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We consider generalizations of classical function spaces by requiring that a holo-
morphic in Ω function satisfies some property when we approach from Ω, not the 
whole boundary ∂Ω, but only a part of it. These spaces endowed with their natural 
topology are Fréchet spaces. We prove some generic non-extendability results in 
such spaces and generic nowhere differentiability on the corresponding part of ∂Ω.
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1. Introduction

Let Ω be a domain in C or Cd. Let X(Ω) be a set of holomorphic functions in Ω which is a Fréchet space. 
We also assume that the convergence fn −→ f in the topology of X(Ω) implies the pointwise convergence 
fn(z) −→ f(z) for all z ∈ Ω. In order that there exists a non-extendable function, f in X(Ω), it suffices that 
the following holds: For every pair of open balls (b1, b2), satisfying b1 ⊂ b1 ⊂ b2 ∩ Ω and b2 ∩ Ωc �= ∅, there 
exists a function f = fb1,b2 in X(Ω), such that f|b1 does not admit any bounded holomorphic extensions 
on b2. Furthermore, if the above hold, the set {f ∈ X(Ω) : f is non-extendable} is dense and Gδ in X(Ω) [10].

Examples of functions spaces X(Ω) satisfying the above assumptions include most of the classical func-
tions spaces, as H(Ω), A(Ω), Ap(Ω), Hp(Ω), Bergman spaces etc. Most of these spaces are defined as the set 
of holomorphic in Ω functions, satisfying some additional property when we approach the whole boundary 
∂Ω from Ω. We can generalize these spaces by requiring a property to hold when we approach only a part J
of ∂Ω and consider combinations of such spaces. Then, these spaces endowed with their natural topology are 
also Fréchet spaces, which satisfy the above assumptions. We can investigate non-extendability of functions 
belonging to these spaces. The natural assumption is that the part J , is a relatively open subset of the 
boundary ∂Ω.
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A first example is the space X(Ω, V ) = H(Ω) ∩ H∞(V ) containing all holomorphic in Ω functions f
bounded on V , where V is an open subset of Ω. Then, the natural topology is induced by the seminorms 
‖f |Km

‖∞ and ‖f |V ‖∞, where, {Km}∞m=1 is an exhaustive sequence of compact subsets of Ω [13]. We prove 

that if V ∩ ∂Ω is contained in Ωc , then there exist non-extendable functions in X(Ω, V ) and their set is 
dense and Gδ. Here, Ω ⊂ C, but we also discuss some extensions for Ω ⊂ Cd.

Next, we generalize the Bergman spaces considering holomorphic in Ω functions f , integrable on V and 
we prove similar results. Variations of the previous spaces are obtained by requiring f (l) for l in some set 
F ⊂ {0, 1, 2, ...} satisfy the previous requirements. We can also consider several subsets Vi, i ∈ I, where I is 
a finite or infinite denumerable set, and consider the space of holomorphic in Ω functions satisfying different 
properties in each Vi.

If Ω is a Jordan domain and J ⊂ ∂Ω is relatively open, we consider the space A0(Ω, J) to contain all 
holomorphic in Ω functions extending continuously on Ω ∪J , endowed with its natural topology, see also [6]. 
We show that the generic function in A0(Ω, J) is nowhere differentiable on J . Here, the differentiability is 
meant with respect to the parametrization induced by any Riemann map from the open unit disc onto Ω [9], 
or with respect to the position [7]. We notice that in this case, polynomials are dense in A0(Ω, J). Further-
more, we generalize the previous results to domains Ω bounded by a finite number of disjoint Jordan curves. 
We also consider the spaces Ap(Ω, J) containing all functions f ∈ A0(Ω, J), such that all the derivatives 
f (l), 0 ≤ l ≤ p belong to A0(Ω, J), endowed with its natural topology. We show that if Ω is convex, then 
for the generic function f ∈ Ap(Ω, J), the derivative f (p) is nowhere differentiable on J .

2. Preliminaries

Definition 2.1. Let Ω ⊂ Cd be open and connected and f : Ω → C be a holomorphic function. Then, f is 
called extendable if there exist an open and connected set U ⊂ Cd with U ∩ Ω �= ∅ and U ∩ Ωc �= ∅, 
a holomorphic function F : U → C and a component V of U ∩Ω such that F|V = f|V . Otherwise, f is called 
non-extendable [12].

Definition 2.2. Let Ω ⊂ Cd be open and connected and f : Ω → C be a holomorphic function. Then, f is 
called extendable in the sense of Riemann domains, if there exist two open Euclidean balls b1, b2 ⊂ Cd, with

b1 ⊂ b1 ⊂ b2 ∩ Ω, b2 ∩ Ω �= ∅, b2 ∩ Ωc �= ∅,

and a bounded holomorphic function F : b2 → C such that F |b1 = f |b1 . Otherwise the function f is called 
non-extendable in the sense of Riemann domains [10].

Proposition 2.3. Definitions 2.1 and 2.2 are equivalent.

Proof. The proof of Proposition 2.3 is contained in [10]. �
Let Ω ⊂ Cd be open and connected and let X = X(Ω) be a subset of H(Ω).

Definition 2.4. The open connected set Ω ⊂ Cd is called a X-domain of holomorphy if there exists f ∈ X

which is non-extendable [10].

Definition 2.5. The open connected set Ω ⊂ Cd is called weak X-domain of holomorphy if for every pair of 
open Euclidean balls b1, b2 with b2 ∩Ω �= ∅, b2 ∩Ωc �= ∅, b1 ⊂ b1 ⊂ b2 ∩Ω there exists a function fb1,b2 ∈ X

such that the restriction of fb1,b2 on b1 does not have any bounded holomorphic extension on b2 [10].
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Theorem 2.6. We suppose that X = X(Ω) ⊂ H(Ω) is a topological vector space endowed with the usual 
operations +, · and that its topology is induced by a complete metric. We also suppose that the convergence 
fn −→ f in X implies the pointwise convergence fn(z) −→ f(z) for all z ∈ Ω. Then, Definitions 2.4
and 2.5 are equivalent. If the above assumptions hold and Ω satisfies Definitions 2.4 and 2.5, then the set 
{f ∈ X : f is non extendable} is a dense and Gδ subset of X.

Proof. The proof of Theorem 2.6 is contained in [10]. �
It follows that in order to prove that Ω is a X(Ω)-domain of holomorphy, it suffices to prove the following: 

For every pair of Euclidean balls (b1, b2), such that b2 ∩ Ω �= ∅, b2 ∩ Ωc �= ∅, b1 ⊂ b1 ⊂ b2 ∩ Ω there exists 
a function fb1,b2 ∈ X such that the restriction of fb1,b2 on b1 does not have any bounded holomorphic 
extension on b2 [10].

Lemma 2.7. Let γ be a Jordan curve, J ⊂ γ a rectifiable open arc and J ′ ⊂ J a compact arc. Then, J ′ can 
be extended to a rectifiable Jordan curve γ′, such that the interior of γ′ is a subset of the interior of γ.

Proof. The proof of Lemma 2.7 is contained in [8]. �
Lemma 2.8. Let Ω be a domain and J ⊂ ∂Ω a relatively open subset of its boundary. Suppose that Ĉ � Ω
is connected and that ∂Ω � J is contained in Ωc . Then, for every m ∈ N, the set Δm = {z ∈ Ω ∪ J :
dist(z, ∂Ω � J) ≥ 1

m} has connected complement in Ĉ, where Ĉ = C ∪ {∞}.

Proof. Let m ∈ N. The set Δm can be written as follows: Δm =
⋂

w∈∂Ω�J

D(w, 1
m

)c ∩ (Ω ∪ J). Therefore, we 

have that Ĉ�Δm =
⋃

w∈∂Ω�J

D(w, 1
m

) ∪ (Ĉ�Ω) ∪ (∂Ω �J). The difference ∂Ω �J is contained in the union 

of D(w, 1
m ), w ∈ ∂Ω � J , hence Ĉ � Δm =

⋃
w∈∂Ω�J

D(w, 1
m

) ∪ (Ĉ � Ω). Since every open disc is connected, 

Ĉ � Ω is connected and intersects every open disc D(w, 1
m ), w ∈ ∂Ω � J , we conclude that the set Ĉ � Δm

is also connected. �
Definition 2.9. Let L ⊂ ∂D be a relatively open subset of the unit circle. We say that a continuous func-

tion f ∈ C(L) belongs to ZL, if for every θ ∈ L we have that lim sup
y−→θ

∣∣∣∣Ref(y) −Ref(θ)
y − θ

∣∣∣∣ = +∞ and 

lim sup
y−→θ

∣∣∣∣Imf(y) − Imf(θ)
y − θ

∣∣∣∣ = +∞.

Lemma 2.10. Let Ω be a domain and J ⊂ ∂Ω a relatively open subset of its boundary. If K ⊂ Ω ∪ J is a 
compact set, then there exists a larger compact set K ⊂ E ⊂ Ω ∪ J , such that E = E ∩ Ω.

Proof. Obviously K ∩ J = K ∩ Ω is compact and disjoint from the closed set ∂Ω � J . Thus, dist(K ∩ J,

∂Ω � J) > 0. We set ε = 1
2dist(K ∩ J, ∂Ω � J) and consider the set E = K ∪

⋃
τ∈K∩J

D(τ, ε) ∩ Ω. We claim 

that E is compact. Obviously, it suffices to prove that set 
⋃

τ∈K∩J

D(τ, ε) is compact. Consider a sequence 

(xn)n∈N in 
⋃

τ∈K∩J

D(τ, ε). Then, xn = τn + δn, where (τn)n∈N is a sequence in K ∩ J and |δn| ≤ ε, for every 

n ∈ N. Therefore, we can find convergent subsequences of (τn)n∈N and (δn)n∈N, which implies that (xn)n∈N
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has a convergent subsequence in 
⋃

τ∈K∩J

D(τ, ε). It follows easily from the way that E was defined, that every 

point in E can be approximated by points in E ∩ Ω. Hence, the proof is complete. �
3. X(Ω, V ) spaces in CCC

Let Ω ⊂ C be a domain and V ⊂ Ω an open set. We consider the set X(Ω, V ) = H(Ω) ∩ H∞(V ) =
{f ∈ H(Ω) : f|V is bounded}. If V ⊂ Ω and V is bounded, then obviously X(Ω, V ) = H(Ω) and the space 
is endowed with its usual Fréchet topology. Furthermore, Ω is always an H(Ω)-domain of holomorphy and 
the set of non-extendable functions in H(Ω) is Gδ and dense in this space [10], [12]. If V ⊂ Ω and V is not 
bounded, we may have X(Ω, V ) �= H(Ω) but again we can prove that Ω is a X(Ω, V )-domain of holomorphy. 
Actually, this case is covered in the proof of Theorem 3.1 stated below.

Suppose V ∩∂Ω �= ∅. The natural topology in this case is the Fréchet topology induced by the seminorms 
‖f |Km

‖∞ and ‖f |V ‖∞, where, {Km}∞m=1 is an exhaustive sequence of compact subsets of Ω. Obviously, 
X(Ω, V ) satisfies the requirements of Theorem 2.6. Therefore, in order to prove that Ω is a X(Ω, V )-domain 
of holomorphy it suffices to find gb1,b2 = g ∈ X(Ω, V ), for every pair of balls (b1, b2), such that b1 ⊂ b1 ⊂
b2 ∩ Ω, b2 ∩ Ωc �= ∅, so that g|b1 does not admit any bounded holomorphic extension on b2.

Theorem 3.1. Let Ω ⊂ C be a domain and V ⊂ Ω, an open set, such that V ∩ ∂Ω �= ∅. We assume 
that for every ζ ∈ V ∩ ∂Ω there exists a sequence (wn)n∈N contained in Ωc with wn −→ ζ. Then, Ω is 
a X(Ω, V )-domain of holomorphy and the set {f ∈ X(Ω, V ) : f is non-extendable} is dense and Gδ in 
X(Ω, V ).

Proof. Consider a pair of balls (b1, b2) such that b1 ⊂ b1 ⊂ b2 ∩ Ω, b2 ∩ Ωc �= ∅. The set b2 is connected, 
therefore b2 ∩ ∂Ω �= ∅. Let ζ ∈ b2 ∩ ∂Ω. If ζ ∈ ∂Ω � V , we can choose g = gb1,b2 ∈ X(Ω, V ) to be the 

function g(z) = 1
z − ζ

, z ∈ Ω. Then, g is holomorphic on Ω and bounded on V since dist(ζ, V ) > 0. Thus, 

g ∈ X(Ω, V ) and g|b1 does not admit a bounded holomorphic extension on b2, since ζ is a pole. Consider 
the case ζ ∈ ∂Ω ∩ V . By our assumptions, there exist points of Ωc arbitrarily close to ζ. Hence, we can find 

a point w ∈ Ωc ∩ b2. We set g = gb1,b2(z) =
1

z − w
, z ∈ Ω. Similarly to the previous case, g is holomorphic 

on Ω and bounded on V , thus g ∈ X(Ω, V ), but g|b1 does not admit a holomorphic and bounded extension 
on b2. �

Now, we consider some examples of pairs (Ω, V ), as in Theorem 3.1, for whom the assumptions of the 
theorem are not satisfied and we examine whether the conclusion holds or not.

Example 3.2. Let Ω = D(0, 1) �{0} = V . Clearly the point 0 can not be approximated by points outside of Ω. 
Consider Euclidean balls so that b1 ⊂ b1 ⊂ b2 ∩ Ω, b2 ∩ Ωc �= ∅, 0 ∈ b2. Then, if g = gb1,b2 ∈ X(Ω, V ), the 
point 0 is a removable singularity for g. Therefore, g|b1 has always a bounded holomorphic extension to b2.
As a result, Ω is not a X(Ω, V )-domain of holomorphy in the weak sense, hence it is not a X(Ω, V )-domain 
of holomorphy.

Example 3.3. A natural generalization of the previous example can be obtained by replacing {0} with a 
compact set A ⊂ D(0, 1) with γ(A) = 0, where γ(A) denotes the Ahlfors capacity of the set A.

Example 3.4. Let Ω = D(0, 5) �[0, 1] and V = D(0, 2) �[0, 1]. Again, the assumptions of Theorem 3.1 are not 
satisfied as [0, 1] ∩ Ωc = ∅. We will show though, that Ω is, indeed, a X(Ω, V )-domain of holomorphy. Let 
(b1, b2) be a pair of Euclidean balls, such that b1 ⊂ b1 ⊂ b2∩Ω, b2∩Ωc �= ∅ and suppose that b2∩ [0, 1] �= ∅. 
Choose a point β ∈ (0, 1) ∩ b2. The Möbius transformation z 
−→ w(z) = z−β maps [0, β] to the half-line 
z
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[−∞, 0]. It is a well known fact, that the domain C � [−∞, 0] admits a holomorphic branch of logarithm 
with: −π < Im(logw) < π for all w ∈ C � [−∞, 0]. Let f(z) = log( z−β

z ) for z ∈ Ω and g(z) = e−if(z), z ∈ Ω. 
In that case, |g(z)| = |e−if(z)| = eRe(−if(z)) = eIm(f(z)) ∈ (e−π, eπ) for z ∈ V ; thus, g ∈ X(Ω, V ).

We will show that g|b1 does not admit a holomorphic extension on b2. Suppose, by contradiction, that F
is a holomorphic extension of g|b1 on b2. Since, b2 � [0, β] is open and connected, the principle of analytic 
continuation implies that F (z) = e−ilog z−β

z for all z ∈ b2 � [0, β], hence e−π < |F (z)| < eπ for all z ∈
b2 � [0, β]. Furthermore, the function F is assumed to be continuous on b2, therefore by taking limits, we 
conclude that F (z) �= 0 for all z ∈ b2.

Consider a smaller ball b3 such that b3 ⊂ b2, 0 /∈ b3, β ∈ b3. Then, F (z) �= 0 for all z ∈ b3, b3 is a disc 
and F |b3 is holomorphic, therefore there exists a holomorphic branch of logF on b3, namely there exists a 
holomorphic branch of log( z−β

z ) on b3. Furthermore, 0 /∈ b3, so there exists a holomorphic branch of logz
on b3. This implies the existence of a holomorphic branch of log(z − β) on b3, which is absurd.

Finally, if b2 ∩ [0, 1], then b2 intersects the boundary of Ω on the circle C(0, 5). By choosing, ζ ∈ b2 ∩ ∂Ω
and fζ(z) = 1

z−ζ , z ∈ Ω, we are done. Thus, the proof is complete. �
We now proceed to studying a property of functions belonging to the class X(Ω, V ) for pairs (Ω, V )

satisfying some additional assumptions.

Theorem 3.5.

1) Let Ω = V be a Jordan domain, such that its boundary contains an open Jordan arc J , so that every 
compact subarc J ′ ⊂ J is rectifiable.

2) Let Ω be a domain and V ⊂ Ω, a Jordan domain such that V ∩∂Ω contains an open Jordan arc J , such 
that every compact subarc J ′ is rectifiable. We also assume that for every ζ ∈ J there exists a radius 
r = rζ > 0, such that D(ζ, r) ∩ V = D(ζ, r) ∩ Ω.

In both cases 1 and 2, every f ∈ X(Ω, V ) has non-tangential limits almost everywhere in J , with respect to 
the arclength measure.

Proof. Suppose (1) holds. Let f ∈ X(Ω, V ) and consider a compact subarc J ′ ⊂ J . By Lemma 2.7, J ′ can 
be extended to a rectifiable Jordan curve γ, such that the interior of γ is contained in V . Let G ⊂ V be 
the interior of γ and fix a Riemann map φ : D −→ G. Then, we have that (f ◦ φ) · φ′ ∈ H1(D), because f
is bounded on G and φ′ ∈ H1(D) by Theorem 3.12 of [2]. By Theorem 10.1 of [2] we have that f ∈ E1(G)
and Theorem 10.3 of [2] gives us that f has non-tangential limits almost everywhere on J ′. Since, J can be 
written as a countable union of compacts subarcs, the conclusion follows.

The proof of (2) is similar to the first one. Specifically, the same arguments yield the existence of 
n.t. lim

z−→ζ,z∈V
f(z) almost everywhere in J . The additional assumption that for every ζ ∈ J there exists 

a r = rζ > 0, such that D(ζ, r) ∩V = D(ζ, r) ∩Ω yields that the n.t. lim
z−→ζ,z∈Ω

f(z) is essentially the same as 
the aforementioned, hence exists almost everywhere in J with respect to the arclength measure on J . �
4. X(Ω, V ) spaces in CCCd

In this section we consider the spaces X(Ω, V ) for V ⊂ Ω ⊂ Cd where Ω is a domain and V is a bounded 
open subset of Ω. We give sufficient conditions so that Ω is a X(Ω, V )-domain of holomorphy.

Definition 4.1. We say that an open connected subset of Cd, (d ≥ 1) satisfies the star condition if for every 
point ζ ∈ ∂Ω there exists a point w ∈ Ωc, arbitrarily close to ζ, and v ∈ Cd a non-zero vector, such that 
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the (d − 1)-dimensional complex hyperplane H = w + {v}⊥ = {z ∈ Cd :< z, v >=< w, v >} does not 
intersect Ω [5].

One can see that if Ω ⊂ Cd satisfies the star condition, then Ω is a Caratheodory domain, namely Ω = Ω◦. 
If d = 1, every Caratheodory domain Ω ⊂ C satisfies the star condition, whereas in dimensions d ≥ 2 one 
can prove that at least, convex open sets satisfy the condition [5].

Theorem 4.2. Let Ω ⊂ Cd be a domain which satisfies the star condition and V ⊂ Ω a bounded open set. 
Then, Ω is a X(Ω, V )-domain of holomorphy.

Proof. As we have previously discussed, it suffices to prove that for every pair of Euclidean balls (b1, b2), 
such that b1 ⊂ b1 ⊂ b2 ∩ Ω, b2 ∩ Ωc �= ∅, there is a function f ∈ X(Ω, V ), such that f |b1 does not admit a 
bounded holomorphic extension on b2.

The set b2 is connected and intersect both Ω and Ωc. Therefore, there exists a point ζ ∈ ∂Ω ∩ b2. 
By the star condition, there exists a point w ∈ b2 ∩ Ωc, w = (w1, w2, ..., wd) and a complex hyperplane 
H = w+ {v}⊥ of complex dimension d − 1, where v = (v1, v2, ..., vd) is a non-zero vector of Cd, such that H
does not intersect Ω. Consider the function z 
−→ f(z) = 1

(z1 − w1)v1 + ... + (zd − wd)vd
for z ∈ Hc. Since 

V is bounded, it follows easily that f ∈ X(Ω, V ). Suppose that f|b1 has a bounded holomorphic extension F
on b2. The set b2 ∩Hc is open and connected. This can be shown by counting real dimensions. Specifically, 
b2 has real dimension 2d, whereas H has real dimension 2d −2. Hence, the principle of analytic continuation 
implies that F (z) = f(z) for all z ∈ b2 ∩Hc, which contradicts the fact that F is bounded on b2. �

Next, we present a second condition under which the conclusion of Theorem 4.2 remains valid.

Theorem 4.3. Let Ω ⊂ Cd be an open pseudoconvex set and V ⊂ Ω a bounded open set, such that Ω has 
a neighborhood basis of pseudoconvex open sets. Furthermore, we suppose that Ω = Ω◦. Then, we conclude 
that Ω is a X(Ω, V )-domain of holomorphy.

Proof. It suffices to prove that for every pair of Euclidean balls (b1, b2), such that b1 ⊂ b1 ⊂ b2 ∩ Ω, 
b2 ∩ Ωc �= ∅, there exists a function f ∈ X(Ω, V ), so that f|b1 does not admit a bounded holomorphic 
extension on b2. The condition Ω = Ω◦ implies that b2 ∩ Ωc �= ∅. Let ζ ∈ b2 ∩ Ωc. By our assumptions 
there exists a pseudoconvex open set G ⊃ Ω, such that ζ /∈ G. Let Z be the connected component of b1 in 
b2 ∩G. Choose a point A ∈ b1. Then, A ∈ G, ζ /∈ G, so [A, ζ] ∩ ∂G �= ∅. Let σ be the nearest point of the 
compact set [A, ζ] ∩ ∂G to ζ. Then, the segment [A, σ) is contained in G and specifically [A, ζ) ⊂ Z. Since 
G is pseudoconvex, if (zn)n∈N is a sequence in [A, σ) converging to σ, there exists a holomorphic function 
f : G −→ C, such that sup

n∈N

|f(zn)| = ∞ [12]. The fact that V ⊂ Ω ⊂ G implies that f ∈ X(Ω, V ). Suppose 

that f|b1 has holomorphic and bounded extension, F , on b2. We have that F (z) = f(z) for all z ∈ b1 ⊂ Z

and Z is open and connected. Therefore, F (z) = f(z) for all z ∈ Z by the principle of analytic continuation. 
Hence, sup

n∈N

|F (zn)| = sup
n∈N

|f(zn)| = ∞, which contradicts the fact that F is bounded on b2. �

5. Generalized Bergman and other spaces

In this section we consider natural generalizations of spaces X(Ω), we studied in sections 1 and 4. Under 
the assumptions of Theorem 2.6 and some additional ones we prove that the domain Ω is a X(Ω)-domain 
of holomorphy for these new spaces X(Ω).

Let Ω be a domain, V ⊂ Ω an open subset of Ω and F ⊂ {0, 1, 2, ...}. The set X(Ω, V, F ) is the set of 
functions f ∈ H(Ω), such that f (l) is bounded for every l ∈ F . We equip X(Ω, V, F ) with the topology 
|V



D. Lygkonis, V. Nestoridis / J. Math. Anal. Appl. 465 (2018) 825–838 831
induced by the following seminorms: ‖f |Km
‖∞ , m = 1, 2, ..., 

∥∥∥f |(l)V

∥∥∥
∞

, l ∈ F , where {Km}∞m=1 is an 

exhaustive sequence of compact subsets of Ω. Clearly, the assumptions of Theorem 2.6 are satisfied.

Corollary 5.1. If for every point ζ ∈ V ∩ ∂Ω, there exist points of Ωc arbitrarily close to ζ, then Ω is a 
X(Ω, V, F )-domain of holomorphy and the set {f ∈ X(Ω, V, F ) : f is non-extendable} is Gδ and dense in 
X(Ω, V, F ).

Proof. Let (b1, b2) be a pair of Euclidean balls, such that b1 ⊂ b1 ⊂ b2 ∩Ω, b2 ∩Ωc �= ∅. The set b2 ∩ ∂Ω is 
non-empty. Choose a point ζ ∈ b2 ∩∂Ω. If ζ ∈ ∂Ω �V , then for fζ(z) =

1
z − ζ

, z ∈ Ω, f (l) remains bounded 

on V for every l ∈ F , but f does not admit a bounded holomorphic extension on b2. If, on the other hand, 
ζ ∈ ∂Ω ∩V , we choose a point w ∈ b2∩Ωc and consider the function fw(z) = 1

z − w
, z ∈ Ω. Similarly, to the 

previous argument f (l) is bounded on V for every l ∈ F , but f can not have a bounded and holomorphic 
extension on b2, because the point w is a pole. �

Another generalization is obtained if we replace the pair (V, F ) by a finite or infinite denumerable family 
of open subsets of Ω, {Vj}j∈J and assign to each Vj a set Fj ⊂ {0, 1, 2, ...} demanding f (l)|Vj

be bounded 

for every l ∈ Fj . The space we obtain in this case is 
⋂
j∈J

X(Ω, Vj , Fj) and its topology is induced by 

the seminorms ‖fKm
‖∞ , m = 1, 2, ..., 

∥∥f (l)
∥∥
Vj

, l ∈ Fj , j ∈ J . This space satisfies the requirements of 

Theorem 2.6, hence if we additionally assume that for all j ∈ J , Vj ∩ ∂Ω ⊂ Ωc we obtain that Ω is a ⋂
j∈J

X(Ω, Vj , Fj)-domain of holomorphy and the set of non-extendable functions is Gδ and dense in this 

space. The proof is similar to the one of Corollary 5.1 and is omitted.

Remark 5.2. If Fj = {0} for all j ∈ J , then the spaces 
⋂

j∈J X(Ω, Vj) and X(Ω, 
⋃

j∈J Vj) coincide if J is finite, 
but might not be the same if J is infinite. Generally, we have the inclusion X(Ω, 

⋃
j∈J Vj) ⊂

⋂
j∈J X(Ω, Vj). 

We have already mentioned that both of those spaces satisfy the requirements of Theorem 2.6. The sufficient 
conditions we provide for the conclusion of Theorem 2.6 to hold are equivalent to each other. Specifically, ⋃
j∈J

Vj ∩ ∂Ω ⊂ Ωc is equivalent to 
⋃
j∈J

Vj ∩ ∂Ω ⊂ Ωc , because the intersection of Ωc with 
⋃
j∈J

Vj should 

be a closed set containing 
⋃
j∈J

Vj ⊃
⋃
j∈J

Vj .

Let Ω ⊂ C be a domain, V ⊂ Ω a bounded open set and p ∈ [1, ∞). Let Y (Ω, V, p) = {f ∈ H(Ω) :∫
V
|f |p < ∞}. The topology of this space is the Fréchet topology induced by the seminorms ‖f |Km

‖∞ , m =

1, 2, ... and 1
|V | (

∫
V

|f |p) 1
p , f ∈ Y (Ω, V, p), where {Km}∞m=1 is an exhaustive sequence of compact subsets 

of Ω. One can easily see that in this case Y (Ω, V, p) ⊃ X(Ω, V ); thus, if for every ζ ∈ V ∩∂Ω there exist points 
of Ωc arbitrarily close to ζ, then Ω is a Y (Ω, V, p)-domain of holomorphy. One can even consider the space 

Z(Ω, V, p) = {f ∈ H(Ω) :
∫
V

|f |a < ∞ for all 1 ≤ a < p} =
⋂

1≤a<p

Y (Ω, V, p), (1 < p), for whom the same 

results hold. The Fréchet topology of Z(Ω, V, p) is defined by the seminorms ‖f |Km
‖∞, and (

∫
V

|f |an)
1

an , 

where an is any strictly increasing sequence converging to p.
The last space we will discuss about will concern us further in the next section. Let Ω ⊂ C be a domain 

and J � ∂Ω a relatively open subset of its boundary. The set A(Ω, J) contains all functions f ∈ H(Ω), 
such that f can be extended continuously on Ω ∪ J . For m = 1, 2, ... we define the sets Δm = {z ∈ Ω ∪ J :
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dist(z, ∂Ω � J) ≥ 1
m
, |z| ≤ m}. Then, the sets Δm are compact subsets of Ω ∪ J and every compact subset 

of Ω ∪ J is eventually contained in all of them. We equip A(Ω, J) with the Fréchet topology induced by the 
seminorms ‖f |Δm

‖∞ , m = 1, 2, ..., f ∈ A(Ω, J). The space A(Ω, J) satisfies the requirements of Theorem 2.6
and if we additionally assume that every point in J can be approximated by points in Ωc, using similar 
arguments as before, we can prove that the set {f ∈ A(Ω, J) : f is non-extendable} is Gδ and dense in 
A(Ω, J).

Furthermore, if F ⊂ {0, 1, 2, ...} we define A(Ω, J, F ) = {f ∈ H(Ω) : f (l) ∈ A(Ω, J) for all l ∈ F} and 
equip this set with the topology induced by the seminorms 

∥∥f (l)|Δm

∥∥ , m = 1, 2, ... , l ∈ F ∪ {0}. Similar 
results hold for this space too. In particular, the results hold for the spaces Ap(Ω, J), p ∈ {0, 1, 2...} ∪{+∞}. 
In the case p < +∞ the space Ap(Ω, J) corresponds to the set F = {0, 1, 2, ..., p}. In the case p = +∞ the 
set F coincides with the set {0, 1, 2, ...}. The reader can find the precise definition of the spaces Ap(Ω, J) at 
the introduction of section 7, where we study those spaces elaborately.

Finally, we can combine any of the aforementioned spaces, considering functions which belong to some 
of them simultaneously. The topology in that case is the smallest topology which contains the topology of 
every space being considered. The resulting space satisfies the requirements of Theorem 2.6 and with the 
appropriate additional assumptions we can prove that the set of non-extendable functions is Gδ and dense.

6. Nowhere differentiability in spaces A(Ω, J)

6.1. The open unit disc

Let D = D(0, 1) be the open unit disc and J � ∂D a relatively open subset of its boundary. Furthermore, 
we consider the sets Δm = {z ∈ D∪J : dist(z, ∂D�J) ≥ 1

m
}. As we have already mentioned in the previous 

section, every compact subset of D∪ J is eventually contained in every Δm. We equip the set A(D, J) with 
the Fréchet topology induced by the seminorms ‖f |Δm

‖∞ , m = 1, 2, ... and the set A(D, J) becomes a 
complete metric space.

We note that a function defined on J can be equivalently thought as a 2π-periodic function defined on a 
suitable open set J ′ of R. Thus, by abuse of notation we will write u(y) instead of u(eiy), y ∈ J ′ and refer 
to J ′ simply as J .

Let Jm = J∩Δm, m = 1, 2, .... Then the sequence {Jm}∞m=1 is an exhaustive sequence of compact subsets 
of J .

The result of this section is the following:

Theorem 6.1. The set of functions f ∈ A(D, J), such that Ref |J , Imf |J are not differentiable with respect 
to the parameter θ, θ ∈ R, at any point z = eiθ ∈ J contains a Gδ and dense set.

First of all, we state some definitions and lemmata which are needed for the proof of Theorem 6.1.
For m, n ∈ N we define the following sets:

Dn = {u ∈ C(J) : for every θ ∈ J there exists y ∈ (θ − 1
n
, θ + 1

n
) ∩ J such that |u(y) − u(θ)| > n|y − θ|}

(6.1)

En = {f ∈ A(D, J) : Ref |J ∈ Dn} (6.2)

Dn,m = {u ∈ C(J) : for every θ ∈ Jm there exists y ∈ (θ− 1
n
, θ+ 1

n
)∩Jm such that |u(y)−u(θ)| > n|y−θ|}

(6.3)

En,m = {f ∈ A(D, J) : Ref |J ∈ Dn,m} (6.4)
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It easy to check that the aforementioned sets are related in the following way: 
∞⋂

m=1
Dn,m = Dn and 

∞⋂
m=1

En,m = En.

Lemma 6.2. For every m, n ∈ N the set En,m is open in A(D, J).

Proof. The proof is similar to the proof of Lemma 2.2 in [3] and is omitted. �

Corollary 6.3. The set S =
∞⋂

m,n=1
En,m =

∞⋂
n=1

En is a Gδ subset of A(D, J).

Proof. The proof follows directly from Lemma 6.2. �
Lemma 6.4. The set S is a dense subset of A(D, J).

Proof. We know that S �= ∅ because it contains a complexification of the Weierstrass function [4]. If f0 ∈ S

and p is a polynomial, then one can easily see that f0 + p ∈ S. Furthermore, it is true that the polynomials 
are dense in A(D, J). Indeed, if g ∈ A(D, J), then by Mergelyan’s theorem ([13]), taking into account 
Lemma 2.8, for every m ∈ N we can find a polynomial pm such that ‖(g − pm)|Δm

‖∞ < 1
m . The sequence 

{pm}∞m=1 converges to g in the topology of A(D, J). These two observations imply that the set of translations 
{f0 + p : p polynomial} ⊂ S and is dense in A(D, J). �

We proceed now to the proof of Theorem 6.1

Proof. Lemmata 6.2 and 6.4 imply that the set S is Gδ and dense subset of A(D, J). Since multiplication 
by i is an automorphism of A(D, J), we conclude that the set iS is also a Gδ and dense subset of A(D, J). 
Hence, the set R = S ∩ iS is Gδ and dense by application of Baire’s category theorem and consists of 
functions which are not differentiable with respect to the parameter θ, θ ∈ R, at any point z = eiθ ∈ J . �
6.2. Jordan domains

We consider now the case where Ω is a Jordan domain and J � ∂Ω a relatively open subset of its 
boundary. The space A(Ω, J) consists of all functions f ∈ H(Ω), such that f can be continuously extended 
on Ω ∪J . The topology in this space is induced by the seminorms ‖f |Δm

‖∞ , m = 1, 2, ... where Δm = {z ∈
Ω ∪J : dist(z, ∂Ω �J) ≥ 1

m}. We also define the set A0(Ĉ�Ω, J) to be the set of all functions f ∈ H(C �Ω)
such that f vanishes to infinity and can be extended continuously on (C � Ω) ∪ J . The Fréchet topology 

of this space is induced by the seminorms 
∥∥∥f |Δ̃m

∥∥∥
∞

, m = 1, 2, ... where Δ̃m = Δm ∩ D(0,m). In this 
section nowhere differentiability is meant with respect to the parametrization of J , which is induced by any 
Riemann map φ. The extension of the Riemann map is guaranteed by the Osgood–Caratheodory theorem. 
Before we state the results of this section we recall the Definition 2.9 which states that if L ⊂ ∂D is a 
relatively open subset of the unit circle, we say that a continuous function f ∈ C(L) belongs to ZL, if for 

every θ ∈ L we have that lim sup
y−→θ

∣∣∣∣Ref(y) −Ref(θ)
y − θ

∣∣∣∣ = +∞ and lim sup
y−→θ

∣∣∣∣Imf(y) − Imf(θ)
y − θ

∣∣∣∣ = +∞.

Proposition 6.5. Let Ω be a Jordan domain and J � ∂Ω a relatively open subset of its boundary. Consider 
also φ : D −→ Ω, a Riemann map and the open set L = φ−1(J) ⊂ ∂D. The set of functions f ∈ A(Ω, J)
such that (f ◦ φ)|L ∈ ZL is a Gδ dense subset of A(Ω, J).
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Proposition 6.6. Let Ω be a Jordan domain and J � ∂Ω a relatively open subset of its boundary. If φ : D −→
Ĉ � Ω is a Riemann map and L = φ−1(J), the set of functions f ∈ A0(Ĉ � Ω, J), such that (f ◦ φ)|L ∈ ZL

is a dense and Gδ subset of A0(Ĉ � Ω, J).

The proofs of the Propositions 6.5 and 6.6 are similar to the proofs of Theorem 3.1, 3.2 in [9] and thus, 
omitted.

6.3. Domains bounded by a finite number of disjoint Jordan curves

Let Ω be a bounded domain whose boundary consists of a finite number of disjoint Jordan curves. If 
V0, V1, ..., Vn−1 are the connected components of Ĉ �Ω, ∞ ∈ V0 and Ω0 = Ĉ � V0, Ω1 = Ĉ � V1, ..., Ωn−1 =
Ĉ � Vn−1, there exist Riemann maps φi : D −→ Ωi, i ∈ I = {0, 1, ..., n − 1}. Additionally, we consider 
Ji ⊂ ∂Ωi, i ∈ I, relatively open and φ−1

i (Ji) = Li ⊂ ∂D, relatively open subsets of the unit circle, 
such that there exist at least an i ∈ I for whom Ji is distinct from ∂Ωi. Let J = J0 ∪ J1 ∪ ... ∪ Jn−1. 
We define A(Ω, J) = {f ∈ H(Ω) : f can be extended continuously on Ji, i ∈ I}. Consider also the sets 
Δ(i)

m = {z ∈ Ωi ∪ Ji : dist(z, ∂Ωi � Ji) ≥
1
m
} for i ∈ I and m ∈ N. Here, we use the convention, that if 

∂Ωi�Ji is an empty set, then Δ(i)
m = Ωi for every m ∈ N. Lemma 2.8 implies that for fixed i ∈ I the sets Δ(i)

m

have connected complement in the Riemann sphere. Let Δm =
⋂
i∈I

Δ(i)
m , m ∈ N. The sequence {Δm}∞m=1

consists of compact subsets of Ω ∪J , such that every compact set of Ω ∪J is eventually contained to every Δm. 

Moreover, Ĉ�Δm =
n−1⋃
i=0

Ĉ�Δ(i)
m . For every i ∈ I, the set Ĉ�Δ(i)

m is open, connected, therefore Ĉ�Δm has 

at most n connected components. If m is sufficiently large, the number of components is exactly n, each of 
whom contains a connected component of Ĉ� (Ω ∪J). Finally, we set L(i)

m = φ−1
i (Δ(i)

m ∩Ji). For fixed i ∈ I, 
the sets L(i)

m form a sequence of compact subsets of Li, such that every compact subset of Li is eventually 
contained in all of them. We equip the set A(Ω, J) with the Fréchet topology induced by the seminorms 
‖f |Δm

‖∞ , m = 1, 2, ..., f ∈ A(Ω, J).
We are interested in functions f ∈ A(Ω, J) for whom (f ◦ φi)|Li

∈ ZLi
for every i ∈ I. For k ∈ N we 

set D(i)
k = {u ∈ C(Li) : for all θ ∈ Li there exists y ∈ (θ − 1

k , θ + 1
k ) ∩ Li : |u(y) − u(θ)| > k|y − θ|}

and E(i)
k = {f ∈ A(Ω, J) : Re(f ◦ φi)|Li

∈ D
(i)
k }. Consider also the sets D(i)

k,m = {u ∈ C(Li) : for all θ ∈
Lm

(i) there exists y ∈ (θ− 1
k , θ+

1
k ) ∩L(i)

m : |u(y) −u(θ)| > k|y−θ|} and E(i)
k,m = {f ∈ A(Ω, J) : Re(f◦φi)|Li

∈

D
(i)
k,m}. Similarly to what we have done in the previous cases, we can show that 

∞⋂
m=1

D
(i)
k,m = D

(i)
k and 

∞⋂
m=1

E
(i)
k,m = E

(i)
k . Furthermore, for every k, m ∈ N and i ∈ I, the set E(i)

k,m is open in A(Ω, J). The proof of 

the last statement is similar to that of Lemma 6.2 and thus omitted.

Lemma 6.7. The set S =
n−1⋂
i=0

∞⋂
k,m=1

E
(i)
k,m is dense in A(Ω, J).

Proof. We only prove that the set S(0) =
∞⋂

k,m=1

E
(0)
k,m is dense in A(Ω, J). Let f ∈ A(Ω, J). By the Laurent 

decomposition [1] there exist fi ∈ A(Ωi, Ji), such that f = f0 + f1 + ... + fn−1. We set g = f1 + ... + fn−1, 
hence we have that f = f0 + g. The argument we present afterwards is a modification of the proof of [9].

Let m ∈ N and consider the set Δm. Then, Δm ⊂ Ω0 ∪ J0 ⊂ Ω0 and Ĉ � Δm has n connected compo-
nents, each of whom contains a connected component of Ĉ � (Ω ∪ J). Specifically, it is true that for i ∈ I, 
Vi ∪ (∂Ωi � Ji) ⊂ Ĉ � Δ(i)

m . The function φ−1
0 : Ω0 −→ D is a homeomorphism, thus the set φ−1

0 (Δm) ⊂
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D∪L0 ⊂ D is compact and Ĉ�φ−1
0 (Δm) has n connected components each of whom contains a connected 

component of Ĉ�φ−1
0 (Ω ∪J). Hence, there exists a rational function rm with poles off φ−1

0 (Δm), such that 
‖g ◦ φ0 − rm‖φ−1

0 (Δm) <
1
m . By Runge’s pole sliding theorem we can assume that the poles of rm are con-

tained in Ĉ�φ0
−1(Ω ∪J), therefore we may assume that rm◦φ−1

0 ∈ A(Ω, J). By repeating this procedure for 
m = 1, 2, ... we obtain a sequence of rational functions {rm}∞m=1, such that rm◦φ−1

0 ∈ A(Ω, J) and converges 
to g in the topology of A(Ω, J). Consider the function f0 ∈ A(Ω0, J0). Then, according to Proposition 6.5, 
there exists a sequence {gm}∞m=1 in A(Ω0, J0), such that gm◦φ0 ∈ ZL0 for m = 1, 2, ..., which converges to f0. 
Therefore, the sequence {gm + rm ◦ φ0

−1}∞m=1 converges to f , in the topology of A(Ω, J). For y �= θ in the 

same connected component of L0 we have that, 
∣∣∣∣Re(gm + rm ◦ φ−1

0 )(φ0(y)) −Re(gm + rm ◦ φ−1
0 )(φ0(θ))

y − θ

∣∣∣∣ ≥∣∣∣∣Re(gm)(φ0(y)) −Re(gm)(φ0(θ))
y − θ

∣∣∣∣−
∣∣∣∣Re(rm)(y) −Re(rm)(θ)

y − θ

∣∣∣∣ by the triangle inequality. Since the poles of 

rm are off φ−1
0 (Ω ∪ J), we have that rm is differentiable on L0. Therefore, taking the lim sup as y −→ θ+

yields that the sequence {gm + rm ◦ φ0
−1}∞m=1 is contained in S(0) =

∞⋂
k,m=1

E
(0)
k,m. Hence, Baire category 

theorem implies that S(0) is a Gδ and dense set in A(Ω, J), because it is a countable intersection of open 
dense sets.

In a similar way we prove that the sets S(i) are Gδ and dense in the complete space A(Ω, J). Baire’s 

theorem applied once more implies that the set S =
n−1⋂
i=0

S(i) is also dense and Gδ in A(Ω, J). The proof is 

complete. �
Remark 6.8. The arguments used in the previous proofs imply easily the following:

1. If Ω is a Jordan domain and J ⊂ ∂Ω is a relatively open set, then the polynomials are dense in the 
space A(Ω, J).

2. If Ω is a bounded domain whose boundary consists of a finite number of disjoint Jordan curves and J
is a relatively open subset of ∂Ω, then the rational functions with poles off Ω ∪ J are dense in A(Ω, J). 
In fact, we can fix n poles, each one in one hole of Ĉ � Ω.

In 1, we use Mergelyan’s theorem [13]. In 2 we need an extension of it, where Kc has a finite number of 
components [13].

7. Nowhere differentiability in spaces Ap(Ω, J)

Let Ω be a simply connected domain, Ω �= C. It is well known that there exists a Riemann map φ :
D −→ Ω. Suppose also, that there exist a relatively open subset L of the unit circle and a relatively open 
subset J of ∂Ω, such that there is a homeomorphism φ̃ : D ∪ L −→ Ω ∪ J which extends φ.

We define the space Ap(Ω, J) similarly to the space A0(Ω, J) = A(Ω, J). Specifically, a function f belongs 
to Ap(Ω, J) if f is holomorphic on Ω and for every 0 ≤ l ≤ p, l ∈ N ∪{0} the derivative of order l belongs to 
A(Ω, J). The topology in this space is induced by the seminorms 

∥∥f (l)|Δm

∥∥
∞ , m = 1, 2, ... where {Δm}∞m=1

is the usual sequence of compact subsets of Ω ∪ J . We are interested in functions f ∈ Ap(Ω, J) such that 
Re(f (p) ◦ φ̃)|L, Im(f (p) ◦ φ̃)|L are nowhere differentiable.

We assume the following:

1. The space A0(Ω, J) contains a Gδ dense subset of functions f , such that Re(f ◦ φ̃)|L, Im(f ◦ φ̃)|L are 
nowhere differentiable.



836 D. Lygkonis, V. Nestoridis / J. Math. Anal. Appl. 465 (2018) 825–838
2. For every ζ ∈ J there exist r > 0 and C = Cζ > 0, such that for every z, w ∈ D(ζ, r) ∩ Ω, there 
exists a rectifiable curve γz,w ⊂ D(ζ, r) ∩ Ω joining z and w, such that length(γz,w) ≤ C|z − w| and 
D(ζ, r) ∩ Ω ⊂ Ω ∪ J .

3. For every compact set K ⊂ Ω ∪J , there exist a positive constant M = MK and a compact set L ⊂ Ω ∪J , 
such that for every z, w ∈ K ∩ Ω there exists a rectifiable curve γz,w ⊂ L ∩ Ω joining z and w with 
length(γz,w) ≤ MK . See also, [11], [15].

Theorem 7.1. If the assumptions 1, 2 and 3 hold for the simply connected domain Ω then for every p ∈
{0, 1, 2, ...} there is a set Sp ⊂ A(p)(Ω, J), Gδ and dense in A(p)(Ω, J), such that for every f ∈ Sp the 
functions Re(f (p) ◦ φ̃)|L, Im(f (p) ◦ φ̃)|L are nowhere differentiable.

Proof. Let f ∈ A0(Ω, J) and consider the function F (z) =
∫

γa,z

f(ζ)dζ, z ∈ Ω, where a is a fixed point 

of Ω and γa,z is a rectifiable curve in Ω joining a and z. The function F is well defined, because of the 
independence of the path of integration in the simply connected domain Ω. We will prove that there is a 
unique continuous extension of F , F̃ on Ω ∪ J . For that purpose consider a point ζ ∈ J . By the second 
assumption there exists a radius r > 0 and a constant C = Cζ > 0, such that for every z, w ∈ D(ζ, r) ∩ Ω
there exists a rectifiable curve γz,w ⊂ L ∩ Ω joining z and w with length(γz,w) ≤ MK . Hence, we have 

that if z, w ∈ D(ζ, r) ∩ Ω, then |F (z) − F (w)| =
∣∣∣∫γa,z

f(ζ)dζ, z ∈ Ω
∣∣∣ ≤ ∥∥f |D(ζ,r)∩Ω

∥∥
∞ · C · |z − w| and ∥∥f |D(ζ,r)∩Ω

∥∥
∞ < +∞ because D(ζ, r) ∩ Ω ⊂ Ω ∪J and is a compact set. Therefore, F is Lipschitz continuous 

in a neighborhood of ζ ∈ Ω, hence it can be uniquely extended continuously in ζ. Since, ζ was arbitrarily 
chosen, F can be continuously extended on Ω ∪ J . Hence, if f ∈ A0(Ω, J), we have that F ∈ A1(Ω, J).

We will now prove that the map A0(Ω, J) � f −→ F ∈ A0(Ω, J) is continuous. Obviously, it is a linear 
map. Let K be a compact set contained in Ω ∪J . By Lemma 2.10 there exists a larger compact set K ⊂ E ⊂
Ω ∪J such that E ∩ Ω = E. Without loss of generality, we can assume that the base point a is contained in K. 
By the third assumption, there is a constant M = ME > 0 and a compact set L = LE ⊂ Ω ∪ J , such that 
any two points z, w ∈ E ∩ Ω can be joined with a rectifiable curve γz,w ⊂ L ∩ Ω with length(γz,w) ≤ ME . 

Therefore, we have sup
z∈K

|F (z)| ≤ sup
z∈E

|F (z)| = sup
z∈E∩Ω

|F (z)| = sup
z∈E∩Ω

∣∣∣∣∣∣∣
∫

γa,z

f(ζ)dζ

∣∣∣∣∣∣∣ ≤ ME · sup
ζ∈L

|f(ζ)| and 

obviously sup
z∈K

|F ′(z)| = sup
z∈K

|f(z)|. Thus, the map A0(Ω, J) � f −→ F ∈ A0(Ω, J) is continuous.

Finally, we can prove the theorem. Consider the function T : A0(Ω, J) × C −→ A1(Ω, J) which maps a 
pair (f, w) to the function F +w. One can easily see that T is linear, bijective, and it follows from our last 
argument that T is also continuous. The spaces A0(Ω, J) × C, A1(Ω, J) are Fréchet spaces, hence the open 
mapping theorem [14] suggests that T is a linear isomorphism. Therefore, the image of the set S0 × C is 
a Gδ dense set in A1(Ω, J) and consists of functions g ∈ A1(Ω, J), such that Re(g′ ◦ φ̃)|L, Im(g′ ◦ φ̃)|L are 
nowhere differentiable. By using the same argument successively, we can prove the same result for p > 1. �
Corollary 7.2. If Ω is a bounded convex domain and J � ∂Ω a relatively open subset of its boundary, the set 
of functions f ∈ Ap(Ω, J), such that Re(f (p) ◦ φ̃), Im(f (p) ◦ φ̃) are nowhere differentiable on L = φ−1(J), 
where φ : D −→ Ω is a Riemann map, contains a Gδ and dense set.

Proof. Proposition 6.5 yields that the first assumption of Theorem 7.1 is true for A0(Ω, J). Moreover, the 
second assumption is also true, because by the convexity of Ω we can set Cζ = 1 for every ζ ∈ J . Finally, 
let K ⊂ Ω ∪ J be a compact set. We set L =

⋃
z∈K

[a, z], where a ∈ Ω is fixed. This set is also compact, 

because K and [0, 1] are compact. If z, w are points in K, then they can be joined with the rectifiable curve 
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[z, a] ∪ [a, w]. Hence, we can set MK to be supz,w∈K(|a − z| + |a −w|). The last supremum is finite because 
K is compact. Since, the assumptions 1, 2 and 3 are true, Theorem 7.1 yields the result. �

Now, consider the case where Ω �= C is an unbounded convex domain and J � ∂Ω a relatively open 
subset of its boundary. There exists a Riemann map φ : D −→ Ω∪ {∞}. Let a be a point, such that a /∈ Ω. 
The Möbius transformation z 
−→ μ(z) = 1

z−a is an automorphism of the extended plane Ĉ. It maps Ω to a 
Jordan domain V and J to a relatively open subset of ∂V, J ′, such that 0 = μ(∞) ∈ ∂V � J ′. Furthermore, 
the function μ ◦ φ : D −→ V is a Riemann map. Consider the function T : A0(V, J ′) −→ A0(Ω, J), which 
maps f ∈ A0(V, J ′) to f ◦ μ. Then, T is linear, bijective and continuous. The continuity follows from: 
‖(f ◦ μ)|Δm

‖∞ =
∥∥f |μ(Δm)

∥∥
∞ because μ(Δm) is a compact set. Hence, by the open mapping theorem, the 

map T is a linear isomorphism between the Fréchet spaces A0(V, J ′) and A0(Ω, J), therefore the image 
of the set S0 ⊂ A(V, J ′), whose existence is guaranteed by Lemma 6.4, is a dense and Gδ set. Moreover, 
T (S0) consists of functions g = f ◦ μ, f ∈ A(V, J ′), such that Re(f ◦ μ ◦ φ)|L, Im(f ◦ μ ◦ φ)|L are nowhere 
differentiable, namely Re(g ◦φ)|L, Im(g ◦φ)|L are nowhere differentiable. Therefore, the first assumption of 
Theorem 7.1 is true. Using similar arguments as in Corollary 7.2, we can prove that assumptions 2 and 3 
are also valid in this case. In conclusion, we have the following corollary:

Corollary 7.3. If Ω is a unbounded convex domain and J � ∂Ω a relatively open subset of its boundary, the 
set of functions f ∈ Ap(Ω, J), such that Re(f (p) ◦ φ̃), Im(f (p) ◦ φ̃) are nowhere differentiable on L = φ−1(J), 
where φ : D −→ Ω is a Riemann map, contains a Gδ and dense set.

Remark 7.4. Using conditions analogous to assumptions 1, 2, 3 we can prove that for every convex domain Ω, 
the set of polynomials is dense in Ap(Ω, J), p ∈ {0, 1, 2, ...} ∪{∞}. What are possible generalizations of this 
fact?

8. Nowhere differentiability in A(Ω, J) with respect to the position

Consider the space A(Ω, J), where Ω is a Jordan domain and J � ∂Ω, a relatively open subset of its 

boundary. Let S(Ω, J) = {f ∈ A(Ω, J) : lim sup
z→z0,z∈J

∣∣∣∣f(z) − f(z0)
z − z0

∣∣∣∣ = +∞ for every z0 ∈ J}. If the class 

S(Ω, J) is non-empty, it contains functions that are not differentiable, with respect to the position, at any 
point z ∈ J . Here, nowhere differentiability with respect to the position means that for every point z0 ∈ J , 

the limit of the quotient 
∣∣∣∣f(z) − f(z0)

z − z0

∣∣∣∣ as z → z0, (z ∈ J � {z0}) does not exist in C. Using the fact that 

the polynomials are dense in the space A(Ω, J), we will prove that either S(Ω, J) is void or it is a Gδ and 
dense set. We note that if the parametrization induced by any Riemann map φ : D −→ Ω is smooth, with 
non-vanishing derivative in J , then Proposition 6.5 yields that S(Ω, J) is non-empty and in fact, Gδ-dense 
in A(Ω, J).

For m, n ∈ N we consider the sets En,m = {f ∈ A(Ω, J) : for all z0 ∈ Jm there exists a point z ∈

(Jm � {z0}) ∩D(z0, 
1
n

) such that
∣∣∣∣f(z) − f(z0)

z − z0

∣∣∣∣ > n}, where Jm = J ∩ Δm, m = 1, 2, ....

Lemma 8.1. For every m, n ∈ N the set En,m is open in A(Ω, J).

Theorem 8.2. If the set S(Ω, J) is non-empty, then it is Gδ-dense in A(Ω, J). Hence, the set of functions 
that are not differentiable at any point of J , with respect to the position, contains a Gδ-dense set.

The proofs of Lemma 8.1 and Theorem 8.2 are similar to the proofs we present in Lemmata 6.2, 6.3, thus 
they are omitted. We note that Lemma 8.1 and Theorem 8.2 are analogous to results stated in [7].
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Remark 8.3. In a private communication, Christoforos Panagiotis proved that for every Jordan domain Ω, 
it holds that S(Ω, ∂Ω) �= ∅; this implies obviously that S(Ω, J) �= ∅. Combining that with the above, we 
conclude that S(Ω, J) is Gδ and dense in A(Ω, J).

Acknowledgments

Some results of the present paper relate to discussions held during a Research in pairs program at 
Cirm-Lumini on May 2017.

References

[1] G. Costakis, V. Nestoridis, I. Papadoperakis, Universal Laurent series, Proc. Edinb. Math. Soc. (2) 48 (3) (2005) 571–583.
[2] P.L. Duren, Theory of Hp Spaces, Academic Press, N.Y. and London, 1970.
[3] A. Eskenazis, Topological genericity of nowhere differentiable functions in the disc algebra, Arch. Math. (Basel) 103 (1) 

(2014) 85–92, see also arXiv :1311 .0142.
[4] A. Eskenazis, K. Makridis, Topological genericity of nowhere differentiable functions in the disc and polydisc algebras, 

J. Math. Anal. Appl. 420 (1) (2014) 435–446, see also arXiv :1311 .1176.
[5] N. Georgakopoulos, Holomorphic extendability in Cn as a rare phenomenon, arXiv :1611 .05367.
[6] N. Georgakopoulos, V. Mastrantonis, V. Nestoridis, Relations of the spaces Ap(Ω) and Cp(∂Ω), Results Math. (2018), 

https://doi .org /10 .17863 /CAM .21571, in press.
[7] K. Kavvadias, K. Makridis, Nowhere differentiable functions with respect to the position, submitted for publication, see 

also arXiv :1701 .04875.
[8] V. Liontou, V. Nestoridis, Jordan domains with a rectifiable arc in their boundary, submitted for publication, see also 

arXiv :1705 .02254.
[9] V. Mastrantonis, C. Panagiotis, Nowhere differentiable functions of analytic type on products of finitely connected planar 

domains, Monatsh. Math. (2017), https://doi .org /10 .1007 /s00605 -017 -1129 -8, see also arXiv :1608 .08235.
[10] V. Nestoridis, Domains of holomorphy, Ann. Math. Québec 42 (1) (2018) 101–105, see also arXiv :1701 .00734.
[11] V. Nestoridis, I. Zadik, Padé approximants, density of rational functions in A∞(Ω) and smoothness of the integration 

operator, J. Math. Anal. Appl. 423 (2) (2015) 1514–1539, see also arXiv :1212 .4394.
[12] R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math., 

vol. 108, Springer-Verlag, N.Y., 1998.
[13] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw–Hill Inc., 1967.
[14] W. Rudin, Functional Analysis, 2nd edition, McGraw–Hill Inc., 1991.
[15] W. Smith, D.M. Stolyarov, A. Volberg, Uniform approximation of Bloch functions and the boundedness of the integration 

operator on H∞, Adv. Math. 314 (2017) 185–202, see also arXiv :1604 .05433.

http://refhub.elsevier.com/S0022-247X(18)30432-3/bib436F4E655061s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib447572656Es1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib45736B65s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib45736B65s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib45736B654D616B72s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib45736B654D616B72s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib47656F7267s1
https://doi.org/10.17863/CAM.21571
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib4B6176764D616B72s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib4B6176764D616B72s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib4C696F4E657374s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib4C696F4E657374s1
https://doi.org/10.1007/s00605-017-1129-8
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib446F48s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib4E6573745A6164s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib4E6573745A6164s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib52616E6765s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib52616E6765s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib5275s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib527564s1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib536D5374566Fs1
http://refhub.elsevier.com/S0022-247X(18)30432-3/bib536D5374566Fs1

	Localized versions of function spaces and generic results
	1 Introduction
	2 Preliminaries
	3 X(Ω,V) spaces in C
	4 X(Ω,V) spaces in Cd
	5 Generalized Bergman and other spaces
	6 Nowhere differentiability in spaces A(Ω,J)
	6.1 The open unit disc
	6.2 Jordan domains
	6.3 Domains bounded by a ﬁnite number of disjoint Jordan curves

	7 Nowhere differentiability in spaces Ap(Ω,J)
	8 Nowhere differentiability in A(Ω,J) with respect to the position
	Acknowledgments
	References


