imately amenable (resp. boundedly approximately amenable, boundedly approx-
imately contractible). If B has an element b0 with b0 �∈ {b0b − bb0 : b ∈ B} ,
then A is approximately amenable (resp. boundedly approximately amenable,
boundedly approximately contractible).
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Proof. Choose the functional b∗0 in the proof of Theorem 4.1 to vanish on {b0b−
bb0 : b ∈ B}. Then the resulting nets (m′

i) and (n′
i) are the same. Hence the

result.

Omitting ‘approximately’ the amenable case of Theorem 4.2 is exactly [18,
Proposition 3.5]. Natural conditions on B which are sufficient for the above con-
dition are listed in [18]. Note that there is unfortunately no conclusion about
approximate amenability of B. Of course in special situations more can be said.

Throughout the next theorem G is a locally compact group and L1(G) is
the usual group algebra of G.

Theorem 4.3. Let A be a Banach algebra such that L1(G)⊗̂A is approximately
amenable (resp. (boundedly) approximately amenable). Then G is amenable
and A is approximately amenable (resp. boundedly approximately amenable).
Conversely, if G is amenable and A is boundedly approximately amenable with a
bounded approximate identity, then L1(G)⊗̂A is boundedly approximately amen-
able.

Proof. Let Λ : f �→ ∫
G
f be the augmentation character on L1(G). Then T :

f ⊗ a �→ Λ(f)a gives a continuous epimorphism of L1(G)⊗̂A onto A. Thus A is
approximately amenable (resp. boundedly approximately amenable).

Let I0 = KerΛ. Since I0⊗̂A is a complemented ideal in L1(G)⊗̂A, by [10,
Corollary 2.4] it has a left approximate identity. Hence I0 has a left approximate
identity [9, Theorem 8.2], and so G is amenable by [20, Theorem 5.2].

For the partial converse, G amenable implies L1(G) amenable, now apply
Theorem 2.2.

Note that if Λ(f0) = 1 then L1(G) → I0 : f �→ f − Λ(f)f0 is a bounded
projection onto I0, whence it follows that the norm on I0⊗̂A is equivalent to
that inherited from L1(G)⊗̂A. Hence the complementation fact.

Theorem 4.4. Suppose that A⊗̂B is boundedly approximately contractible (resp.
boundedly approximately amenable). Suppose that one of A or B has an iden-
tity. Then A and B are boundedly approximately contractible (resp. boundedly
approximately amenable).

Proof. Suppose that B has an identity e. Then, by Theorem 4.2, A is boundedly
approximately contractible (resp. boundedly approximately amenable).

Now let X be a Banach B-bimodule. Then

X = e ·X · e+ (1− e) ·X · e+ e ·X · (1− e) + (1− e) ·X · (1− e)

is a decomposition into submodules. Given a continuous derivation D : B → X,
it decomposes into the sum of 4 derivations into e ·X · e, (1− e) ·X · e etc. The
last three of these have trivial module action by B on at least one side, so the
corresponding derivations are inner. Thus we may suppose that e ·x = x = x · e
for x ∈ X.

11



Let D : B → X∗ be a continuous derivation, and consider the nets given
by Theorem 4.1. For the boundedly approximately contractible situation, use
clause (iii), for boundedly approximately amenable use clause (ii). Putting
a1 = a2 = e in (17) we have mi − ni → 0, so that (12) and (13) give D is
boundedly approximately inner.

Lemma 4.5. Let A be a Banach algebra having a bounded approximate iden-
tity. Suppose that any continuous derivation from A into the dual of a neo-
unital bimodule is boundedly weak∗-approximately inner. Then A is boundedly
weak∗-approximately amenable, and so approximately amenable. If, further, the
implementing nets of elements can themselves be chosen to be bounded, then A
is amenable.

Proof. Let X be a general A-bimodule, D : A → X∗ a continuous derivation.
Let (eα) be a bounded approximate identity for A. By Cohen’s factorization
theorem, Xess = A ·X ·A is a neo-unital A-bimodule. Referring to the argument
used in Proposition 3.3 above we have

X∗ = EFX∗ ⊕ E(I − F )X∗ ⊕ (I − E)X∗ . (19)

where E and F are commuting A-bimodule morphisms on X∗. Correspondingly,
set

D1 = EFD,D2 = E(I − F )D,D3 = (I − E)D .

Now let ϕ ∈ (Xess)
∗, and extend it by Hahn-Banach to ϕ̃ ∈ X∗. Then

θ(ϕ) = EFϕ̃ is easily seen to be a well-defined A-bimodule monomorphism of
(Xess)

∗ into EFX∗. It is surjective since for x∗ ∈ X∗, θ(x∗|Xess) = EFx∗. Thus
EFX∗ is isomorphic to (Xess)

∗, whence D1 is boundedly weak∗-approximately
inner. Now this weak∗-topology is σ((Xess)

∗, Xess), which is clearly weaker than
the restriction of σ(X∗, X). The unit ball in (Xess)

∗ is compact under both
topologies by Banach-Alaoglu, and so the two topologies coincide on bounded
sets in (Xess)

∗. Thus D1 is boundedly weak∗-approximately inner considered
as mapping into X∗.

The actions of A on the right of E(I−F )X∗ and on the left of (I−E)X∗ are
trivial, and since A has a bounded approximate identity, D2 and D3 are bound-
edly approximately inner. It follows that D is boundedly weak∗-approximately
inner.

That A is approximately amenable now follows from [14, Proposition 2.1].
When the implementing nets of elements are themselves bounded, taking

weak∗ accumulation points shows that the derivations are inner, see [15, Propo-
sition 1]. Hence A is amenable.

Remark 4.6. 1. The hypothesis here of the derivations being boundedly weak∗-
approximately inner is used to get equality of two weak∗-topologies. Subse-
quently, the boundedness is lost with the appeal to [14, Proposition 2.1]. It is
not known whether A must be boundedly approximately amenable.
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2. In [14, Proposition 2.1], the argument loses control over boundedness
as Goldstine is invoked on the implementing elements, which in general will
be unbounded. Indeed, since boundedly approximately contractible gives a
bounded approximate identity [5, Corollary 3.4], which approximately amen-
able algebras need not have [11, Corollary 3.2], the implication (2) ⇒ (1) of [14,
Proposition 2.1] fails with the qualifier ‘bounded’. It is not known whether (3)
⇒ (2) fails.

3. Note that by Banach-Steinhaus sequentially weak∗-approximately inner
implies boundedly weak∗-approximately inner.

Theorem 4.7. Let A and B be Banach algebras such that A⊗̂B is boundedly
approximately amenable, and that A has a bounded approximate identity. Then
A is approximately amenable.

Proof. Let D : A → X∗ be a continuous derivation into the dual of a neo-unital
bimodule X. From Theorem 4.1(ii), we have nets (m′

i) and (n′
i) in X∗ such that

D(a) = lim
i
(a ·m′

i − n′
i · a) (a ∈ A) , (20)

and ‖a ·m′
i − n′

i · a‖ � K‖a‖, where from (17) and (18)

lim
i
(a1 · (m′

i − n′
i) · a2) = 0 , ‖a1 · (m′

1 − n′
i) · a2‖ � 3K‖a1‖ · ‖a2‖ (21)

for a1, a2 ∈ A.
In particular, for a given x ∈ X, and a1, a2 ∈ A,

〈m′
i − n′

i, a2xa1〉 → 0, |〈m′
i − n′

i, a2xa1〉| � 3K‖a1‖ · ‖a2‖ · ‖x‖ .

Since X is neo-unital, it follows that

〈m′
i − n′

i, x〉 → 0 ,

and letting a1, a2 range over an approximate identity with bound M ,

‖m′
i − n′

i‖ � 3KM2 .

Thus for a ∈ A,

D(a) = weak∗ − lim
i
(a ·m′

i −m′
i · a) , ‖a ·m′

i −m′
i · a‖ � 4KM2‖a‖ . (22)

So we have that derivations into duals of neo-unital bimodules are boundedly
weak∗- approximately inner, and the result follows from Lemma 4.5.

The unwanted ‘bounded’ assumption of Lemma 4.5 and Theorem 4.7 can be
removed at the expense of a stronger hypothesis on the bounded approximate
identity. However, with this assumption comes a bonus to the conclusion of
Theorem 4.7.
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Theorem 4.8. Let A and B be Banach algebras such that A⊗̂B is approx-
imately amenable, and that one of A or B has a central bounded approximate
identity. Then A and B are approximately amenable.

Proof. Suppose that (eα) is a central bounded approximate identity in B. Let
D : B → X∗ be a continuous derivation into the dual of a bimodule X. From
Theorem 4.1(i), we have nets (m′

i) and (n′
i) in X∗ such that

D(b) = lim
i
(b ·m′

i − n′
i · b) (b ∈ B) , (23)

and
lim
i
(b1 · (m′

i − n′
i) · b2) = 0 (b1, b2 ∈ B) . (24)

Now follow Lemma 4.5 to get D1, D2 and D3. Then for b ∈ B,

D1(b) = (w∗ − lim
α
)(w∗ − lim

β
)eαD(b)eβ

= (w∗ − lim
α
)(w∗ − lim

β
) lim

i

(
eα(b ·m′

i − n′
i · b)eβ

)
. (25)

Then (24) and (25) give, using centrality of the bounded approximate iden-
tity,

D1(b) = (w∗ − lim
α
)(w∗ − lim

β
) lim

i

(
b · (eα ·m′

i · eβ)− (eα · n′
i · eβ) · b

)
.

Thus the standard method of considering finite subsets of B and X, gives a net
(x∗

γ) ⊂ X∗ such that

D1(b) = w∗ − lim
γ
(b · x∗

γ − x∗
γ · b) , (b ∈ B) .

Since D2 and D3 are approximately inner we finally deduce that D is weak∗-
approximately inner. Thus B is approximately amenable.

That A is approximately amenable is now a consequence of Theorem 4.2.

Finally, an application of our method that improves on the result [18, Propo-
sition 3.5].

Theorem 4.9. Let A and B be Banach algebras such that A⊗̂B is amenable.
Then A and B are amenable.

Proof. Amenability of A⊗̂B implies it has a bounded approximate identity,
whence so do A and B, [9, Theorem 8.2]. Now let Y be a neo-unital A-bimodule,
D : A → Y ∗ a continuous derivation. It suffices to prove that D is inner.
Arguing as in Theorem 4.1 with X = Y ∗ until at (3) and using the necessary
part of [15, Proposition 1] we obtain a bounded net (mi) in Y ∗⊗̂B. Continuing,
(5) gives bounded nets (m′

i) and (n′
i) in Y ∗ with D(a) = limi(a · m′

i − n′
i · a).

Passing to subnets if necessary, we may assume that m′
i → m and n′

i → n weak∗

in Y ∗. Thus D is semi-inner, hence inner by Proposition 3.3.
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