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In this paper, we consider the following Kirchhoff-type problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝a + λ

∫
R3

|∇u|2dx + λb

∫
R3

|u|2dx

⎞
⎠ (−Δu + bu) = f(u), in R

3,

u ∈ H1(R3), u > 0, in R
3,

where λ ≥ 0 is a parameter, a, b are positive constants and f reaches the critical 
growth. Without the Ambrosetti–Rabinowitz condition, we prove the existence of 
positive solutions for the Kirchhoff-type problem with a general critical nonlinearity. 
We also study the asymptotics of solutions as λ → 0. Numerical solutions for related 
problems will be discussed in the second part.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This is the first paper in a series. It deals with theory while the second part is concerned with the 
numerical aspects. In this paper Part I, we consider the existence of positive solutions for the following 
nonlinear Kirchhoff-type problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝a + λ

∫
R3

|∇u|2dx + λb

∫
R3

|u|2dx

⎞
⎠ (−Δu + bu) = f(u), in R

3,

u ∈ H1(R3), u > 0, in R
3,

(1.1)
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where λ ≥ 0, a, b are positive constants and the general nonlinearity f has a critical growth. Problem (1.1)
arises from an interesting physical background. In fact, if we replace R

3 by a bounded domain Ω ⊂ R
3 and 

let λ = 1 and b = 0, we obtain the following Kirchhoff-type problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−

⎛
⎝a +

∫
Ω

|∇u|2dx

⎞
⎠Δu = f(u), in Ω,

u = 0, on ∂Ω,

(1.2)

which is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−

⎛
⎝P0

h
+ E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣
2

dx

⎞
⎠ ∂2u

∂x2 = 0. (1.3)

Equation (1.3) was first proposed by Kirchhoff in [18] describing the classical D’Alembert’s wave equations 
for transversal oscillations of elastic strings, particularly, taking into account the change in string length 
caused by vibration. Lions introduced in [22] a functional analysis approach and described the abstract 
framework to the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt −

⎛
⎝a + b

∫
Ω

|∇u|2 dx

⎞
⎠Δu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.4)

Besides this, problem (1.4) also models several biological systems [1] from a mathematical biological point 
of view, where u shows a process that depends on the average of itself (for example, population density). 
For more detailed physical and biological background of Kirchhoff-type problem, we refer the reader to the 
papers [4,26] and the references therein.

Recently, problem (1.2) has been studied in literatures by variational methods, cf., for example [7,13,14,
27–29,37,39]. These works show an increasing interest in studying the existence of least energy solutions, 
positive solutions, multiple solutions, sign-changing solutions and semiclassical states. Meanwhile, various 
solvability conditions on the general nonlinearity f near infinity and zero, for example, the asymptotic 
case [31] and super-linear case [27], have been considered. Particularly, in [1], Alves, Corrêa and Ma consid-
ered problem (1.2) and proved the existence of positive solutions by the Mountain Pass Theorem. In [28], 
using the Young index and critical groups, Perera and Zhang obtained nontrivial solutions for problem 
(1.2). With the aid of mini–max methods and invariant sets of decent flow, Zhang and Perera [39], Mao 
and Zhang [27] studied the existence of three solutions (a sign-changing solution, a positive solution and 
a negative solution). In [13], He and Zou proved the existence of infinitely many solutions by Fountain 
Theorems. For more results of (1.2), we refer the reader to [9,10,24].

In terms of the Kirchhoff-type problem in RN , there are also several existence results, see for example 
[2,12,15,16,20,21,19,23,25,32,33,35,36] and the references therein. In these works, the existence of positive 
solutions, mountain pass solutions and high energy solutions were obtained with f satisfying various condi-
tions. In particular, we mention the following two existence results for (1.1) with R3 replaced by RN . In [19], 
Li et al. considered problem (1.1) under the following assumptions:

(f1) f ∈ C(R+, R+) and |f(t)| ≤ c 
(
|t| + |t|p−1) for all t ∈ R+ = [0, ∞) and some p ∈ (2, 2∗), where 

2∗ = 2N/(N − 2), for N ≥ 3;
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(f2) lim
t→0+

f(t)
t

= 0;

(f3) lim
t→∞

f(t)
t

= ∞.

They used a cut-off functional to get a bounded Palais–Smale (PS) sequence and led to the following 
theorem.

Theorem A. Assume that N ≥ 3, a, b are positive constants and λ ≥ 0 is a parameter. If the conditions 
(f1)–(f3) hold, then there exists a λ0 > 0 such that for any λ ∈ [0, λ0), problem (1.1) has at least one positive 
solution.

However, it is not clear whether the result in Theorem A still holds for large λ > 0. In [25], Liu, Liao 
and Tang again considered problem (1.1), but gave the following weaker conditions than the ones in [19]:

(f4) f ∈ C(R+, R+) with R+ = [0, ∞) and lim
s→0+

f(s)
s

= 0;

(f5) lim
s→∞

f(s)
s2∗−1 = 0 with 2∗ = 2N

N − 2 ;

(f6) There exists ξ > 0 such that F (ξ) :=
ξ∫

0

f(t) dt > ab

2 ξ2.

They proved the existence of a positive solution for problem (1.1) using cut-off and monotonicity tricks. 
This result improved the results in [19]. They obtained another result that problem (1.1) has nonzero 
solution with large λ > 0 under some conditions.

However, the authors in both [19] and [25] considered problem (1.1) with the general nonlinearity f in-
volving only subcritical growth. To our knowledge, no study has been conducted on problem (1.1) involving 
general critical growth. In this paper, we prove the existence of positive solutions to problem (1.1) with 
general critical nonlinearity. The main difficulties are as follows. On the one hand, because of the appearance 
of the terms 

∫
R3 |∇u|2 dx and 

∫
R3 |u|2 dx, problem (1.1) is a non-local problem, which implies that equation 

(1.1) is not a pointwise identity. This phenomenon causes some mathematical difficulties which make the 
study of (1.1) interesting. On the other hand, the main difficulty comes from the general critical nonlinear-
ity f . In [19] and [25], the authors used cut-off functionals to obtain the boundedness of (PS) sequences. 
This approach or trick is not suitable for problem (1.1) involving critical growth. Indeed, it is not easy to 
obtain bounded (PS) sequences due to the lack of the Ambrosetti–Rabinowitz condition. To overcome this 
difficulty, we adopt some ideas in [5] and [6]. First, we apply a local deformation argument as in [5] to obtain 
a bounded (PS) sequence. Second, we make a crucial modification on the min–max value as in [6]. In fact, 
we define the other min–max value Cλ and prove all paths to be uniformly bounded with respect to λ. The 
detailed arguments can be found in Section 2.

Throughout the paper, we make the following assumptions:

(H1) f ∈ C(R+, R+), R+ = [0, ∞) and lim
s→0+

f(s)
s

= 0;

(H2) lim sup
s→∞

f(s)
s5 ≤ 1;

(H3) there exist k ∈ (2, 6) and μ > μk such that f(s) ≥ μsk−1 for all s ≥ 0, where

μk =
[
3(k − 2)
2kS 3

2

] k−2
2

a
6−k
4 Ck

k
2 . (1.5)
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Here, S and Ck in the definition of μk are the best constants of Sobolev embeddings D1,2(R3) ↪→ L6(R3)
(cf. the definition of D1,2(R3) in Section 2) and H1(R3) ↪→ Lk(R3) respectively, namely,

S

⎛
⎝∫

R3

|u|6 dx

⎞
⎠

1
3

≤
∫
R3

|∇u|2 dx, for all u ∈ D1,2(R3)

and

Ck

⎛
⎝∫

R3

|u|kdx

⎞
⎠

2
k

≤
∫
R3

(
|∇u|2 + b|u|2

)
dx, for all u ∈ H1(R3).

Our main results are as follows.

Theorem 1.1. Assume that f satisfies the conditions (H1)–(H3). Then there exists a positive constant λ∗

such that, for every λ ∈ (0, λ∗), problem (1.1) has at least one nontrivial positive solution.

When λ = 0 in (1.1), the equation reduces to

−aΔu + abu = f(u), in R
3. (1.6)

Equation (1.6) is viewed as the limiting problem of (1.1). Indeed, problem (1.6) plays an important role in 
studying problem (1.1). As is usually expected, if the limit problem (1.6) is well-behaved and undergoes 
a small perturbation, the perturbed problem (1.1) possesses a solution in the neighborhood of that of the 
limit problem. The result in this direction can be stated as the following.

Theorem 1.2. For every λ > 0 small enough, there exists a positive solution uλ ∈ H1(R3) for problem (1.1)
such that, uλ converges to u in H1(R3) as λ → 0 along a subsequence, where u is a ground state solution 
for the limiting problem (1.6).

Remark 1.3. In [3], if the general nonlinearity f satisfied conditions (H1), (H2) and

(H3
′) there exist k ∈ (2, 6) and μ > 0 such that f(s) ≥ μsk−1 for all s ≥ 0;

(H4) sf(s) − 2F (s) ≥ 0 for all s ≥ 0, where F (s) =
∫ s

0 f(τ) dτ ,

authors of [3] have proved the existence of a ground state solution for problem (1.6). In this paper, we notice 
that (H4) can be removed at the cost of introducing a lower bound for μ, i.e., replacing (H3

′) with (H3). In 
order to demonstrate that our results can be applied to nonlinearities that were not covered in [3], consider 
the following example of critical nonlinearity.

Example 1.4.

f(s) =
{
s5 + αs2| ln s| + βs3, s > 0,
0, s = 0,

where α > 3 + 9
4β. The above nonlinearity satisfies (H1)–(H3) given sufficiently large β. However, direct 

computation shows that f doesn’t satisfy the inequality in (H4) on s ∈ (1 − δ, 1) for some δ > 0.

The remainder of this paper is organized as follows. In Section 2, we give some notations and preliminary 
results and construct the min–max level. In Section 3, we give the proofs of Theorem 1.1 and Theorem 1.2.
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2. Some preliminary results and min–max levels

In this section, we first introduce the following notations. Let H1(R3) be the usual Sobolev space equipped 
with the inner product and norm

(u, v) =
∫
R3

(∇u · ∇v + buv) dx, ‖u‖ = (u, u) 1
2 .

For any 1 ≤ q < +∞, the usual norm of the Lebesgue space Lq(R3) is denoted as ‖ · ‖q. Let D1,2(R3) ={
u ∈ L6(R3) : ∇u ∈ L2(R3)

}
be the Sobolev space with the norm ‖u‖2

D1,2 =
∫
R3 |∇u|2 dx and H1

r (R3) be the 
subspace of H1(R3) that consists of radially symmetric functions. Let ci denote various positive constants.

Since we study the positive solutions to problem (1.1), we may assume that f(s) = 0 for all s ≤ 0. The 
energy functional for problem (1.1) is defined by

Φλ(u) = a

2‖u‖
2 + λ

4 ‖u‖
4 −

∫
R3

F (u)dx,

where F (t) =
∫ t

0 f(s) ds.
It is standard to prove that Φλ ∈ C1(H1(R3), R) and has the following variational derivative

〈Φ′
λ(u), v〉 = a(u, v) + λ‖u‖2(u, v) −

∫
R3

f(u)v dx, ∀u, v ∈ H1(R3).

Clearly, the critical points of Φλ are the weak solutions for problem (1.1). Since problem (1.1) is autonomous, 
we look for critical points of Φλ on H1

r (R3), which is a natural constraint (cf. Theorem 1.28 in [34]).
Next, we study the existence of ground state solutions to problem (1.6).

Proposition 2.1. Assume that f satisfies (H1)–(H3). Then problem (1.6) has a ground state solution u ∈
H1

r (R3).

The following Pohozǎev identity is helpful.

Lemma 2.2 (Pohozǎev Identity). If u is a nonzero solution of the equation

−aΔu + abu = f(u), in R
3, (2.1)

then the following Pohozǎev identity

a

⎛
⎝∫

R3

|∇u|2dx + 3b
∫
R3

u2dx

⎞
⎠ = 6

∫
R3

F (u) dx (2.2)

holds.

Proof. The proof is similar to that of Lemma 2.6 in [19]. We omit the details. �
In order to prove Proposition 2.1, we introduce the following notations

K =

⎧⎨
⎩u ∈ H1

r (R3)\{0} :
∫

G(u)dx = 1

⎫⎬
⎭ ,
R3
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P =

⎧⎨
⎩u ∈ H1

r (R3)\{0} : 6
∫
R3

G(u)dx = a

∫
R3

|∇u|2dx

⎫⎬
⎭ ,

where G(t) = F (t) − ab
2 t2 and P is viewed as the Pohozǎev manifold. The Pohozǎev identity is used to 

simplify the energy functional. The Pohozǎev manifold enables us to obtain weaker conditions than those 
of a Nehari manifold. By (H3), it follows that there is a constant ξ > 0 such that G(ξ) > 0. Then, we easily 
obtain that K 
= ∅ and P 
= ∅. Define

N = a

2 inf
u∈K

∫
R3

|∇u|2 dx, p = inf
u∈P

J(u),

and the min–max value

c = inf
γ∈Γ

max
0≤t≤1

J(γ(t)),

where Γ =
{
γ ∈ C

(
[0, 1], H1

r (R3)
)

: γ(0) = 0, J(γ(1)) < 0
}

and

J(u) = a

2

∫
R3

(
|∇u|2 + b|u|2

)
dx−

∫
R3

F (u)dx.

Lemma 2.3. Assume that (H1)–(H3) hold. Then 0 < N <
3√6
2 aS and p < 1

3(aS) 3
2 .

Proof. By (H1)–(H2), there exists c1 > 0 such that

f(s) ≤ abs + c1s
5, for all s ≥ 0. (2.3)

We can indeed prove N > 0. Assume the contrary that N = 0, then there exists {un} ⊂ K such that 
‖∇un‖2

2 → 0 as n → ∞. By Sobolev’s embedding theorem D1,2(R3) ↪→ L6(R3), we have ‖un‖6 → 0 as 
n → ∞. Therefore, (2.3) implies that

lim sup
n→∞

∫
R3

G(un) dx ≤ lim sup
n→∞

c1
6

∫
R3

|un|6 dx = 0.

This is a contradiction with 
∫
R3 G(un) dx = 1. Next, we claim that p ≤ c. This proof is similar to that 

of Lemma 4.1 in [17], so we omit the details. Furthermore, we use a similar idea in [11] to prove that 
p =

√
12
9 N

3
2 . Define an operator Ψ : K → P by (Ψ(u))(x) = u(x/tu), where tu =

√
a
6‖∇u‖2. It is easy to 

show that Ψ is a bijection. For any u ∈ K, we get

J(Ψ(u)) = a

2

∫
R3

|∇u(x/tu)|2 dx−
∫
R3

G(u(x/tu)) dx

= a

2 tu
∫
R3

|∇u|2 dx− t3u

∫
R3

G(u) dx

= a

2 tu · 6
a
t2u − t3u

=
√

6
a

3
2 ‖∇u‖3

2.
18
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Thus,

inf
u∈P

J(u) = inf
u∈K

J(Ψ(u)) =
√

6
18 a

3
2 inf
u∈K

‖∇u‖3
2.

Note that infu∈K ‖∇u‖2
2 = 2N

a , so p = 2
√

3
9 N

3
2 . Finally, choosing a φ ∈ H1

r (R3) with φ ≥ 0, ‖φ‖2
k = C−1

k

and ‖φ‖ = 1, then we have

c ≤ max
t≥0

J(tφ) = max
t≥0

⎛
⎝at2

2 ‖φ‖ −
∫
R3

F (tφ) dx

⎞
⎠

≤ max
t≥0

(
at2

2 − μ
tk

k
‖φ‖kk

)

≤ k − 2
2k a

k
k−2μ− 2

k−2C
k

k−2
k .

Together with μ > μk in (1.5), we get p < 1
3 (aS) 3

2 and N <
3√6
2 aS. �

In order to prove that the limiting problem (1.6) has a ground state solution, we give the following 
Brezis–Lieb Lemma.

Lemma 2.4. Let h ∈ C(R3 × R) and assume that

lim
t→0

h(x, t)
t

= 0 and lim
|t|→∞

|h(x, t)|
|t|5 < ∞, uniformly in x ∈ R

3.

If un → u0 weakly in H1(R3) and un → u0 a.e. in R3, then
∫
R3

H(x, un) dx =
∫
R3

(H(x, un − u0) + H(x, u0)) dx + o(1),

where H(x, t) =
∫ t

0 h(x, s) ds.

Proof. The proof is similar to Lemma 2.5 in [38]. We omit the details. �
Proof of Proposition 2.1. For any u ∈ H1(R3), let

T (u) = a

2

∫
R3

|∇u|2 dx and V (u) =
∫
R3

G(u) dx.

We know that N = inf
{
T (u) : V (u) = 1, u ∈ H1

r (R3)
}
. Suppose that there exists {un} ⊂ H1

r (R3) such that 
a 
∫
R3 |∇un|2 dx → 2N as n → ∞, with 

∫
R3 G(un) dx = 1. Together with (H1)–(H2), we easily obtain that 

{un} is bounded in H1
r (R3). There is u0 ∈ H1

r (R3) such that along a subsequence, un → u0 weakly in 
H1

r (R3). By Lemma 2.4, we have

T (un) = T (vn) + T (u0) + o(1)

and

V (un) = V (vn) + V (u0) + o(1),
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where vn = un − u0. In the following, we prove that u0 ∈ K and un → u0 strongly in H1
r (R3). We claim 

that

T (u) ≥ N(V (u)) 1
3

for any u ∈ H1
r (R3) and V (u) > 0. Indeed, for any u ∈ H1

r (R3) with V (u) > 0, there exists a t ∈ R, 
such that V (u(x/t)) = 1. By direct computation, V (u(x/t)) = t3V (u(x)) and T (u(x/t)) = tT (u(x)). Thus, 
we have V (u) = 1/t3. Together with T (u(x/t)) = tT (u(x)) ≥ N , we get T (u) ≥ N(V (u)) 1

3 . To prove 
the strong convergence of un to u0 in H1

r (RN ), it suffices to prove that V (u0) = 1. Suppose V (u0) > 1, 
then T (u0) ≥ N(V (u0))

1
3 > N , which contradicts T (u0) ≤ N . On the other hand, if V (u0) < 0, then 

V (vn) > 1 − V (u0)
3 > 1 for n large enough. We have

T (vn) ≥ N(V (vn)) 1
3 > N

(
1 − V (u0)

3

) 1
3

which contradicts T (vn) ≤ N + o(1), for n large enough. If V (u0) ∈ [0, 1), then V (vn) > 0 for n large 
enough. We have

N = lim
n→∞

(T (u0) + T (vn))

≥ lim
n→∞

N
[
(V (u0))

1
3 + (V (vn)) 1

3

]
= N

[
(V (u0))

1
3 + (1 − V (u0))

1
3

]
≥ N(V (u0) + 1 − V (u0)) = N.

If V (u0) ∈ (0, 1), this is a contradiction. So we deduce that V (u0) = 0. Thus, limn→∞ V (vn) = 1. By 
V (un) = 1, we get u0 = 0 and T (u0) = 0. From (H1)–(H2), we have

lim sup
n→∞

‖un − u0‖2
6 >

3
√

6.

Furthermore,

N = a

2 lim sup
n→∞

‖∇(un − u0)‖2
2

≥ aS

2 lim sup
n→∞

‖un − u0‖2
6

≥
3
√

6
2 aS,

which is in contradiction with N <
3√6
2 aS in Lemma 2.3. To sum up, we have V (u0) = 1, namely, u0 ∈ K

and V (vn) → 0 as n → ∞. It is easy to obtain that ‖∇vn‖2
2 = ‖∇(un − u0)‖2

2 → 0 as n → ∞. From ∫
R3 G(un − u0) dx → 0 as n → ∞, we know that un → u0 strongly in H1

r (R3). Similar argument as the one 
in [11] shows that U0 = u0 (·/tu) ∈ P is a ground state solution to problem (1.6). �

Define Ar as the set of radial ground state solutions to the problem (1.6). From Proposition 2.1, we have 
U0 ∈ Ar, in other words, Ar 
= ∅. Furthermore, the following Lemma holds.
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Lemma 2.5. One has

(i) Ar is compact in H1
r (R3).

(ii) c = J(U0), that is, the mountain pass value agrees with the least energy level.

Proof. The proof of (i) is similar to that in [6]. We omit the details. In the following, we give the proof of 
(ii). First, we know p = J(U0) and p ≤ c. Second, we prove that c ≤ J(U0). Since U0 is a ground state 
solution to problem (1.6), similar to that in [17], there is a path γ ∈ Γ that satisfies γ(0) = 0, J(γ(1)) < 0
and maxt∈[0,1] J(γ(t)) = J(U0). This shows that c ≤ J(U0). The proof is complete. �

Let W ∈ Ar be arbitrary but fixed and set Wt(x) = W (x/t). By Lemma 2.2, we have

J(Wt) =
(
t

2 − t3

6

)
a

∫
R3

|∇W |2 dx. (2.4)

It is easy to see that there exists a t1 > 1 such that J(Wt) < −2 for t ≥ t1. We denote Dλ =
maxt∈[0,t1] Φλ(Wt). Noting that the corresponding energy functional to the problem (1.1) is

Φλ(u) = J(u) + λ

4 ‖u‖
4,

we obtain that Dλ → c as λ → 0.

Lemma 2.6. There exist λ∗ > 0 and C∗ > 0, such that for any 0 < λ < λ∗, the following hold:

Φλ(Wt1) < −2, ‖Wt‖ ≤ C∗, for all t ∈ [0, t1], and ‖W‖ ≤ C∗, for all W ∈ Ar.

Proof. By Lemma 2.5, there exists a C0 > 0 such that ‖W‖ ≤ C0, for any W ∈ Ar. For W ∈ Ar and 
t ∈ (0, t1], we have

‖Wt‖2 = t‖∇W‖2
2 + t3b‖W‖2

2 ≤
(
t + t3b

)
C2

0 .

Taking C∗ = C0
√
t1 + t31b, we have

‖Wt‖ ≤ C∗ and ‖W‖ ≤ C∗.

Since

Φλ(Wt1) = J(Wt1) + λ

4 ‖Wt1‖4 ≤ J(Wt1) + λ

4 (C∗)4,

there exists λ∗ > 0 small enough such that Φλ(Wt1) < −2 for any λ ∈ (0, λ∗). �
By Lemma 2.6, for any λ ∈ (0, λ∗), we define a min–max value

Cλ = inf
γ∈Γλ

max
t∈[0,t1]

Φλ(γ(t)),

where

Γλ =
{
γ ∈ C

(
[0, t1], H1

r (R3)
)

: γ(0) = 0, γ(t1) = Wt1 , ‖γ(t)‖ ≤ C∗ + 2, t ∈ [0, t1]
}
.

It is obvious that Γλ 
= ∅ and Cλ ≤ Dλ for all λ ∈ (0, λ∗). Furthermore, we can easily prove that Cλ → c as 
λ → 0.
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3. Proofs of the main results

Define

Φα
λ = {u ∈ H1

r (R3) : Φλ(u) ≤ α}

and

Ad = {u ∈ H1
r (R3) : inf

v∈Ar

‖u− v‖ ≤ d}

for α, d > 0. It is clear that Ad 
= ∅ for any d > 0 since Ar ⊂ Ad. In the following, we choose some positive 
constant d small enough and find a solution uλ ∈ Ad of problem (1.1) with λ > 0 small enough. In order to 
get a proper (PS) sequence for Φλ, we have the following Lemma.

Lemma 3.1. Suppose that {uλi
} ⊂ Ad with limi→∞ Φλi

(uλi
) ≤ c and limi→∞ Φ′

λi
(uλi

) = 0, where λi > 0
and λi → 0 as i → ∞. Then there exists u0 ∈ Ar such that uλi

→ u0 in H1
r (R3) for d > 0 small enough.

Proof. By (H1)–(H2), we find a c2 > 0 such that

F (s) ≤ a

4s
2 + c2

6 s6. (3.1)

We choose a constant d such that

0 < d < min
{

1, 1
3

(
3aS3

2c2

) 1
4

,

√
3c
a

}
. (3.2)

For convenience, we replace λi by λ. As {uλ} ⊂ Ad, there exist Wλ ∈ Ar and Vλ ∈ H1(R3) such that 
uλ = Wλ + Vλ with ‖Vλ‖ ≤ d. By Lemma 2.5, we can obtain that there exist W0 ∈ Ar and V0 ∈ H1

r (R3), 
such that Wλ → W0 strongly in H1(R3), Vλ → V0 weakly in H1(R3) with ‖V0‖ ≤ d and Vλ → V0 a.e. in 
R

3. Set u0 = W0 + V0, then u0 ∈ Ad and uλ → u0 weakly in H1
r (R3). Together with limi→∞ Φ′

λ(uλ) = 0, 
we get J ′(u0) = 0.

We claim that u0 
≡ 0. Indeed, if u0 ≡ 0, then ‖W0‖ = ‖V0‖ ≤ d. By (3.2), we obtain ‖∇W0‖2 <
√

3c
a . 

On the other hand, by (2.4) and Lemma 2.5, we get ‖∇W0‖2 =
√

3c
a , which is a contradiction. Therefore 

u0 
≡ 0 and J(u0) ≥ c. Moreover, by Lemma 2.4, we have

Φλ(uλ) = J(uλ − u0) + J(u0) + o(1).

Together with limλ→0 Φλ(uλ) ≤ c, we have J(uλ − u0) ≤ o(1). Also, by (3.1),

J(uλ − u0) = a

2‖uλ − u0‖2 −
∫
R3

F (uλ − u0) dx

≥ a

2‖uλ − u0‖2 − a

4‖uλ − u0‖2 − c2
6 ‖uλ − u0‖6

6.

Then by the Sobolev’s embedding theorem, we have

a

4‖uλ − u0‖2 ≤ c2
6 S−3‖∇(uλ − u0)‖6

2 + o(1)

≤ c2
S−3‖uλ − u0‖6 + o(1).
6
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If lim infλ→0 ‖uλ − u0‖ > 0, then lim infλ→0 ‖uλ − u0‖ ≥
(
3aS3/(2c2)

) 1
4 . However, since uλ = Wλ + Vλ, 

u0 = W0 + V0 and Wλ → W0 strongly in H1
r (R3), ‖Vλ‖, ‖V0‖ ≤ d, we have

lim sup
λ→0

‖uλ − u0‖ ≤ lim sup
λ→0

(‖Wλ −W0‖ + ‖Vλ‖ + ‖V0‖)

≤ 2d.

This is a contradiction. Therefore, ‖uλ − u0‖ → 0 in H1
r (R3). �

Lemma 3.1 implies that for some d > 0 satisfying (3.2), β > 0 and λ∗ > 0 such that for u ∈ ΦDλ

λ ∩(Ad\A d
2 )

and λ ∈ (0, λ∗), we have ‖Φ′
λ(u)‖ ≥ β.

Lemma 3.2. There exist α1 > 0 and λ > 0 small enough such that Φλ(γ(s)) ≥ Cλ − α1 implies γ(s) ∈ A
d
2 , 

where γ(s) = U(·/s), s ∈ [0, t1] and U ∈ Ar.

Proof. By the Pohozǎev equality, we have

Φλ(γ(s)) =
(
s

2 − s3

6

)
a

∫
R3

|∇U |2dx + λ

4 ‖U(·/s)‖4.

Noting that ‖U(·/s)‖ is bounded for s ∈ (0, t1], we have

Φλ(γ(s)) =
(
s

2 − s3

6

)
a

∫
R3

|∇U |2dx + O(λ).

We easily obtain

max
s∈[0,t1]

(
s

2 − s3

6

)
a

∫
R3

|∇U |2dx = c

and that the maximum value is achieved only at s = 1. Then there exists a α2 > 0 small enough such that 
whenever |s − 1| ≤ α2, we have γ(s) = U(·/s) ∈ A

d
2 . Together with Cλ → c as λ → 0, there exists a α1 > 0

such that if λ > 0 small enough and Φλ(γ(s)) ≥ Cλ − α1, then |s − 1| ≤ α2 and γ(s) ∈ A
d
2 . �

Lemma 3.3. For any d > 0 and λ > 0 small enough, there exists {un} ⊂ ΦDλ

λ ∩ Ad such that Φ′
λ(un) → 0

as n → ∞.

Proof. Assume by contradiction that for some λ > 0, there is β(λ) > 0 such that |Φ′
λ(u)| ≥ β(λ) for all 

u ∈ ΦDλ

λ ∩Ad. Similar arguments in [34] show that there exists a pseudo-gradient vector field Ψλ in H1
r (R3)

on a neighborhood Yλ of ΦDλ

λ ∩Ad such that

‖Ψλ(u)‖ ≤ 2 min {1, |Φ′
λ(u)|}

and

〈Φ′
λ(u),Ψλ(u)〉 ≥ min {1, |Φ′

λ(u)|} |Φ′
λ(u)|.

Let δλ be a Lipschitz continuous function on H1
r (R3) such that δλ ∈ [0, 1] and
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δλ(u) =
{

1, u ∈ ΦDλ

λ ∩Ad,

0, u ∈ H1
r (R3)\Yλ,

and let ξλ be a Lipschitz continuous function on R such that ξλ ∈ [0, 1] and

ξλ(t) =
{

1, |t− Cλ| ≤ α1
2 ,

0, |t− Cλ| ≥ α1,

where α1 is given in Lemma 3.2. If we set

Eλ(u) =
{
−δλ(u)ξλ(Φλ(u))Ψλ(u), u ∈ Yλ,

0, u ∈ H1
r (R3)\Yλ,

then the following initial value problem

{
d
dtZλ(u, t) = Eλ(Zλ(u, t)),
Zλ(u, 0) = u,

admits a unique global solution Zλ : H1
r (R3) × R+ → H1

r (R3) satisfying

(i) Zλ(u, t) = u, if t = 0 or u /∈ Yλ or |Φλ(u) − Cλ| ≥ α1;

(ii)
∥∥∥∥ d

dt
Zλ(u, t)

∥∥∥∥ ≤ 2, for (u, t) ∈ H1
r (R3) × R+;

(iii) d

dt
Φλ(Zλ(u, t)) ≤ 0.

We adopt similar ideas in [6,8] and obtain that for any s ∈ (0, t1], there is a ts > 0 such that

Zλ(γ(s), ts) ∈ ΦCλ−α1
2

λ , where γ(s) = W (·/s), s ∈ (0, t1].

Let γ0(s) = Zλ(γ(s), t∗(s)), where

t∗(s) = inf
{
t ≥ 0 : Zλ(γ(s), t) ∈ ΦCλ−α1

2
λ

}
.

Then we can prove that γ0(s) is continuous in [0, t1] and ‖γ0(s)‖ ≤ C∗ +2. Therefore, we have γ0 ∈ Γλ with 
maxt∈[0,t1] Φλ(γ0(t)) ≤ Cλ − α1

2 . This is in contradiction with Cλ = infγ∈Γλ
maxs∈[0,t1] Φλ(γ(s)). The proof 

is complete. �
Finally, we give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. In what follows, we fix d > 0 small, in particular, d < 1
3
(
aS3)1/4. By Lemma 3.3, 

there exist a λ∗ > 0 with λ ∈ (0, λ∗) and {un} ⊂ ΦDλ

λ ∩ Ad such that Φλ(un) ≤ Dλ and Φ′
λ(un) → 0 as 

n → ∞. Noting that {un} ⊂ Ad, thanks to Lemma 2.5, {un} is bounded in H1
r (R3) and we may assume 

that limn→∞ ‖un‖2 = κ, where κ ≤
(
d + supu∈Ar

‖u‖
)2. Assume un → uλ weakly in H1

r (R3). Then by [34, 
Corollary 1.26], up to a subsequence, un → uλ strongly in Lp(R3), p ∈ (2, 6) and a.e. in R3. Since un ∈ Ad, 
there exist Un ∈ Ar and wn ∈ H1

r (R3) such that un = Un + wn and ‖wn‖ ≤ d. Due to the compactness 
of Ar, we may assume that for some U ∈ Ar, Un → U strongly in H1

r (R3). Let vn = un − uλ, we have 
‖vn‖ ≤ 3d for n sufficiently large.
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Step 1. We claim that for any δ > 1, up to a subsequence, there holds
∫
R3

f(un)un dx ≤
∫
R3

f(uλ)uλ dx + δ

∫
R3

v6
n dx + on(1).

In fact, by (H2), there exists s0 > 1 such that f(s) ≤ δs5 for all s ≥ s0. Take a function χ(s) ∈ C(R) such 
that χ(s) = 0 if s ≤ 1, χ(s) = f(s)/s5 if s ≥ s0 and χ(s) ∈ [0, δ] for any s ∈ R. Let g(s) = f(s) − χ(s)s5, 
then lims→0 g(s)/s → 0 and lims→∞ g(s)/s5 → 0. It follows from the compactness lemma of Strauss [30]
that ∫

R3

g(un)un dx =
∫
R3

g(uλ)uλ dx + on(1).

Meanwhile, due to the boundedness of χ(s), similar as to Brezis–Lieb Lemma [34, Lemma 1.32], we have
∫
R3

χ(un)
(
u6
n − u6

λ − v6
n

)
dx = on(1).

By the Lebesgue dominated theorem, we get
∫
R3

χ(un)u6
n dx =

∫
R3

χ(un)v6
n dx +

∫
R3

χ(uλ)u6
λ dx + on(1).

Thus, ∫
R3

f(un)un dx =
∫
R3

g(un)un dx +
∫
R3

χ(un)u6
n dx

=
∫
R3

g(uλ)uλ dx +
∫
R3

χ(un)v6
n dx +

∫
R3

χ(uλ)u6
λ dx + on(1)

=
∫
R3

f(uλ)uλ dx +
∫
R3

χ(un)v6
n dx + on(1)

≤
∫
R3

f(uλ)uλ dx + δ

∫
R3

v6
n dx + on(1).

Step 2. We show that ‖∇vn‖2
2 → 0 as n → ∞. In fact, one can get that uλ is a weak solution of

(a + λκ)(−Δu + bu) = f(u), u ∈ H1(R3).

By Step 1 and 〈Φ′
λ(un), un〉 → 0,

(a + λκ)(‖vn‖2 + ‖uλ‖2) ≤
∫
R3

f(uλ)uλ dx + δ

∫
R3

v6
n dx + on(1).

Noting that

(a + λκ)‖uλ‖2 =
∫

f(uλ)uλ dx,
R3
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we get (a + λκ)‖vn‖2 ≤ δ
∫
R3 v

6
n dx + on(1). If ‖∇vn‖2

2 
→ 0 as n → ∞, then by Sobolev’s embedding, we 
know

a‖∇vn‖2
2 ≤ δ

∫
R3

v6
n dx + on(1) ≤ δS−3‖∇vn‖6

2 + on(1),

which implies that

lim inf
n→∞

‖∇vn‖2 ≥
(
δ−1aS3)1/4 .

Due to the arbitrariness of δ > 1,

lim inf
n→∞

‖∇vn‖2 ≥
(
aS3)1/4 ,

which is impossible since d < 1
3
(
aS3)1/4. Thus, ‖∇vn‖2

2 → 0 as n → ∞.

Step 3. We prove that un → uλ strongly in H1(R3). If we have this claim in hand, we immediately get 
Φ′

λ(uλ) = 0 and uλ ∈ ΦDλ

λ ∩Ad. By Step 2, un → uλ strongly in D1,2(R3) and L6(R3). It follows that

(a + λκ)(−Δuλ + buλ) = f(uλ), uλ ∈ H1(R3),

and 
∫
R3 χ(un)v6

n dx → 0 as n → ∞. By Step 1, f(un)un → f(uλ)uλ strongly in L1(R3). Thus, by 
〈Φ′

λ(un), un〉 → 0,

(a + λκ)‖un‖2 =
∫
R3

f(un)un dx + on(1)

=
∫
R3

f(uλ)uλ dx + on(1) = (a + λκ)‖uλ‖2 + on(1).

So, ‖un‖ → ‖uλ‖ as n → ∞. Therefore, un → uλ strongly in H1(R3) for sufficiently small d given and 
uλ 
= 0. The proof is completed. �
Proof of Theorem 1.2. Noting that

Φλ(uλ) = J(uλ) + λ

4 ‖uλ‖4 ≤ Dλ,

we have J(uλ) ≤ Dλ. Meanwhile, for any ϕ ∈ C∞
0 (R3),

0 = Φ′
λ(uλ)ϕ = J ′(uλ)ϕ + λ‖uλ‖2

∫
R3

uλϕdx.

Combining with the fact that uλ ∈ Ad, we know

J ′(uλ)ϕ = −λ‖uλ‖2
∫
R3

uλϕdx → 0 as λ → 0.

From the above, we have

uλ ∈ ΦDλ ∩Ad, J(uλ) ≤ Dλ and J ′(uλ) → 0 as λ → 0.
λ
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Assuming that uλ → u weakly in H1
r (R3), we have J ′(u) = 0. Together with Dλ → c as λ → 0 and 

c ≤ 1
3 (aS) 3

2 , we can obtain that uλ → u strongly in H1
r (R3) by similar arguments as in Lemma 3.1.

Since J(uλ) ≤ Dλ and limλ→0 Dλ = c, we have J(u) ≤ c. On the other hand, by the choice of d in (3.2), 
we can prove that u 
≡ 0, and then J(u) ≥ c. Therefore J(u) = c. In other words, by Lemma 2.5, u is a 
ground state solution of the limit problem of (1.6). The proof of Theorem 1.2 is complete. �

The numerical study of the Kirchhoff-type problem will be continued in Part II of the series.
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