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Strong solutions of p-dimensional stochastic differential equations dXt = b(Xt, t)dt +
σ(Xt, t)dWt, Xs = x that can be represented locally in explicit simulation
form Xt = φx,s

(∫ t

s
Vs,udWu, t

)
are considered. Here; W is a multidimensional 

Brownian motion; u → Vs,u, φx,s are continuous functions; and b, σ, φx,s are locally 
continuously differentiable. The following three-way equivalence is established: 
1) There exists such a representation from all starting points (x, s), 2) Vs,u, φx,s

satisfies a set differential equations, and 3) b, σ satisfy commutation relations. (For 
generality, the function Vs,t is allowed to depend upon φx,s via Vs,t = Us,tφx,s for 
some operators Us,t.) Moreover, construction theorems, based on a diffeomorphism 
between the solutions X and the strong solutions to a simpler Itô integral equation, 
with a possible deterministic component, are given. Finally, motivating examples 
are provided and its importance in simulation methods, including sequential Monte 
Carlo, financial risk assessment and path-dependent option pricing, is explained.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

One often confines selection of stochastic differential equation (SDE) models to those facilitating calcu-
lation and simulation. For example, the popularity of the inaccurate Black–Scholes model is only justifiable 
through the evaluation ease of the resulting derivative product formulae. Indeed, Kunita [18, p. 272] writes 
in his notes on SDEs that “It is an important problem in applications that we can compute the output from 
the input explicitly”. We shall call such solutions explicit solutions.

Doss [5] and Sussmann [21] were apparently the first to solve stochastic differential equations through 
use of differential equations. In the multidimensional setting, Doss imposed the Abelian condition on the 
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Lie algebra generated by the vector fields of coefficients and showed, in this case, that strong solutions, 
Xx

t , of Fisk–Stratonovich equations are representable as Xx
t = ρ(Φ(x, W·)t, Wt), for some continuous ρ, 

Φ solving differential equations. Under the restriction of C∞ coefficients, Yamato [22] extended the work 
of Doss by dispensing with the Abelian assumption in favor of less restrictive q step nilpotency, whilst also 
introducing a simpler form for his explicit solutions Xx

t = u(x, t, (W I
t )I∈F ). Here, u solves a differential 

equation, and (W I
t )I∈F are iterated Stratonovich integrals with integrands and integrators selected from (

t,W 1
t , ...,W

d
t

)
. Another substantial work on explicit solutions to stochastic differential equations is due 

to Kunita [18, Section III.3]. He considers representing solutions to time-homogeneous Fisk–Stratonovich 
equations via flows generated by the coefficients of the equation under a commutative condition, and, more 
generally, under solvability of the underlying Lie algebra. Kunita’s work therefore generalizes Yamato [22].

There is related, more recent work on simulating stochastic differential equations through stochastic 
Taylor’s theorem, exponential Lie series and sinh-log series. These methods employ iterated stochastic 
integrals and/or ordinary differential equation (ODE) approximation over small time. One can learn more 
about these methods from e.g. Ben Arous [1], Castell [3], Hu [9], Kloeden and Platen [11], Castell and 
Gaines [4] and Malham and Wiese [19]. These methods are general in the sense that they usually do not 
require commutator conditions between the coefficient vector fields. Still, significant coefficient smoothness 
is often required and it is usually found that the computational costs associated with numerically solving 
the ODEs or iteratively integrating are greater than direct use of Euler or Milstein methods on the SDE 
of interest. As our interest stems from computationally intensive applications, we turn our attention to 
less-general, computationally-efficient methods.

Our representations do not employ stochastic integrals (even non-iterated ones) nor ODEs in the man-
ner mentioned above and consequently can facilitate efficient simulation compared to Euler and Milstein 
methods. A typical use is the following (Explicit Simulation Algorithm):

(1) Simulate a Gauss–Markov process, which will be denoted Yt herein.
(2) Use φ to map to a desired process Xt, where φ is some average of the φx,s used herein.
(3) Possibly project down to a weak solution of a lower dimensional SDE.
(4) Possibly use importance sampling to create a weak solution to yet another SDE with different drift.

At each successive step the number and complexities of the SDEs that can be handled increases.

Example 1. We summarize a current use of the Explicit Simulation Algorithm with results from this paper 
in simulation based option pricing, financial risk assessment and sequential Monte Carlo.

Heston [8] introduced a stochastic volatility model with closed form European-call-option prices for stock, 
bond and foreign currency spot prices. Let B, β to be (scalar) independent standard Brownian motions. 
Then, the Heston model is:

d

(
St

Vt

)
=
(

μSt

ν − �Vt

)
dt +

(√
1 − ρ2StV

1
2
t ρStV

1
2
t

0 κV
1
2
t

)(
dBt

dβt

)
, (1.1)

with parameters μ ∈ R, ρ ∈ [−1, 1] and ν, �, κ > 0. St, the price part, is a stochastic exponential but the 

exponent involves 
∫ t

0 V
1
2
s dβs with β and V being dependent so stochastic integral approximations would 

appear needed. The volatility component is just the Cox–Ingersoll–Ross (CIR) model. The diffusion vector 
fields do not commute i.e. [σ1, σ2] 

.= (∇σ1)σ2 − (∇σ2)σ1 �= 0 so we can not obtain explicit strong solutions 
of the desired form but the Explicit Simulation Algorithm still works. Kouritzin [14] used Theorem 2 below 
in steps (1), (2) above to show that the extended Heston price model, consisting of St above along with a 
collection of Ornstein–Uhlenbeck processes, has an explicit strong solution of the form considered here under 
Condition (C) of Kouritzin [14]. From there, an explicit weak solution for the Heston price was obtained by 
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projection as in step (3) above. Finally, Condition (C) was dispensed with using Girsanov’s theorem as in 
step (4). Suppose ε > 0. Kouritzin [14] shows that the Heston (price and volatility) model (1.1) has explicit 
weak solution:

St = S0 exp
(√

1−ρ2

t∫
0

V
1
2
s dBs+

[
μ− νρ

κ

]
t+

[
ρ�

κ
− 1

2

] t∫
0

Vsds + ρ

κ
(Vt −V0)

)

Vt =
n∑

i=1
(Y i

t )2, ηε = inf {t : Vt ≤ ε} and

Lt = exp

⎧⎨⎩ν − νκ
κ2

⎡⎣ln(Vt) − ln(V0) +
t∫

0

κ2 − νκ − ν

2Vs
+ � ds

⎤⎦⎫⎬⎭
up until ηε with respect to new probability measure

P̂ (A) = E[1ALT∧ηε
] ∀A ∈ FT ,

where νκ = nκ2

4 and {Y i
t }ni=1 are Ornstein–Uhlenbeck processes. It is important to note: V and B are 

independent so 
∫ t

0 V
1
2
s dBs is conditionally Gaussian and there is no need to approximate stochastic integrals. 

(This Condition (C) in Kouritzin [14] would make Lt ≡ 1 and P̂ = P .) American and Asian options were 
then priced efficiently using these explicit formulas and Monte Carlo simulations. Kouritzin and MacKay [17]
also use the Explicit Simulation Algorithm based upon work herein to produce explicit weak solutions to a 
generalized Bates model (with jumps), where the adjective generalized is used because there is an extra drift 
term in the price equation (that arises for certain insurance product prices). Further, they assess insurer’s 
risk in Guaranteed Minimum Withdrawl Benefit insurance using Monte Carlo simulations with these explicit 
solutions. In current work, Kouritzin and MacKay [16] use (branching particle) sequential Monte Carlo to 
improve performance of path-dependent option pricing. Kouritzin [13] and the results (Theorem 2 and 
Example 5) herein are used to show that the Heston model yields a second weak solution with the formula 
for St unchanged but

dVt =
(
κ2

4 + κχ
√
Vt − �Vt

)
dt + κ

√
Vtdβ̂t

Lt = exp

⎧⎨⎩ν − κ2

4
κ2

⎡⎣ln
(
V̂t

V0

)
+

t∫
0

3κ2

8 − ν
2

V̂s

ds + �t

⎤⎦− χβ̂t −
χ2

2 t

⎫⎬⎭
with respect to the new probability measure P̂ (A) = E[1ALT∧ηε

] ∀A ∈ FT up until the time ηε =
inf {t : Vt ≤ ε} that the volatility dips too low. (We presented the time-homogeneous-coefficient case for V
here for simplicity. The more general case is given in Example 5 below.) If one simulates multiple independent 
copies {(Si, V i, Li)}Ni=1 with either Heston representation in this example, then one finds that the weighted 
empirical measures of the path processes converge a.s. to the process distribution of the Heston model

1
N

N∑
i=1

Li
T δSi

[0,T ],V
i
[0,T ]

(s[0,T ], v[0,T ]) → PHeston(s[0,T ], v[0,T ]),

where (s[0,T ], v[0,T ]) solve (1.1) with respect to PHeston, and path-dependent option pricing can be done 
(with the celebrated LS algorithm). However, if the option is over any significant time period, then the 
weights Li

T will diverge without some type of (unbiased) resampling, branching or interaction to level them. 
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Kouritzin and MacKay [16] use branching particle sequential Monte Carlo with these explicit solutions to 
keep the weights relatively equal and all particles effective.

The first two steps of the Explicit Simulation Algorithm involve classification of which Itô processes 
Xx,s

t , starting at (x, s), are representable as a time-dependent function of a simple stochastic integral 
φx,s

(∫ t

s
Vs,udWu, t

)
, which was initially motivated by filtering applications (see Kouritzin [12]). Our deter-

mination of φx,s, Vs,u also facilitates an effective means of calculation and simulation in other applications. 
To simulate, one merely needs to compute the Gauss–Markov process 

∫ t

s
Vs,udWu at discrete times and 

substitute these samples into φx,s, which is often known in closed form and otherwise is the solution of 
differential equations that can be solved numerically a priori. 

∫ t

s
Vs,udWu =

∫ t

s
Vs,u(Xu)dWu can depend 

upon X but not in a way that will destroy its Gaussian distribution nor make simulation difficult.
We require commutator conditions for (step (2) and) our explicit strong solutions herein, which is a 

significant restriction. However, (i) the drift vector field need not strictly commute with the diffusion vector 
fields, (ii) non-commuting diffusion vector fields can sometimes be handled (in a weak sense) by considering 
a higher dimensional SDE (see the Explicit Simulation Algorithm), (iii) importance sampling methods 
can be used to handle more non-commuting drift vector fields. Actually, it is already known that one can 
have explicit solutions under commutator conditions and our work is quite related to the earlier works of 
Yamato [22] and Kunita [18]. However, compared to these early works, our work features time-dependent 
coefficients and a different representation that is very useful in simulation. We compare our results to 
Yamato [22] and Kunita [18] in Section 4.

Our explicit simulation is without (Euler or Milstein) bias and is often orders of magnitude faster than 
Euler or Milstein methods when applicable and high accuracy is desired (see Kouritzin [14]). Our repre-
sentations also make properties of certain stochastic differential equations readily discernible. Finally, as 
demonstrated in Karatzas and Shreve [10, Proposition 5.2.24], explicit solutions can be useful in establishing 
convergence for solutions of stochastic differential equations.

In order to describe our method, we recall the state-space diffeomorphism mapping method has been 
used to construct solutions to interesting stochastic differential equations from solutions to simpler ones. 
The idea of this method is to change the infinitesimal generator L of a simple Itô process to the generator 
L corresponding to a more complicated Itô process via Lf(x) = {L(f ◦ Λ−1)} ◦ Λ(x). This corresponds 
to using Itô’s formula on Xt = Λ−1(ξt), where ξ is a diffusion process with infinitesimal generator L. For 
related examples, we refer the reader to the problems in Friedman [7, page 126] or Ethier and Kurtz [6, 
page 303].

Motivated by applications in filtering, Kouritzin and Li [15] and Kouritzin [13] used differential equation 
methods to study: “When can global, time-dependent diffeomorphisms be used to construct solutions to Itô 
equations?”, “What scalar Itô equations can be solved via diffeomorphisms?”, and “How can one construct 
these diffeomorphisms?”. They considered scalar solutions in an open interval D to the time-homogeneous 
stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x, (1.2)

which are of the form φx
(∫ t

0 VudWu, t
)
, and showed that all nonsingular solutions of this form were actually 

(time-dependent) diffeomorphisms Λ−1
t (ξt) with ξ satisfying

dξt = (χ− κξt)dt + dWt, ξ0 = Λ0(x).

A nonsingular solution in this scalar case was interpreted as finiteness of 
∫ y

λ
σ−1(x)dx for some fixed point 

λ and all y ∈ D. (Their methods involve non-stochastic differential equations that can continue to hold in 
the singular situations when global diffeomorphisms fail.)
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For our current work, we suppose henceforth that D ⊂ R
p is a bounded convex domain, T > 0, and 

define

DT =
{

D if σ, b do not depend on t

D × [0, T ) if either do

so (x, s) ∈ DT means x ∈ D when DT = D. We also let σ(Xt)dWt imply Itô integration and σ(Xt) • dWt

Stratonovich. Then, we resolve the question: “When can we explicitly solve vector-valued Itô equations

dXt = b(Xt, t)dt + σ(Xt, t)dWt, Xs = x, (1.3)

with the dimensions of Xt, Wt being p, d respectively, through representations of the form Xx,s
t =

φx,s
(∫ t

s
Vs,udWu, t

)
?”. This question is more precisely broken into two separate important questions: “For 

which σ and b does such a strong-local-solution representation exists?” and “What conditions are required 
on φ and V for such representations with 

∫ t

s
Vs,udWu =

∫ t

s
Vs,u(Xu)dWu still being Gauss–Markov?” Equiv-

alently, we consider “When can the solutions to the Fisk–Stratonovich equation

dXx
t = h(Xx

t , t)dt + σ(Xx
t , t) • dWt, (1.4)

with

h = b− 1
2

d∑
j=1

{∇ϕσj}σj on DT (1.5)

and σj denoting the jth column of the matrix σ, be locally represented in this manner?” It follows from, 
for example, Kunita [18, p. 239] that the unique local solutions to (1.3) and (1.4) are equal if (1.5) holds 
and σ is twice continuously differentiable or satisfies the Fisk–Stratonovich acceptable condition in D, 
the latter being discussed in Protter [20, Chapter 5]. We work with Itô equations to avoid these stronger 
assumptions on σ but still relate b and h through (1.5). Also, to obtain simple, concrete necessary and 
sufficient conditions for such a representation, we consider all solutions starting from each (x, s) ∈ DT . 
Under natural regularity conditions, we answer these question by showing the equivalence of the following 
three conditions: 1) The SDEs (1.3) have our local-solution-representations for all starting points (x, s) ∈ DT . 
2) The representation pair φx,s, Vs,t satisfy a system of differential equations. 3) The SDE coefficients σ and 
h satisfy simple commutator conditions. In the process of establishing this three-way equivalence, we also 
answer the question “When is (1.3) locally diffeomorphic to an SDE with a simple diffusion coefficient?” 
i.e. “When will it have a representation as in (1.6), (1.7) to follow?”.

Given precise conditions of when an Itô equation has such a representation, the next natural ques-
tions we answer are: “What form do the solutions have?” and “How do you construct such solutions?” 
In order to include as many interesting examples as possible we will only require local representation 
Xx,s

t = φx,s
(∫ t

s
Vs,udWu, t

)
and allow σ to have rank less than min(p, d). By allowing the rank of σ(x)

to be less than p one can handle time-dependent coefficients, treating time as an extra state. The second 
advantage from allowing lesser rank than min(p, d) is the extra richness afforded by appending a determin-
istic equation into the diffeomorphism solution. A third, important benefit of this general rank condition 
is the possibility of producing explicit weak solutions to SDEs where no explicit strong solution exists (see 
Kouritzin [14]). In our construction results, we show that φ is constructed via a time-dependent diffeomor-
phism Λt, which in turn is defined in terms of σ. The diffeomorphism separates a representable SDEs into 
deterministic and stochastic differential equations: Λt(Xt) = (Xt, X̃t), where X̃t ∈ R

p−r is deterministic 
and satisfies the differential equation
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d

dt
X̃t = h̃(X̃t, t), (1.6)

while Xt is a Gauss–Markov process satisfying

dXt = (θ(X̃t, t) + β(X̃t, t)Xt)dt +
(
Ir

∣∣∣ κ(X̃t, t)
)
dWt. (1.7)

κ is determined (within an equivalence class) by σ while θ, h̃ and β can be anything (subject to dimensional 
and differentiability regularity conditions). These parameters allow us to handle a whole class of nonlinear
drift coefficients b for a given σ in the SDE (1.3) for Xt = Λ−1

t (Xt, X̃t).
In the next section, we introduce notation and state the main existence results. In Section 3, we build off 

of these existence results to give our construction results, illustrated with simple applications. We compare 
our work to prior work of Yamato and Kunita in Section 4. The proofs of all main results are postponed to 
Section 5.

2. Notation and existence results

Let (Wt)t≥0 be a standard d-dimensional Brownian motion with respect to filtration {Ft}t≥0 satisfying 
the usual hypotheses on a complete probability space (Ω, F , P ). We will use φx,s to denote a representation 
function and x to denote a starting point as in the introduction. On the other hand, ϕ will denote a variable 
with the same dimension p as φx,s and x.

For functions of time or paths of a stochastic process, we use Zt and Z(t) interchangeably. For a matrix 
V , Vj will denote its jth column vector and Vi,j the ith element of this jth column. 0j (0j) means a row 
(column) of j 0’s.

Bz(δ) denotes an open Euclidean ball centered at z with radius δ > 0. Suppose m, r ∈ N, O ⊂ R
m is open 

and I ⊂ [0, T ) is an interval. Then, C(I) is the continuous functions on I and Cr(O) denotes the continuous 
functions whose partial derivatives up to order r exist and are continuous on O. Moreover, Cr,1(O × I)
denotes the continuous functions g(ϕ, t) whose mixed partial derivatives in ϕ ∈ O up to order r and in t ∈ I

up to order 1 all exist and are continuous functions on O× I. C1(O× I) = C1,0(O× I) ∩C0,1(O× I). (We 
only require one-sided derivatives in time to exist at interval endpoints.) For a vector function g of both 
ϕ ∈ R

p and t, ∇ϕg is the Jacobian matrix of g, that is (∇ϕg)i,j = ∂ϕj
gi, while ∇g will include the time 

derivative as the last column. (A similar notation will be used for vector functions of y ∈ R
d and t.) f ◦ g

will denote the composition of functions f ◦ g(x) = f(g(x)).
The purpose of our representations is to simulate a class of processes in an efficient manner, which leads 

to a dilemma. We would like to allow Vs,t to depend upon Xx,s for generality but not in a way that would 
destroy the ease of simulation. Our approach to this dilemma is to allow Vs,t = Us,tφ

x,s(y·, ·) to be defined by 
operators Us,t on the functions φx,s(yu, u)

∣∣
u∈[s,t] but then impose the condition that the result Us,tφ

x,s(y·, ·)
can not depend upon y. As we will expose below, this basically allows Vs,t to depend upon some hidden 
deterministic part of X but not the purely stochastic part, saving the Gaussian nature of

Y s
t =

t∫
s

Us,uφ
x,s(Y s

· , ·)dW (u) =
t∫

s

Us,uφ
x,s(0, ·)dW (u) (2.1)

so it can be computed off-line, which is the point of this work.
φx,s must be differentiable enough to apply Itô’s formula and allow room for random process Y s

t to 
move. For fixed s, t and path y ∈ C([s, t]; Rd), Us,t is a mapping C([s, t]; Rp) → C([s, t]; Rd×d). (Us,t will 
be forced to be constant in y. Hence, when we apply Us,t to φx,s(·, ·) below we are effectively applying it 
to φx,s(0, ·).) Further constraints on t → Us,tφ

x,s, in particular the imposition of a group structure, will be 



540 M.A. Kouritzin, B. Rémillard / J. Math. Anal. Appl. 473 (2019) 534–566
set in Conditions C2, C3 below while the role of Us,t in preserving the Guassian character of Y s
t will become 

clearer in Example 4. The precise regularity conditions for potential representations Xx,s
t = φx,s (Y s

t , t), 
Y s
t =

∫ t

s
Us,uφ

x,s(0, ·)dW (u) follow:

C1: For each (x, s) ∈ DT , there is a t0 = tx,s0 > s and a convex neighborhood N x,s ⊂ R
d of 0 such that 

φx,s ∈ C2,1(N x,s × [s, t0); Rp) and t → Us,tφ
x,s(y·, ·) ∈ C1([s, t0); Rd×d).

C2: φx,s, Us,t start correctly

φx,s(0, s) = x, Us,sφ
x,s(0, s) = Id, ∀(x, s) ∈ DT . (2.2)

C3: Us,tφ
x,s is non-singular on N x,s × [s, t0) (with matrix inverse denoted by U−1

s,t φ
x,s) and satisfies

Us,tφ
x,s(y, u) = Us,tφ

x,s(0, u) (2.3)

as well as

U−1
s,t φ

x,s(yt, t)
d

dt
Us,tφ

x,s(yu, u)
∣∣
u=t

= d

dt
Uu,tφ

φx,s(yu,u),u(yu, u)
∣∣
u=t

. (2.4)

The purpose of the first part of C3, (2.3), is to preserve the Gaussian nature of X (while still allowing Vs,t

to depend on X in some way) as discussed above. The role of the second part of C3, (2.4), is to force a type 
of (semi-)group structure on Us,tφ

x,s. Combined, C3 will allow our representation function t → φx,s(·, t) to 
contain a deterministic, dynamic portion of X.

(2.2), (2.4) imply

U−1
s,t φ

x,s(yt, t)
d

dt
Us,tφ

x,s(yu, u)
∣∣
u=t

= U−1
t,t φ

φx,s(yt,t),t d

dt
Uu,tφ

φx,s(yu,u),u∣∣
u=t

(2.5)

and therefore that Us,tφ
x,s is a (two parameter) group. We use (2.3) to economize the notation Us,tφ

x,s(y·, ·)
to Us,tφ

x,s.
Now, define the Ft-stopping time

τx,s = min (tx,s0 , inf{t > s : Y s
t /∈ N x,s or (φx,s(Y s

t , t), t) /∈ DT })

and let

Rx,s = ∪
t≥0

{
(y, t) : P ((Y s

t , t) ∈ B(y,t)(δ), t ≤ τx,s) > 0, ∀δ > 0
}
. (2.6)

There is structure that can be imposed upon φx,s, Us,t that will turn out to be equivalent to the existence 
of our explicit strong local solutions.

Definition 1. An (x, s, σ, h)-representation is a pair φx,s, Us,t satisfying (C1, C2, C3) such that the following 
system of differential equations:

∇yφ
x,s(y, t) = σ(φx,s(y, t), t)U−1

s,t φ
x,s, (2.7)

∂tφ
x,s(y, t) = h(φx,s(y, t), t) (2.8)

hold for all (y, t) ∈ Rx,s and ∂s∇yφ
x,s(0, s), ∂s∂tφx,s(0, s), ∂xi

∇yφ
x,s(0, s) and ∂xi

∂tφ
x,s(0, s) exist as 

continuous functions of (x, s) ∈ DT . Here and below, ∂tφx,s(0, s) means ∂tφx,s(0, t)
∣∣ .

t=s
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Notice that Us,t only appears as (the matrix inverse of) Vs,t = Us,tφ
x,s so we will only be concerned with 

solving for Us,tφ
x,s for the φx,s of interest.

Now, our explicit solutions are:

Xx,s
t = φx,s(Y s

t , t) on [s, τx,s). (2.9)

Our first main result establishes two necessary and sufficient conditions for all Xx,s, defined in (2.9), to be 
strong local solutions to

dXt = b(Xt, t)dt + σ(Xt, t)dWt, Xs = x (2.10)

on [s, τx,s). The function h is always related to b through (1.5) and Us,tφ
x,s comes into the necessary and 

sufficient commutator conditions through generator

A(x, s) = d

dt
Us,tφ

x,s
∣∣
t=s

. (2.11)

It follows from (2.3) that A does not depend upon y.

Theorem 1. The following are equivalent:

a) σ ∈ C1(DT ; Rp×d), h ∈ C1(DT ; Rp), there is a unique strong solution to (2.10) on [s, τx,s) for each 
(x, s) ∈ DT , and this solution has explicit form φx,s(Y s

t , t) with Y s
t defined in (2.1) and φx,s, Us,t

satisfying C1, C2, C3.
b) There is a (x, s, σ, h)-representation φx,s, Us,t for each (x, s) ∈ DT .
c) σ ∈ C1(DT ; Rp×d), h ∈ C1(DT ; Rp) and the commutator conditions:

(∇ϕσk)σj = (∇ϕσj)σk, for all j, k ∈ {1, ..., d}, (2.12)

(∇ϕh)σj = (∇ϕσj)h + ∂tσj − σAj , for all 1 ≤ j ≤ d, (2.13)

hold on DT for some A ∈ C(DT ; Rd×d).

Remark 1. The case where (2.12) holds but (2.13) may not hold will be handled in Theorem 2 to follow.

Remark 2. When (a) or (c) are known, then there could be multiple φx,s, Us,t pairs satisfying (2.7), (2.8). 
However, the extra solutions to these differential equations will generally not satisfy (2.3) so they will not 
correspond to a (x, s, σ, h)-representation nor necessarily be useful in simulation. For example, in (5.26)
of the proof of (c) implies (b) below we use A(φs,x(u, 0), u), which does not depend upon y, instead of 
A(φs,x(u, y), u), which would generally cause Us,t to violate (2.3).

Remark 3. Theorem 1 simplifies in the time-invariant h, σ coefficient case. Clearly, one only needs to check 
the commutator conditions on D versus DT . However, the second commutator condition actually changes 
in form to:

(∇ϕh)σj − (∇ϕσj)h = σBj , for all 1 ≤ j ≤ d, (2.14)

where B(ϕ) = −A(ϕ, 0). Indeed, the left hand side of (2.14) does not depend on time so the right side can 
not either.
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Remark 4. Theorem 1 also simplifies when d = 1, which corresponds to appending a deterministic equa-
tion and allowing time dependence to the case considered in Kouritzin [13]. In this d = 1 case, (2.12) is 
automatically true and (2.13) becomes

(∇ϕh)σ = (∇ϕσ)h + ∂tσ − σA. (2.15)

2.1. Simple examples solving the commutator conditions

Often, we are interested in determining which SDEs (within a class) have the representation. In this case, 
the commutator conditions often can be solved quickly. The easiest way to ensure (2.12) holds is to have 
each column a constant multiple of another σj = cjσ1 for all j say. However, there are other possibilities. 
In general, we suppose Theorem 1 (a) hence (b) and solve for σ, h in (c).

Example 2. Let p = d = 2 and D ⊂ R be a domain. Suppose a, e, f, g, m, n are C2(D)-functions and our 
Fisk–Stratonovich equation has time-invariant coefficients:

h(ϕ1, ϕ2) =
(

f (ϕ1) g (ϕ2)
m (ϕ1)n (ϕ2)

)
, σ (ϕ1, ϕ2) =

(
a (ϕ1) 0
e (ϕ2) e (ϕ2)

)
. (2.16)

Moreover, suppose a(ϕ1) and e(ϕ2) are never 0. Then, σ is always non-singular and it follows by (2.7) as 
well as the mean value theorem that for any u ∈ [s, t]

φx,s(y, u) − φx,s(ŷ, u) = σ(φx,s(y∗, u))U−1
s,uφ

x,s · (y − ŷ)

with y∗ ∈ N x,s for y, ŷ ∈ N x,s and any possible representation φx,s, Us,t. Hence, φx,s(y, u) = φx,s(ŷ, u) ↔
y = ŷ. Therefore, it follows from (2.3) that Us,u = Vs,u can not depend upon φx,s(y, u) for any u ∈ [s, t] and 
B in (2.14) is constant by (2.11). Now,

∇ϕh =
(

f ′(ϕ1)g(ϕ2) f(ϕ1)g′(ϕ2)
m′(ϕ1)n(ϕ2) m(ϕ1)n′(ϕ2)

)
(2.17)

and

∇ϕσ2 =
(

0 0
0 e′ (ϕ2)

)
, ∇ϕσ1 =

(
a′(ϕ1) 0

0 e′ (ϕ2)

)
(2.18)

so the first commutator condition (2.12) is fine since

∇ϕσ1σ2 =
(

0
e′ (ϕ2) e(ϕ2)

)
= ∇ϕσ2σ1. (2.19)

Moreover,

∇ϕhσ2 −∇ϕσ2h =
(

e(ϕ2)f(ϕ1)g′(ϕ2)
m(ϕ1)(e(ϕ2)n′(ϕ2) − e′(ϕ2)n(ϕ2))

)
(2.20)

and

∇ϕhσ1 −∇ϕσ1h =
(

af ′g + efg′ − a′fg
′ ′ ′

)
. (2.21)
am n + emn − e mn
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On the other hand, denoting B =
(
b11 b12
b21 b22

)
, we have

σB =
(

ab11 ab12

eb11 + eb21 eb12 + eb22

)
. (2.22)

Hence, by (2.14) there is an explicit solution if and only if

(
af ′g + efg′ − a′fg efg′

am′n + emn′ − e′mn m(en′ − e′n)

)
=
(

ab11 ab12

eb11 + eb21 eb12 + eb22

)
(2.23)

for constants b11, b12, b21, b22. If f = c1a, n = c2e, eg′ = c3 and m′a = c4 for some constants c1, c2, c3, c4, 
then it is easy to show that this condition is met with b22 = −c1c3, b21 = c2c4 − c1c3 and b11 = b12 = c1c3
so the representation holds for

h(ϕ1, ϕ2) =

⎛⎝α g(ϕ2)
m′(ϕ1)

βm(ϕ1)
g′(ϕ2)

⎞⎠ , σ (ϕ1, ϕ2) =
( γ

m′(ϕ1) 0
δ

g′(ϕ2)
δ

g′(ϕ2)

)
, (2.24)

where α = c1c4, β = c2c3, γ = c4, δ = c3 are any constants and g, m are C2-functions with 1
m′(ϕ1) , 

1
g′(ϕ1) ∈

C1(D).

Example 3. In a similar manner, it follows that

h(ϕ1, ϕ2) =

⎛⎝α g(ϕ2)
m′(ϕ1)

βm(ϕ1)
g′(ϕ2)

⎞⎠ , σ (ϕ1, ϕ2) =
(

γ
m′(ϕ1) 0

0 δ
g′(ϕ2)

)
, (2.25)

for any constants α, β, γ, δ, also has a representation.

2.2. A simple (x, s, σ, h)-representation example

There was significant work done in the previous examples and we still did not have a (x, s, σ, h)-represen-
tation. The next example is the key to solving for complete representations and will be used in the following 
section. It will be worth observing in this next example that Vs,t = Us,tφ̃ = Us,tX̃ (with the notation defined 
within the example) so the operators Us,t act on the deterministic part of X.

Example 4. Suppose σ(ϕ, t) =
(
Ir κ(ϕ, t)
0 0

)
∈ R

p×d satisfies (2.12). We will find the possible h, b satisfying 

(2.13) and the corresponding representations Us,t, φx,s by Theorem 1.
Notation: As always, ϕ is a variable and φ is the representation function. Further, let x = (x1, ..., xr), 
x̃ = (xr+1, ..., xd), ϕ = (ϕ1, ..., ϕr), ϕ̃ = (ϕr+1, ..., ϕd), D̃ = {ϕ̃ : (ϕ, ϕ̃) ∈ D for some ϕ}, D̃T = D̃ × [0, T ),

φx,s(y, t) =
(
φ
x,s(y, t)

φ̃x,s(y, t)

)
, h =

(
h

h̃

)
and A =

(
A11 A12
A21 A22

)
, (2.26)

where A11 ∈ R
r×r. Finally, we let

β(ϕ, t) = −A11(ϕ, t) − κ(ϕ, t)A21(ϕ, t), (2.27)

which will appear often below.
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Step 1: Interpret (2.7) and the C3 condition (2.3) on Us,t, A.
Suppose u ∈ [s, t]. By (2.7) as well as the mean value theorem(

φ
x,s(y, u) − φ

x,s(ŷ, u)
φ̃x,s(y, u) − φ̃x,s(ŷ, u)

)
=
(
Ir κ(φx,s(y∗, u), u)
0 0

)
U−1
s,uφ

x,s · (y − ŷ) (2.28)

with y∗ ∈ N x,s for y, ŷ ∈ N x,s and any possible representation φx,s. Hence, φx,s(y, u) �= φ
x,s(ŷ, u) implies 

y �= ŷ. Therefore, it follows from (2.3) that Us,tφ
x,s can not depend upon φ

x,s(y, u) for any u ∈ [s, t], which 
implies Us,tφ

x,s .= Us,tφ̃
x,s only depends on φ̃x,s, t. This also means by (2.11) that

A(ϕ, t) = d

dt
Uu,tφ̃

ϕ,u
∣∣
u=t

. (2.29)

Step 2: Interpret commutator conditions on κ, h.
Let ei denote the ith column of Ip so σi = ei for i ≤ r. We have by (2.12), that(

∇ϕκj−r

0

)
ei = 0, ∀i ∈ {1, 2, ..., r}, j ∈ r + 1, ..., d, (2.30)

which establishes that κ(ϕ̃, t) can only depend upon ϕ̃, t. This is the only restriction on κ from (2.12). By 
(2.13), we find

∇ϕ

(
h

h̃

)
σj −∇ϕσj

(
h

h̃

)
=
(
β ∂tκ−A12 − κA22
0 0

)
j

(2.31)

so ∇ϕh̃ = 0, implying h̃(ϕ) ∈ C1(D̃T , Rp−r) only depends upon ϕ̃, t, and

∇ϕh = β, (2.32)
(∇ϕh)κj−r − (∇ϕ̃κj−r)h̃ = ∂tκj−r − (A12 − κA22)j−r. (2.33)

Now, it follows from (2.32), (2.33) that

β κ = [(∇ϕ̃κ1)h̃, ..., (∇ϕ̃κd−r)h̃] + ∂tκ−A12 − κA22. (2.34)

Hence, it follows from (2.7), (2.8), (2.2) that φ̃x,s satisfies

∇yφ̃
x,s(y, t) = 0, (2.35)

∂tφ̃
x,s(y, t) = h̃(φ̃x,s(y, t), t), (2.36)

φ̃x,s(0, s) = x̃, (2.37)

which implies that φ̃x,s does not depend upon φ
x,s nor y. Moreover, by (2.29) and (2.27), we conclude that 

A(ϕ, t) .= A(ϕ̃, t) and β(ϕ, t) .= β(ϕ̃, t) only depend on ϕ̃, t.
Step 3: Determine possible h, b.
By (2.32), we find

h(ϕ, ϕ̃, t) = β(ϕ̃, t)ϕ + θ(ϕ̃, t) (2.38)

for some C1-function θ. Hence, the possible h(ϕ, ϕ̃, t) =
(
h(ϕ, ϕ̃, t)
h̃(ϕ̃, t)

)
are:
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h̃ ∈ C1(D̃T ,R
p−r),

h ∈
{
θ(ϕ̃, t) + β(ϕ̃, t)ϕ : β ∈ C1(D̃T ,R

r×r); θ ∈ C1(D̃T ,R
r)
} . (2.39)

From (1.5) and fact κ(ϕ̃, t) only depends on ϕ̃, t, we find that

b = h + 1
2

d∑
j=1

{∇ϕσj}σj = h. (2.40)

Free parameters: A21, A22, κ, β, θ and h̃ can be anything (subject to dimensionality and dependency on 
only ϕ̃, t). A12 is then determined by (2.34) and A11 by (2.27). β and θ also determine the possible h above 
and φx,s below. Different choices of κ, β, θ and h̃ will result in different solutions. However, there is no loss 
in generality in taking A21, A22 to be zero.
Step 4: Interpret differential system for φx,s.

Since φx,s =
(
φ
x,s

φ̃x,s

)
satisfies (2.8), (2.2), φ̃x,s must be of the form

∂tφ̃
x,s = h̃(φ̃x,s, t), s.t. φ̃x,s(s) = x̃. (2.41)

We let X̃t denote the solution of this differential equation. Next, since φx,s satisfies (2.7), φx,s must be of 
the form

φ
x,s(y, t) = c(t) +

[
Ir κ(X̃t, t)

]
U−1
s,t φ̃

x,sy, (2.42)

for some c ∈ C1([0, T ); Rr). Differentiating in t, noting by (2.29) (with ϕ̃ = X̃t) that

A(X̃t, t) = d

dt
Uu,tφ̃

X̃u,u
∣∣
u=t

, (2.43)

and using (2.42), (2.43), (2.4), (2.41), (2.34), (2.27), one has (with U−1
s,t = U−1

s,t φ̃
x,s) that

∂tφ
x,s(y, t) (2.44)

= c′(t) −
[
I κ(X̃t, t)

]
A(X̃t, t)U−1

s,t y

+
[
0 ∂tκ(X̃t, t) + ∇ϕ̃κ1(X̃t, t) h̃(X̃t, t), ...,∇ϕ̃κd−r(X̃t, t) h̃(X̃t, t)

]
U−1
s,t y

= c′(t) + β(X̃t, t)[I κ(X̃t, t)]U−1
s,t y

= c′(t) + β(X̃t, t)(φ
x,s(y, t) − c(t)).

On the other hand, by (2.8) and (2.38)

∂tφ
x,s(y, t) = θ(X̃t, t) + β(X̃t, t)φ

x,s(y, t). (2.45)

Comparing (2.44) and (2.45), one has that

c′(t) = θ(X̃t, t) + β(X̃t, t)c(t) subject to c(s) = x. (2.46)

Step 5: Determine U in terms of κ, β and θ.
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We just need A to satisfy (2.27), (2.34) so there is no loss of generality in taking(
A11 A12
A21 A22

)
(ϕ̃, t) =

(
−β [(∇ϕ̃κ1)h̃, ..., (∇ϕ̃κd−r)h̃] + ∂tκ− β κ

0 0

)
(ϕ̃, t). (2.47)

By (2.43), (2.4) and (2.47), we know

∂tUs,tX̃ = (Us,tX̃)A(X̃t, t) (2.48)

= Us,tX̃

(
−β {[(∇ϕ̃κ1)h̃, ..., (∇ϕ̃κd−r)h̃] + ∂tκ− β κ}
0 0

)
(X̃t, t)

subject to Us,sX̃ = Us,sx̃ = Id. Now, suppose that Tu,t is the two parameter semigroup:

d

dt
Tu,t = −Tu,t β(X̃t, t), ∀t ≥ u subject to Tu,u = Ir. (2.49)

Then, the solution of (2.48) is

Us,tX̃ =
(
Ts,t Ts,tκ(X̃t, t) − κ(X̃s, s)
0 Id−r

)
, (2.50)

and so

U−1
s,t X̃ =

(
T−1
s,t T−1

s,t κ(X̃s, s) − κ(X̃t, t)
0 Id−r

)
. (2.51)

Moreover, it follows by (2.46) that c can also be expressed in terms of T−1
s,t .

Step 6: Solution Algorithm.

a: Check κ only depends upon ϕ̃, t. This must be true by Step 2.
b: Choose any functions β ∈ C1(D̃T , Rr×r); θ ∈ C1(D̃T , Rr) and h̃ ∈ C1(D̃T , Rp−r) for drift of the form 

b(ϕ, ϕ̃, t) = h(ϕ, ϕ̃, t) =
(
θ(ϕ̃, t) + β(ϕ̃, t)ϕ

h̃(ϕ̃, t)

)
. These are the only possible drifts by Step 3.

c: Solve

X̃ ′
t = h̃(X̃t, t) subject to X̃s = x̃

d: Solve

d

dt
Ts,t = −Ts,t β(X̃t, t), ∀t ≥ s subject to Ts,s = Ir. (2.52)

Then, set

Us,tX̃ =
(
Ts,t Ts,tκ(X̃t, t) − κ(X̃s, s)
0 Id−r

)
, (2.53)

U−1
s,t X̃ =

(
T−1
s,t T−1

s,t κ(X̃s, s) − κ(X̃t, t)
0 Id−r

)
, (2.54)

c(t) = T−1
s,t x + T−1

s,t

t∫
Ts,uθ(X̃u, u)du. (2.55)
s
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e: Divide φx,s =
(
φ
x,s

φ̃x,s

)
and set φ̃x,s(t) = X̃t,

φ
x,s(y, t) = c(t) +

[
Ir κ(X̃t, t)

]
(U−1

s,t X̃)y.

The preceding example was intuitively pleasing: We showed you could indeed represent linear SDEs using 
a single Gaussian stochastic integral. Further, we showed that we could append an ordinary differential 
equation (dX̃t = h̃(X̃t)dt) and use its solution within the coefficients of the stochastic differential equation. 
Finally, we showed how to construct the solution. While none of this is surprising, it does explain our 
necessary and sufficient conditions. In the next section, we will show how to combine this example with 
diffeomorphisms to handle the general case with nonlinear coefficients.

3. Construction results and examples

When one explicit solution exists, there will be a whole class of such solutions corresponding to distinct b’s. 
We now identify the b’s, φ’s and U ’s for these solutions corresponding to a given σ. This is done by using 
local diffeomorphisms to convert the general case to the case of Example 4. The idea is based upon the 
following simple lemma.

Lemma 1. Suppose D ⊂ R
p is a domain, T > 0, DT = D × [0, T ), Λ̂ .=

(
Λt

t

)
: DT → Λ̂(DT ) ⊂ R

p+1 is 

a C2-diffeomorphism and σ, b, h, {φx,s}(x,s)∈DT
, {Us,tφ

x,s}(x,s)∈DT ,s≤t<T , A satisfy Conditions C1, C2, C3 as 
well as equations (1.5), (2.11). Let D̂T = Λ̂(DT ),

σ̂ = {(∇ϕΛt)σ} ◦ Λ̂−1, ĥ = {(∇ϕΛt)h} ◦ Λ̂−1,

b̂ =

⎧⎨⎩(∇ϕΛt)b + 1
2

d∑
j=1

p∑
i,k=1

(∂ϕi
∂ϕk

Λt)σi,jσk,j

⎫⎬⎭ ◦ Λ̂−1,

φ̂x,s(y, t) = Λt ◦ φΛ̂−1(x,s)(y, t),

Ûs,tφ̂
x,s = Us,tφ

Λ̂−1(x,s),

Â = A ◦ Λ̂−1.

Then, σ̂, ̂b, ̂h, {φ̂x,s}(x,s)∈D̂T
, Û , Â satisfy Conditions C1, C2, C3 as well as equations (1.5), (2.11) on D̂T . 

Moreover,

i) φ̂x,s, Ûs,t is a (x, s, ̂σ, ̂h)-representation for each (x, s) ∈ D̂T if and only if φx,s, Us,t is a (x, s, σ, h)-repre-
sentation for each (x, s) ∈ DT .

ii) Equation (2.12) holds if and only if

(∇ϕσ̂k)σ̂j = (∇ϕσ̂j)σ̂k, on D̂T for all j, k ∈ {1, ..., d}. (3.1)

iii) Equation (2.13) holds if and only if

(∇ϕĥ)σ̂j = (∇ϕσ̂j)ĥ + ∂tσ̂j − σ̂Âj , on D̂T for all 1 ≤ j ≤ d. (3.2)
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Remark 5. In the time-homogeneous case, we can deal with B instead of A and set B̂ = B ◦ Λ−1
0 . The 

notation Λ̂ .=
(

Λt

t

)
just means that Λ̂ is a diffeomorphism with the constraint that the last component is 

the identity map.

Proof. This lemma follows by direct calculation. Perhaps, the fastest way to verify the commutator condi-
tions is to think of (1.4) as a time-homogeneous equation

d

[
Xt

t

]
=
[
h(Xt, t)

1

]
dt +

[
σ(Xt, t)

0

]
• dWt,

[
Xs

s

]
=
[
x

s

]

on [s, τx,s), by appending the trivial equation t = t and thinking of t as an additional state variable. Then, 
verifying (2.13) is equivalent to (3.2) is the same as verifying

(
∇
[
h

1

])[
σj

0

]
=
(
∇
[
σj

0

])[
h

1

]
−
[
σ

0

]
Aj

↔
(
∇
[
ĥ

1

])[
σ̂j

0

]
=
(
∇
[
σ̂j

0

])[
ĥ

1

]
−
[
σ̂

0

]
Âj ,

which avoids ∂tσj and Λt if we express (ĥT , 1)T and (σ̂T
j , 0)T in terms of Λ̂. �

The idea behind this lemma is that σ gets changed into σ̂ =
(
Ir κ

0 0

)
with some diffeomorphism and 

we can use Example 4 to solve for the possible ĥ and the representations φ̂x,s, Ûx,s. Unfortunately, it is 
sometimes impossible to have a single diffeomorphism for all of DT and, even when it is possible, we may 
not know that until after local diffeomorphisms are constructed and one of them is extendable to all of DT .

Definition 2. Suppose (x, s) ∈ DT . Then, an (x, s)-local diffeomorphism (Ox,s, Λ̂x,s) is a bijection Λ̂x,s :
Ox,s → Λ̂x,s(Ox,s) such that Λ̂x,s ∈ C2(Ox,s; Rp+1), where Ox,s ⊂ DT is a (relatively open) neighborhood
of x, s. We define ∇Λ̂−1(Λ̂(ϕ, t)) to be 

[
∇Λ̂(ϕ, t)

]−1
for (ϕ, t) ∈ Ox,s.

We imposed sufficient differentiability on our local diffeomorphisms for our uses to follow. Our (x, s)-local 

diffeomorphisms will take the form Λ̂ =
(

Λt

t

)
with Λt being constructed from σ under the conditions:

[D]: Let D ⊂ R
p be a bounded convex domain, T > 0 and DT = D × [0, T ).

[Hr]: The rank of σ is r on DT with the first r rows having full row rank.
[∂]: σ ∈ Cr+1(DT ; Rp×d).
[B]: (∇ϕσj)σk − (∇ϕσk)σj = 0 on DT , for 1 ≤ j, k ≤ d and (x, s) ∈ DT .

To ensure the row rank part of Hr, we can just permute the rows of (1.3), amounting to relabeling the 
{Xi

t}pi=1.

Proposition 1. Suppose [D, Hr, ∂, B] hold. Then for any (x, s) ∈ DT , there exists an (x, s)-local diffeomor-
phism (Ox,s, Λ̂x,s) and a constant permutation matrix π such that
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σ̂
.= {(∇ϕΛt)σπ} ◦ Λ̂−1 =

(
Ir κ

0 0

)
∈ R

p×d on Λ̂(Ox,s),

where κ ∈ C1(Λ̂(Ox,s); Rr×(d−r)) does not depend on ϕ1, . . . , ϕr.

Proof. Provided in Section 5. �
Remark 6. The permutation matrix π permutes the columns of σ. We label the permuted diffusion coefficient 
σπ = σπ and note that

dXt = b(Xt)dt + σ(Xt)dWt = b(Xt)dt + σπ(Xt)dWπ
t ,

where Wπ = π−1W is a permutation of the Brownian motions W . Also, the Stratonovich drift h remains 
the same by (1.5).

Remark 7. It follows from the proof in Section 5 that the diffeomorphism can have the form Λ̂ = Λ̂r ◦ · · · ◦
Λ̂2 ◦ Λ̂1 for any diffeomorphisms Λ̂i : Λ̂i−1 ◦ · · · ◦ Λ̂2 ◦ Λ̂1(DT ) → R

p+1 satisfying {∇Λ̂i · · · ∇Λ̂2∇Λ̂1σ
π
i } ◦

Λ̂−1
1 ◦ Λ̂−1

2 ◦ · · · ◦ Λ̂−1
i = ei, where (e1 e2 . . . ep ep+1) = Ip+1 is the identity matrix. However, as will be seen 

below in Remark 9, this does not uniquely define the diffeomorphism.

Proposition 1 immediately provides us our second main theorem.

Theorem 2. Suppose [D, Hr, ∂, B] hold, h ∈ C1(DT ; Rp), (x, s) ∈ DT and W is an Rd-valued standard 
Brownian motion. Then, there exists a stopping time τ > s, a permutation matrix π and an (x, s)-local 
diffeomorphism (Ox,s, Λ̂x,s), as in Proposition 1 and Remark 7, such that

i) σ̂
.= {(∇ϕΛt)σπ} ◦ Λ̂−1 =

(
Ir κ

0 0

)
∈ R

p×d on Λ̂(Ox,s),

with κ ∈ C1(Λ(Ox,s); Rr×(d−r)) not depending on ϕ1, . . . , ϕr and ii) the Stratonovich SDE dXt = h(Xt)dt +

σ(Xt) • dWt, Xs = x has a solution Xt = Λ−1
t

(
Xt

X̃t

)
on [0, τ ] if and only if the simpler SDE

d

[
Xt

X̃t

]
= ĥ

(
Xt

X̃t

)
dt +

(
Ir κ

0 0

)
dWπ

t ,

[
Xs

X̃s

]
= Λs(x) (3.3)

has a solution on [0, τ ], where ĥ = (∇ϕΛth + ∂tΛt) ◦ Λ̂−1.

We stated the simpler SDE in terms of Itô integration. However, it follows by (1.5) and the nature of κ
that (3.3) would have exactly the same form in terms of Stratonovich integration.

In this theorem we do not have a commutator condition for h so we can not guarantee the simple form 
of ĥ as in Example 4. This means that X̃ is not in general deterministic nor is X necessarily Gaussian. 
We also impose slightly stronger conditions on σ compared to Theorem 1 but gain information about the 
representation as local diffeomorphisms.

For our final main result, we add back the commutator condition for h, and characterize all the solutions 
Xx,s

t = φx,s(Y s
t , t) to (2.10) via Example 4. We do this through our basic set of parameters for (x, s):

Definition 3. Suppose [D, Hr, ∂] hold, DT is as defined above and O = Ox,s ⊂ DT below. Let P = Px,s
σ be 

the set of all (Λ̂, κ, β, θ, ̃h, π) such that
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P0) π is a constant permutation matrix.

P1) (Ox,s, Λ̂x,s) is a (x, s)-local diffeomorphism, where Λ̂(ϕ, t) =
[
Λt(ϕ)

t

]
. For convenience, we let Λt =

[
Λt

Λ̃t

]
with Λt ∈ R

r;
P2) κ ∈ C1(Λ̂(O); Rr×(d−r)) depends only on ϕr+1, . . . , ϕp, and t;

P3) {(∇ϕΛt)σπ} ◦ (Λ̂)−1 =
(
Ir κ

0 0

)
on Λ̂(O);

P4) β ∈ C1(Λ̂(O); Rr×r) depends only on ϕr+1, . . . , ϕp, and t;
P5) θ ∈ C1(Λ̂(O); Rr) depends only on ϕr+1, . . . , ϕp, t;
P6) h̃ ∈ C1(Λ̂(O); Rp−r) depends only on ϕr+1, . . . , ϕp, t.

To each (Λ̂, κ, β, θ, ̃h, π) ∈ P, we associate the following functions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃ = X̃x,s ∈ R
p−r uniquely solves d

dtX̃t = h̃(X̃t, t), X̃s = Λ̃s(x);
G(t) =

(
Ir

∣∣∣ κ(X̃t, t)
)
∈ R

r×d;
d
duTs,u = −Ts,u β(X̃u, u), ∀u ≥ s subject to Ts,s = Ir;

Us,uX̃ =
(
Ts,u Ts,uκ(X̃u, u) − κ(X̃s, s)
0 Id−r

)
;

U−1
s,uX̃ =

(
T−1
s,u T−1

s,uκ(X̃s, s) − κ(X̃u, u)
0 Id−r

)
;

cs(t) = T−1
s,t Λs(x) + T−1

s,t

∫ t

s
Ts,uθ(X̃u, u)du.

(3.4)

The following theorem follows from Theorem 2, Theorem 1 (so the explicit solution implies [B] above) 
and Example 4. In particular, we must have

(∇ϕΛth + ∂tΛt) ◦ Λ̂−1 =
(
h(ϕ, ϕ̃, t)
h̃(ϕ̃, t)

)
=
(
θ(ϕ̃, t) + β(ϕ̃, t)ϕ

h̃(ϕ̃, t)

)
, (3.5)

which gives our possible drifts h in the following theorem.

Theorem 3. Suppose [D, Hr, ∂] hold, (x, s) ∈ DT and Xx,s
t = φx,s

(∫ t

s
Us,uφ

x,sdWπ
u , t

)
, with φ, U satisfying 

C1, C2, C3, solves (2.10) up to some stopping time τx,s > s. Then, there exists ((Ox,s, Λ̂x,s), κ, β, θ, ̃h, π) ∈
Px,s
σ , and related functions X̃, G, U, c defined by (3.4), such that

h = [∇ϕΛt]−1

{[
θ(X̃t, t)
h̃(X̃t, t)

]
− ∂tΛt +

[
β(X̃t, t) Λt

0

]}
on Ox, (3.6)

φx,s(y, t) = φ(Λ̂,κ,β,θ,h̃)(y, t) = Λ−1
t

([
cs(t) + G(t)(U−1

s,t X̃)y
X̃t

])
(3.7)

on N x =
{

(y, t) :
[
cs(t) + G(t)U−1

s,t X̃y

X̃t

]
∈ Λt(Ox,s)

}
. Finally, if π̆, Λ̆ and κ̆ also satisfies P0–P3, then there 

exist β̆, θ̆, ̆h such that (Λ̆, ̆κ, β̆, θ̆, ̆h, ̆π) ∈ P, b(Λ̆,κ̆,β̆,θ̆,h̆,π̆) = b(Λ̂,κ,β,θ,h̃), and φ(Λ̆,κ̆,β̆,θ̆,h̆,π̆) = φ(Λ̂,κ,β,θ,h̃).

Remark 8. For the sake of brevity in the examples below, we will just give local diffeomorphisms satisfying 
P3) above. However, as is shown in our companion paper Kouritzin [14], it is often possible to solve for 
them using the technique used in the proof of Proposition 1 herein.



M.A. Kouritzin, B. Rémillard / J. Math. Anal. Appl. 473 (2019) 534–566 551
Remark 9. To illustrate the need of the final statement of Theorem 3, we take for example, σ(x) = x ∈ R
p. 

Then, any L ∈ C1(Rp) depending on x2/x1, . . . , xp/x1 satisfies (∇L)σ = 0. Therefore, Λ̂ and hence the 
parameter set is not unique but we can create the same b, φ from any consistent κ, ̂Λ.

3.1. One dimensional case

Suppose d = p = r = 1, D ⊂ R and x ∈ D. Then, κ, ̃h do not exist and β, θ only depend on t. Moreover, 
Us,t = Ts,t = e−

∫ t
s
β(u)du, cs(t) = T−1

s,t Λs(x) + T−1
s,t

∫ t

s
Ts,uθ(u)du and the diffeomorphism can be taken as 

Λt(ϕ) =
∫ 1

σ(ϕ,t)dϕ. One then finds by (1.5), (3.4), (3.6), (3.7) that the corresponding diffusion drift b and 
explicit solutions are

b(ϕ, t) = σ(ϕ, t)
{
θ(t) + β(t)Λt(ϕ) − ∂tΛt

}
+ 1

2σ(ϕ, t)∂ϕσ(ϕ, t) (3.8)

Xt = Λ−1
t

⎡⎣⎧⎨⎩Λs(x) +
t∫

s

Ts,uθ(u)du +
t∫

s

Ts,udWu

⎫⎬⎭/
Ts,t

⎤⎦ . (3.9)

Example 5 (Time-varying Cox–Ingersoll–Ross model). Suppose θ, β and continuously differentiable s(t) > 0
are chosen and σ(ϕ, t) = s(t)√ϕ. Then, Λt(ϕ) = 2√ϕ

s(t) , Λ−1
t (z) =

(
zs(t)

2

)2
and the possible Itô drifts are

b(ϕ, t) = θ(t)s(t)√ϕ + 2
(
β(t) + ṡ(t)

s(t)

)
ϕ + s2(t)

4 .

The explicit solutions are then

Xx,s
t =

∣∣∣∣ s(t)s(s)e
∫ t
s
β(v)dv√x (3.10)

+ s(t)
2

⎧⎨⎩
t∫

s

e
∫ t
u
β(v)dvθ(u)du +

t∫
s

e
∫ t
u
β(v)dvdWu

⎫⎬⎭
∣∣∣∣2.

In the case s(t) = σ, θ and β are taken constant, we get

Xx,s
t = 1

4

⎧⎨⎩2eβ(t−s)√x + θσ

β
(eβ(t−s) − 1) + σ

t∫
s

eβ(t−u)dWu

⎫⎬⎭
2

solves

dXx,s
t =

(
σ2/4 + 2βXx,s

t + σθ
√

Xx,s
t

)
dt + σ

√
Xx,s

t dWt, Xs = x

as long as Xx,s
t > 0. This solves the usual CIR model

dXt = α (β −Xt) dt + σ
√

XtdWt, (3.11)

when θ = 0, α = 2β, β = σ2/(8β). Now, set Yt =
√
Xt, where X solves (3.11) with σ2 = 4αβ, and 

τ = inf{t > 0; Xt = 0}. It is well known that P (τ < ∞) = 1. Then,
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dYt = 1
8Yt

(
4αβ − σ2) dt− α

2 Ytdt + σ

2 dWt

= −α

2 Ytdt + σ

2 dWt, (3.12)

by Itô’s formula. However, since (3.12) defines a Gaussian process and Y must be non-negative, one cannot 
have Yt defined by (3.12) unless t < τ . This explains why we first look for explicit local solutions.

3.2. Square non-singular case

Suppose that d = p = r, σ = σ(ϕ, t) is a d × d non-singular continuously-differentiable matrix satisfying 
(2.12), D ⊂ R

p and x ∈ D. Again, we apply Theorem 3 and find κ, ̃h do not exist while β, θ only depend 

on t. Also, there is a local diffeomorphism Λ̂ =
(

Λt

t

)
such that ∇ϕΛt(ϕ) = [σ(ϕ, t)]−1, and all explicit 

solutions are of the form φx,s(t, y) = Λ−1
t

(
cs(t) + U−1

s,t y
)
, where

Us,t = −
t∫

s

Us,uβ(u)du + I and cs(t) = U−1
s,t

⎧⎨⎩Λs(x) +
t∫

s

Us,uθ(u)du

⎫⎬⎭
for some θ ∈ C([0, T ); Rd) and β ∈ C1([0, T ), Rd×d). The resulting drift is

b(ϕ, t) = σ(ϕ, t)
{
θ(t) + β(t)Λt(ϕ) − ∂tΛt(ϕ)

}
+ 1

2

d∑
j=1

(∇ϕσj(ϕ, t))σj(ϕ, t).

Example 6. Geometric Brownian motions: Take σij(ϕ) = ϕiγij with γ non-singular and D = (0, ∞)d. Then, 
σ satisfies the commutation condition (2.12) since [(∇ϕσj)σk]i = ϕiγijγik, and the diffeomorphism can be 

chosen as Λ(ϕ) = Λt(ϕ) = γ−1

⎡⎢⎣logϕ1
...

logϕd

⎤⎥⎦. Λ’s image is Rd, so Λ−1(z) =

⎡⎢⎣e
(γz)1

...
e(γz)d

⎤⎥⎦ is defined everywhere and 

φx,s
i (y, t) = exp

[
γ{cs(t) + U−1

s,t y}
]
i
. The possible drifts satisfy

bi(ϕ, t) = ϕi

⎧⎨⎩αi(t) −
d∑

j=1
Bij(t) logϕj

⎫⎬⎭ ,

for 1 ≤ i ≤ d, where B(t) = γβ(t)γ−1, and αi(t) = 1
2 [γγ
]ii + [γθ(t)]i.

Example 7. Diffeomorphism example: In the previous examples, we started with σ. Suppose instead we had 
a diffeomorphism

Λ(ϕ1, ϕ2) = Λt(ϕ1, ϕ2) =
[
π
2 + arcsin(logϕ1ϕ2 − 1)

π
2 + arcsin(2ϕ2

ϕ1
− 1)

]

on 1 < ϕ1ϕ2 < e, ϕ2 ≤ ϕ1. Then, the possible full rank σ’s satisfy σ = (∇ϕΛ)−1 i.e.

σ(ϕ1, ϕ2) =
(ϕ1

2
√

2 logϕ1ϕ2 − (logϕ1ϕ2)2 − ϕ1
2ϕ2

√
ϕ2(ϕ1 − ϕ2)

ϕ2
√

2 logϕ ϕ − (logϕ ϕ )2 −1√ϕ (ϕ − ϕ )

)
(3.13)
2 1 2 1 2 2 2 1 2
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so (∇Λ)σ = I2 and σ satisfies (2.12) by Lemma 1 ii). The possible Stratonovich (time-dependent) drifts 
h(ϕ1, ϕ2, t) are

σ(ϕ1, ϕ2)

⎛⎝ θ1(t) + β11(t)(π2 + arcsin(logϕ1ϕ2 − 1)) − β12(t)(π2 + arcsin(2ϕ2
ϕ1

− 1))

θ2(t) + β21(t)(π2 + arcsin(logϕ1ϕ2 − 1)) − β22(t)(π2 + arcsin(2ϕ2
ϕ1

− 1))

⎞⎠ (3.14)

while Us,t, cs satisfy the equations at the start of Subsection 3.2.

3.3. Non-square case

The Extended Heston model of our companion paper [14] is an important non-square example. We provide 
a second interesting non-square example herein.

Example 8 (Heisenberg group). Let x ∈ R
d and x̃ ∈ R be the components of the starting point, A = A(t)

be a Rd×d continuously differentiable matrix function and σ(ϕ, t) = σ(ξ, z, t) =
[

Id
(A(t)ξ)


]
, where ξ ∈ R

d, 

z ∈ R. Then, σ has rank r = d. The solution to dXt = σ(Xt, t)dWt is known as the Brownian motion on 
the Heisenberg group. Moreover,

(∇ϕσj)σk − (∇ϕσk)σj =
[

0
Ajk −Akj

]
.

Therefore, (2.12) holds true if and only if A is symmetric. In this case, one can solve for an explicit solution 

for an arbitrary starting point (x, ̃x, s). The diffeomorphism Λ̂(ξ, z, t) =
[
Λt(ξ, z)

t

]
is solved Λt(ξ, z) =

[
ξ

g

]
with g(ξ, z, t) = z− 1

2ξ

A(t)ξ following the proof of Proposition 1 in Section 5 (see [14] for details on a more 

involved example). Hence, π = Id, σ̂ =
[
Id
0

]
, κ does not exist so G(t) = Id and [∇Λt]−1 =

[
Id 0

ξ
A(t) 1

]
. 

Now, we can take any functions θ ∈ R
d, β ∈ R

d×d, h̃ ∈ R satisfying the differentiability conditions in 
Definition 3 and let X̃t, Us,tX̃, cs(t) satisfy:

d

dt
X̃t = h̃(X̃t, t) s.t. X̃s = x̃− 1

2x

A(s)x

d

du
Us,uX̃ = −(Us,uX̃)β(X̃u, u) s.t. Us,sX̃ = Id

cs(t) = U−1
s,t

⎧⎨⎩x +
t∫

0

Us,uθ(X̃u, u)du

⎫⎬⎭ .

From Theorem 3 and (1.5), drift b must be of the (quadratic) form

b(ξ, z, t)=

⎡⎣ θ(X̃t, t) − β(X̃t, t)ξ

h̃(X̃t, t) + ξ
A(t)θ(X̃t, t) − ξ
A(t)β(X̃t, t)ξ + 1
2ξ


 d
dtA(t)ξ + 1

2Tr{A(t)}

⎤⎦
for some θ, β, h̃. Finally, the corresponding φ is given by

φ(y, t) =

⎡⎣ cs(t) + (U−1
s,t X̃)y

X̃t + 1 (cs(t) + (U−1X̃)y)
A(t)(cs(t) + (U−1X̃)y)

⎤⎦ .
2 s,t s,t
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4. Comparison with the works of Yamato and Kunita

Now, we compare our existence results to those appearing in Yamato [22] and Kunita [18]. In Section 
III.3 of Kunita’s treatise, he considers representations of time-homogeneous Fisk–Stratonovich equations

dXx
t = h(Xx

t )dt + σ(Xx
t ) • dWt (4.1)

in terms of the flows generated by the vector fields

X0(y) =
p∑

i=1
hi(y)

∂

∂yi
and Xk(y) =

p∑
i=1

σik(y)
∂

∂yi
, k = 1, ..., d, (4.2)

under conditions imposed on the Lie algebra L0(X0, X1, . . . , Xd) generated by Xk, 0 ≤ k ≤ d. In the special 
case where these vector fields commute, i.e. the Lie bracket [Xk, Xj ] = 0 for each j, k = 0, ..., d, and the 
coefficients hi, σik are respectively in C3

α, C4
α (the locally four times continuously differentiable functions 

whose fourth derivative is α-Hölder continuous), his work gives rise to the composition formula

(Xx
t )i = Exp (tX0) ◦ Exp

(
W 1

t X1
)
◦ · · · ◦ Exp

(
W d

t Xd

)
◦ χi(x), (4.3)

= φi(Wt, t)

locally. Here, χi is the function taking x to its ith component and Exp (uXk) is the one parameter group of 
transformations generated by vector field Xk, i.e. the unique solution to

d

du
(f ◦ ϕu) = Xkf(ϕu), ϕ0 = x, ∀f ∈ C∞. (4.4)

In fact, to use (4.3), one must solve (4.4) for k = 0, ..., d and f = χi, i = 1, ..., d. Kunita also goes beyond 
commutability, even surpassing Yamato [22] in generality by considering the situation where L0(X0, ..., Xd)
is only solvable, but the expression replacing (4.3) necessarily becomes more unwieldy.

Our characterization of φx,s provided by Theorem 3 provides an alternative to (4.3) that is more amenable 
to direct calculation. Corollary 1 (to follow) supplies a converse to (4.3) in the sense that if Xx,s

t were to 
have such a functional representation φx,s(Wt, t) in terms of Brownian motions only, then the vector fields 
must commute. This was previously established in Theorem 4.1 of Yamato [22] under C∞ conditions on 
both φ and the coefficients.

The other advantages of our representations over Kunita’s results are:

• We allow time dependent vector fields.
• We decrease the regularity assumptions by imposing weaker differentiability on h and on σ when r is 

small. The looser regularity on the coefficients requires eschewing Fisk–Stratonovich equations in favor
of Itô processes.

• We remove the nilpotency assumptions (for our representations).

To validate the final claim, we take p = 2, d = 1,

X0 = {θ(x2) −B(x2)x1}∂x1 + θ̃(x2)∂x2 ,

and X1 = ∂x1 . Then [X0, X1] = B∂x1 . Moreover, if Xk = [X0, Xk−1], k ≥ 2, then Xk = ak(x2)∂x1 , where 
ak+1 = θ̃(∂x2ak) + Bak, k ≥ 1 and a1 = 1. In general, the ak’s will not vanish and thereby the Lie algebra 
contains an infinite number of linearly independent vector fields. This algebra is solvable but is not nilpotent.
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Using Theorem 1, we can also give the converse to Kunita’s result, Example III.3.5 in Kunita [18], that 
is valid under the mild regularity on b, σ, h given at the beginning of the section.

Corollary 1. Suppose that there exists a domain D̃ such that the coefficients σ and h are time-homogeneous 
and Fisk–Stratonovich acceptable on D̃T = D̃ × (0, T ). Further, assume that the solution to the Fisk–
Stratonovich equation (4.1) has a unique local solution

(Xx
t )i = Exp (tX0) ◦ Exp

(
W 1

t X1
)
◦ · · · ◦Exp

(
W d

t Xd

)
◦ χi(x)

on 0 ≤ t < τx for some positive stopping time τx and each x ∈ D̃, where Xk, k = 0, 1, . . . , d are the vector 
fields defined in (4.2). Then,

[Xk,Xj ] = 0 on D̃ for each j, k = 0, . . . , d.

Proof. We find that Xx
t = φ(Yt, t) with Us,t = I so A = 0 from (2.11) and σA = 0. It now follows from 

Theorem 1 and (2.12), (2.13) that [Xk, Xj ] = 0. �
5. Proofs of the main results

Note: For notational simplicity, we will drop superscripts s and x in the proofs as they are just fixed 
starting points.

5.1. Uniqueness in Theorem 1 a)

The closure DT of DT is convex and compact. Further, b, σ can be extended to Lipschitz continuous func-
tions on DT by our C1-conditions in a) of Theorem 1. Now, we use the proof of Kunita [18, Theorem II.5.2]
for uniqueness of (strong) local solutions to the SDE until they leave DT .

5.2. Proof of Theorem 1 a) is equivalent to b)

Proof. Using (2.1) and Itô’s formula for Xt = φ(Yt, t), one finds that for any 1 ≤ i ≤ p,

d(Xt)i =
d∑

m=1

d∑
j=1

∂ym
φi(Yt, t)(Us,tφ)mjdW

j
t (5.1)

+

⎡⎣∂tφi(Yt, t) + 1
2

d∑
j=1

d∑
k=1

∂yj
∂yk

φi(Yt, t)(Us,tφ (Us,tφ)
)jk

⎤⎦dt.
Now, starting with b) implies a), we have a (x, s, σ, h)-representation φx,s, Us,t (that satisfies C1, C2, C3). 
Using (2.7), (2.8) on (5.1), we find

d(Xt)i = σi(φ(Yt, t), t)dWt + hi(φ(Yt, t), t)dt (5.2)

+ 1
2

d∑
j=1

d∑
k=1

∂yj
∂yk

φi(Yt, t)(Us,tφ (Us,tφ)
)jkdt.

Moreover,

∂ym
{σij(φ, t)} =

p∑
{∂ϕn

σij}(φ, t)∂ym
φn
n=1
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and if (2.7) is true, one obtains

∂ym
{σij(φ, t)} =

d∑
l=1

∂ym
∂yl

φi (Us,tφ)lj .

Abbreviating notation Umk(φ, t) = (Us,tφ)mk, multiplying the last two equalities by Umk(φ, t), summing 
over m and using (2.7) again, one finds that

p∑
n=1

{∂ϕn
σij}(φ, t)σnk(φ, t) =

d∑
m=1

d∑
l=1

∂ym
∂yl

φi Ulj(φ, t)Umk(φ, t), (5.3)

and, taking k = j and summing over j, one has that

d∑
j=1

{∇ϕσj}(φ, t)σj(φ, t) =
d∑

l=1

d∑
m=1

(U(φ, t)U
(φ, t))lm∂ym
∂yl

φ. (5.4)

Therefore, if (2.7), (2.8), (2.2) are satisfied, then clearly Xt is a local strong solution to (2.10) by (1.5). 
Moreover, letting t ↘ s, we find by (2.7), (2.8), (2.2) that

σ(x, s) = ∇yφ
x,s(0, s) and h(x, s) = ∂tφ

x,s(0, s)

so σ, h ∈ C1 by the last part of Definition 1.
To show a) implies b), we suppose Xt is a strong solution to (2.10) on (s, τx,s). Then, since continuous 

finite-variation martingales are constant, the (continuous) Itô process φ(Yt, t) from (5.1) matches (2.10) if 
and only if

σij(φ, t) =
d∑

m=1
∂ym

φi (Us,tφ)mj , ∀1 ≤ i ≤ p, 1 ≤ j ≤ d, (5.5)

and

bi(φ, t) = ∂tφi + 1
2

d∑
j=1

d∑
k=1

∂yj
∂yk

φi (Us,tφ(Us,tφ)
)jk ∀1 ≤ i ≤ p (5.6)

for all t ∈ (s, τx,s). Rewriting (5.5) in matrix form, one finds

σ(φ(Yt, t), t) = {∇yφ(Yt, t)}Us,tφ, (5.7)

and (2.7) is true. Now, we can use (5.4) (which was just shown to be a consequence of (2.7)) to find (5.6)
is equivalent to

∂tφ = b(φ, t) − 1
2

d∑
k=1

{∇ϕσk}(φ, t) σk(φ, t) = h(φ, t), (5.8)

using (1.5). Now, (2.8) follows by continuity and (2.6). Letting t ↘ s in (5.7) and (5.8), one finds

σ(x, s) = ∇yφ
x,s(0, s) and h(x, s) = ∂tφ

x,s(0, s)

so the last part of Definition 1 follows from the C1 property of h, σ. �
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5.3. Switching paths lemma

We will use the following lemma within the proof of Theorem 1 b) and c) equivalence. It is related to the 
question of when a vector field is the gradient of a scalar field, integration over different paths and exactness 
of one forms. The spirit of this Lemma is well known. It is stated and proved in the exact manner needed 
below. There are two reasons why this lemma is necessarily more complicated than one might first expect: 
i) It is the {σ̂j} not the {β̂Vj} (which also involve the function Ut) that commute via (5.9) below. ii) The 
right hand side of the other commutator condition (5.10) is not zero.

Lemma 2. Suppose that N ⊂ (−1, ∞) ×R
d, Δ ⊂ R

p+1 are bounded domain with closures N , Δ; (0, x) ∈ N
with x ∈ R

p; ĥ ∈ C1(N ; Rp+1), σ̂ ⊂ C1(N ; R(p+1)×d), A ∈ C1(N ; Rd×d) satisfy

(∇σ̂j)σ̂k − (∇σ̂k)σ̂j = 0, ∀j, k ∈ {1, ..., d} (5.9)

(∇ĥ)σ̂k − (∇σ̂k)ĥ = −σ̂Ak, ∀k ∈ {1, ..., d}; (5.10)

and φ̂ is a solution to

φ̂(y) = (0, x) +
d∑

i=0

yi∫
0

β̂(φ̂(y0, ..., yi−1, u, 0d−i))(Vy0)idu, ∀y ∈ N , (5.11)

where β̂ = [ĥ σ̂] and Vt =
[

1 0d
0d U−1

t

]
with Ut being the d × d solution to the linear equation

Ut = I +
t∫

0

UuA(φ̂(u, 0d))du.

Then, φ̂ also solves

φ̂(y) = (0, x) +
d∑

i=0

yπ(i)∫
0

β̂(φ̂(π−1(yπ(0), ..., yπ(i−1), u, 0d−i))(Vyi
π(u))π(i)du, (5.12)

where

yiπ(u) =

⎧⎪⎨⎪⎩
y0 0 ∈ {π(0), ..., π(i− 1)}
u 0 = π(i)
0 otherwise

for any y ∈ N and permutation π of {0, 1, ..., d} so the integration order does not matter. Here, π−1 is an 
operator re-ordering the arguments to undo the permutation, i.e. to move yπ(j) from the jth to the π(j)th
position.

Remark 10. In the statement and proof of this lemma we have made time as the first rather than last 
variable at the request of readers as it seems to be more natural for them in this type of result. It also 
causes the notation to simplify slightly.
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Proof. It follows from its definition that

Vt = I −
t∫

0

Â(φ̂(u, 0d))Vudu with Â =
[

0 0d
0d A

]
. (5.13)

The permutations of {0, 1, 2, ..., d} is a symmetric group and any permutation is the composition of at 
most d(d+1)

2 elementary permutations. Hence, we take a permutation π and consider a further elementary 
permutation (r, r + 1) for some r ∈ {0, ..., d − 1}. The result follows by induction once we show that

yπ(r)∫
0

β̂(φ̂(π−1(yπ1(0), ..., yπ(r−1), u, 0d−r))(Vyr
π(u))π(r)du (5.14)

+

yπ(r+1)∫
0

β̂(φ̂(π−1(yπ1(0), ..., yπ(r−1), yπ(r), u, 0d−r−1))(Vyr+1
π (u))π(r+1)du

=

yπ(r+1)∫
0

β̂(φ̂(π−1(yπ(0), ..., yπ(r−1), 0, u, 0d−r−1))(Vyr+1
π (u))π(r+1)du

+

yπ(r+1)∫
0

β̂(φ̂(π−1(yπ1(0), ..., yπ(r−1), u, yπ(r+1), 0d−r−1))(Vyr
π(u))π(r)du.

(5.14) can be divided into three cases: a) π(0) > r + 1 (when r < d − 1), b) π(0) < r and c) π(0) ∈ r, r + 1. 
To ease the notation, we note that showing these three cases is equivalent to assuming that φ̂ satisfies:

a: φ̂(w, z) =
w∫

0

σ̂j(φ̂(u, 0))du +
z∫

0

σ̂k(φ̂(w, v))dv,

b: φ̂(w, z) =
w∫

0

σ̂(φ̂(u, 0))(U−1
t )jdu +

z∫
0

σ̂(φ̂(w, v))(U−1
t )kdv,

c: φ̂(t, z) =
t∫

0

ĥ(φ̂(u, 0))du +
z∫

0

σ̂(φ̂(t, v))(U−1
t )jdv,

for j, k ∈ {1, ..., d} and showing the corresponding integration order switch:

a: φ̂(w, z) =
w∫

0

σ̂j(φ̂(u, z))du +
z∫

0

σ̂k(φ̂(0, v))dv,

b: φ̂(w, z) =
w∫

0

σ̂(φ̂(u, z))(U−1
t )jdu +

z∫
0

σ̂(φ̂(0, v))(U−1
t )kdv,

c: φ̂(t, z) =
t∫

0

ĥ(φ̂(u, z))du +
z∫

0

σ̂j(φ̂(0, v))dv.

Here, w, z represent two of {y1, ..., yd} with the others fixed. t is used for y0.
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Case a: This case is subsumed by case b (with U−1
t = I) proved below.

Case b: It follows from hypothesis b that ∂
∂v φ̂(w, v) = σ̂(φ̂(w, v))(U−1

t )k and

∂

∂w
φ̂(w, z) = σ̂(φ̂(w, 0))(U−1

t )j +
z∫

0

∂

∂w
σ̂(φ̂(w, v))(U−1

t )kdv (5.15)

= σ̂(φ̂(w, 0))(U−1
t )j +

z∫
0

d∑
i=1

∇σ̂i(φ̂(w, v)) ∂

∂w
φ̂(w, v)(U−1

t )ikdv.

Moreover, it follows from the commutator condition (5.9) that

σ̂(φ̂(w, z))(U−1
t )j − σ̂(φ̂(w, 0))(U−1

t )j (5.16)

=
z∫

0

∑
l

∇σ̂l(φ̂(w, v)) ∂

∂v
φ̂(w, v)(U−1

t )ljdv

=
z∫

0

∑
l

∇σ̂l(φ̂(w, v))
∑
i

σ̂i(φ̂(w, v))(U−1
t )ik(U−1

t )ljdv

=
z∫

0

∑
i

∑
l

∇σ̂i(φ̂(w, v))σ̂l(φ̂(w, v))(U−1
t )ik(U−1

t )ljdv

=
z∫

0

∑
i

∇σ̂i(φ̂(w, v))σ̂(φ̂(w, v))(U−1
t )j(U−1

t )ikdv.

Therefore, it follows by (5.15), (5.16) and Gronwall’s inequality that

∂

∂w
φ̂(w, z) = σ̂(φ̂(w, z))(U−1

t )j . (5.17)

Finally, by the commutator condition (5.9) again and (5.17)

w∫
0

[σ̂(φ̂(u, z)) − σ̂(φ̂(u, 0))](U−1
t )jdu (5.18)

=
w∫

0

z∫
0

∑
i

∇σ̂i(φ̂(u, v)) ∂

∂v
φ̂(u, v)(U−1

t )ijdvdu

=
w∫

0

z∫
0

∑
i,l

∇σ̂i(φ̂(u, v))σ̂l(φ̂(u, v))(U−1
t )lk(U−1

t )ijdvdu

=
z∫

0

w∫
0

∑
i,l

∇σ̂l(φ̂(u, v))σ̂i(φ̂(u, v))(U−1
t )ij(U−1

t )lkdudv

=
z∫ w∫ ∑

l

∇σ̂l(φ̂(u, v)) ∂

∂u
φ̂(u, v)(U−1

t )lkdudv

0 0
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=
z∫

0

[σ̂(φ̂(w, v)) − σ̂(φ̂(0, v))](U−1
t )kdv

and Case b follows by rearrangement.

Case c: It follows from hypothesis c and (5.13) that ∂
∂v φ̂(t, v) = σ̂(φ̂(t, v))(U−1

t )j and

∂

∂t
φ̂(t, z) = ĥ(φ̂(t, 0)) +

z∫
0

∂

∂t

{
σ̂(φ̂(t, v))(U−1

t )j
}
dv (5.19)

= ĥ(φ̂(t, 0)) +
z∫

0

∑
i

∇σ̂i(φ̂(t, v)) ∂
∂t

φ̂(t, v)(U−1
t )ijdv

−
∑
i

z∫
0

σ̂i(φ̂(t, v))dv
∑
l

Ail(φ̂(t, 0))(U−1
t )ljdv.

Moreover, it follows from the commutator condition (5.10) that

ĥ(φ̂(t, z)) − ĥ(φ̂(t, 0)) =
z∫

0

∇ĥ(φ̂(t, v)) ∂

∂v
φ̂(t, v)dv (5.20)

=
z∫

0

∑
l

∇ĥ(φ̂(t, v))σ̂l(φ̂(t, v))(U−1
t )ljdv

=
z∫

0

∑
l

∇σ̂l(φ̂(t, v))ĥ(φ̂(t, v))(U−1
t )ljdv

−
z∫

0

∑
l

σ̂(φ̂(t, v))A(φ̂(t, 0))l(U−1
t )ljdv.

Therefore, it follows by (5.19), (5.20) and Gronwall’s inequality that

∂

∂t
φ̂(t, z) = ĥ(φ̂(t, z)). (5.21)

Finally, by the commutator condition (5.10) again, (5.13) and (5.21)

t∫
0

ĥ(φ̂(u, z)) − ĥ(φ̂(u, 0))du (5.22)

=
t∫

0

z∫
0

∇ĥ(φ̂(u, v)) ∂

∂v
φ̂(u, v)dvdu

=
t∫

0

z∫
0

∑
k

∇ĥ(φ̂(u, v))σ̂k(φ̂(u, v))(U−1
u )kjdvdu

=
z∫ t∫ ∑

k

∇σ̂k(φ̂(u, v))ĥ(φ̂(u, v))(U−1
u )kjdudv
0 0



M.A. Kouritzin, B. Rémillard / J. Math. Anal. Appl. 473 (2019) 534–566 561
−
z∫

0

t∫
0

∑
k

σ̂(φ̂(u, v))Ak(φ̂(u, 0))(U−1
u )kjdudv

=
z∫

0

t∫
0

∑
k

∇σ̂k(φ̂(u, v)) ∂

∂u
φ̂(u, v)(U−1

u )kjdudv

+
z∫

0

t∫
0

σ̂(φ̂(u, v)) ∂

∂u
(U−1

u )jdudv

=
z∫

0

[σ̂(φ̂(t, v))(U−1
t )j − σ̂j(φ̂(0, v))]dv

and Case c follows by rearrangement. �
5.4. Proof of Theorem 1 b) is equivalent to c)

Proof. Step 1: Show that (c) implies (b).
Let N x,s be a open ball centered at 0 ∈ R

d (whose radius can depend upon starting point (x, s)), t0 > s

and N = N x,s × (s, t0). Next, we define successive approximations to φx,s, Us,tφ by the path integral and 
linear equation

φn+1(y, t) = x +
t∫

s

h(φn(0d, u), u)du (5.23)

+
d∑

i=0

yi∫
0

σ(φn(y1, ..., yi−1, u, 0d−i, t), t)(Un
s,t)−1

i du,

Un+1
s,t = I +

t∫
s

Un+1
s,u A(φn(0d, u), u)du, (5.24)

starting with φ0(y, t) = x. (Note that Un
s,t’s inverse Bn

s,t exist and satisfies Bn
s,t = I −

∫ t

s
A(φn−1(0, u), u)

×Bn
s,udu.) Let L be the integral operator corresponding to (5.23), (5.24) so that

(φn+1, Un+1) = L(φn, Un).

Then, it is well known and easy to verify that the iterated operator Lm is a contraction on C(N ; Rp) ×
C([s, t0); Rd×d) with supremum norm for some m ∈ N. Hence, (φn, Un) converges as n → ∞ to some unique 
fixed point (φx,s, Us) satisfying

(φx,s, Us) = L(φx,s, Us),

i.e. for each (y, t) ∈ N

φx,s(y, t) = x +
t∫
h(φx,s(0d, u), u)du (5.25)
s
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+
d∑

i=0

yi∫
0

σ(φx,s(y1, ..., yi−1, u, 0d−i, t), t)(Us,t)−1
i du,

Us,t = I +
t∫

s

Us,u A(φx,s(0d, u), u)du. (5.26)

Hence,

∂

∂t
U−1
s,t = −A(φx,s(0d, t), t)U−1

s,t . (5.27)

C2, C3 are true by our construction. Moreover, C1 and the continuity of ∂s∇yφ
x,s(0d, s), ∂s∂tφx,s(0d, s), 

∂xi
∇yφ

x,s(0d, s) and ∂xi
∂tφ

x,s(0d, s) will follow from (5.25) and the conditions on h and σ once we have 
established φx,s satisfies (2.7), (2.8).

It remains to show that φx,s satisfies (2.7), (2.8). The fundamental theorem of calculus immediately tells 
us that ∂

∂yd
φx,s(y, t) = σ(φx,s(y, t))(Us,t)−1

d . We use a different path to have access to the other partial 
derivatives. Clearly, (5.25) is equivalent to

(
φx,s(y, t)

t

)
=
(
x

s

)
+

t∫
s

(
h(φx,s(0d, u), u)

1

)
du (5.28)

+
d∑

i=0

yi∫
0

(
σ(φx,s(y1, ..., yi−1, u, 0d−i, t), t)(Us,t)−1

i

0d

)
du

and we can define new coefficients corresponding to this enlarged equation:

ĥ(ϕ̂) =
(
h(ϕ, t)

1

)
, σ̂j(ϕ̂) =

(
σ(ϕ, t)

0d

)
, (5.29)

where ϕ̂ =
(
ϕ

t

)
. One finds the commutator conditions (2.12), (2.13) are equivalent to

(∇σ̂k)σ̂j − (∇σ̂j)σ̂k = 0, ∀j, k ∈ {1, ..., d} (5.30)

(∇σ̂0)σ̂j − (∇σ̂j)ĥ = −σ̂Aj , ∀j ∈ {1, ..., d}, (5.31)

which means we can use Lemma 2 (with time shifted functions ĥ(·, s + ·), σ̂(·, s + ·), A(·, s + ·), Us,s+· and 
φ̂x,s(·, s + ·)) to move the path segment of the desired partial derivative to the end and find

∂

∂yi
φx,s(y, t) = σ(φx,s(y, t), t)(Us,t)−1

i ,
∂

∂t
φx,s(y, t) = h(φx,s(y, t), t). (5.32)

Step 2: Show that (2.7) implies (2.12).
By C1 and (2.7), one has that

∂yj
{σ(φ, t)(U−1

s,t φ)k} = ∂yj
∂yk

φ(y, t) = ∂yk
∂yj

φ(y, t) = ∂yk
{σ(φ, t)(U−1

s,t φ)j}. (5.33)

However, it follows by (2.3) of C3 and then (2.7) that
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∂yj
{σ(φ, t)(U−1

s,t φ)k} (5.34)

=
∑
m

{∂yj
σm(φ, t)}(U−1

s,t φ)mk

=
∑
m

∇φσm(φ, t)σ(φ, t)(U−1
s,t φ)j(U−1

s,t φ)mk

=
∑
m

∑
n

∇φσm(φ, t)σn(φ, t)(U−1
s,t φ)nj(U−1

s,t φ)mk

and similarly

∂yk
{σ(φ, t)(U−1

s,t φ)j} (5.35)

=
∑
n

∑
m

∇φσn(φ, t)σm(φ, t)(U−1
s,t φ)mk(U−1

s,t φ)nj .

Letting t ↘ s in (5.34) and (5.35), one finds by (5.33) that for all 1 ≤ j, k ≤ d,∑
m

∑
n

∇xσm(x, s)σn(x, s)(U−1
s,s φ)nj(U−1

s,s φ)mk (5.36)

= lim
t↘s

∂yj
{σ(φ, t)(U−1

s,t φ)k}

= lim
t↘s

∂yk
{σ(φ, t)(U−1

s,t φ)j}

=
∑
m

∑
n

∇xσn(x, s)σm(x, s)(U−1
s,s φ)nj(U−1

s,s φ)mk.

However, U−1
s,s φ = I so we have that

(∇xσq)(x, s)σp(x, s) = (∇xσp)(x, s)σq(x, s).

Hence, (2.12) holds.
Step 3: Show that (2.7), (2.8) imply (2.13).
By C1 and (2.7), (2.8), one has that

d

dt
{σ(φ, t)(U−1

s,t φ)k} = ∂yk
h(φ, t). (5.37)

One gets by (2.7) that

∂yk
h(φ, t) = ∇φh(φ, t)∂yk

φ(y, t) = ∇φh(φ, t)σ(φ, t)(U−1
s,t φ)k (5.38)

and by the chain rule, (5.37), (2.8) as well as the standard formula 
d

dt
B−1

t = −B−1
t

(
d

dt
Bt

)
B−1

t that

∂yk
h(φ, t) = d

dt
{σ(φ, t)(U−1

s,t φ)k} (5.39)

=
∑
m

∇φσm(φ, t)h(φ, t)(U−1
s,t φ)mk + ∂tσ(φ, t)(U−1

s,t φ)k

− σ(φ, t)U−1
s,t φ

∑ d

dt
(Us,tφ)m(U−1

s,t φ)mk.

m
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Combining (5.38), (5.39), multiplying by (Us,tφ)kn and summing, we get

∇φh(φ, t)σn(φ, t) = ∇φσn(φ, t)h(φ, t) + ∂tσn(φ, t) (5.40)

− σ(φ, t)U−1
s,t φ

x,s d

dt
(Us,tφ

x,s)n

so, letting t ↘ s and using (2.11), (2.2), one arrives at (2.13). �
5.5. Proof of Proposition 1

Our methods are motivated in part by Brickell and Clark [2, Propositions 8.3.2 and 11.5.2]. By reducing 
T > 0 if necessary, we can find a permutation π such that the first r columns of σπ = σπ are linearly 
independent on DT .

Proof. Fix (x, s) ∈ DT and t ∈ [s, T ). Λt will have form:

Λt = Λr,1
t , where Λi,1

t = Λi
t ◦ Λi−1

t ◦ · · · ◦ Λ2
t ◦ Λ1

t , (5.41)

Λi
t(ϕ) =

i−1∑
j=1

ϕjej + Hi(ϕi, ..., ϕp, t). (5.42)

Here, Λi
t is a Cr+2−i-diffeomorphism on a neighborhood Oxi−1

t of xi−1
t = Λi−1,1

t (x) so Λt : Ox
t → R

p for 
some neighborhood Ox

t of x.
To construct Λi

t recursively, we suppose σ̂j = ej for j < i and

αi
.= {∇Λi−1,1

t σπ
i } ◦ (Λi−1,1

t )−1 (5.43)

does not depend upon ϕ1, ..., ϕi−1, which are vacuously true when i = 1. Moreover, without loss of generality, 
we assume the ith component of αi satisfies αi,i �= 0 (or else we change π by permuting columns i, ..., d of σπ). 
Set ψi

t(ϕ) = θt(ϕi − xi−1
t,i ; ϕ1, ..., ϕi−1, x

i−1
t,i , ϕi+1, ..., ϕp), where θ satisfies θt(0; ϕ) = ϕ and d

duθt(u; ϕ) =
αi(θt(u; ϕ), t) for u ∈ Iϕ, an open interval containing 0, and ϕ in a neighborhood containing xi−1

t . Then, 
∂ϕi

ψi = αi(ψi). For j �= i, we have ∂ϕj
ψi
t(ϕ) = ∂ϕj

θt(ϕi − xi−1
t,i ; ϕ1, ..., ϕi−1, x

i−1
t,i , ϕi+1, ..., ϕp) and

∂u∂ϕj
θt(u;ϕ) = ∂ϕj

αi(θ(u;ϕ), t) s.t. ∂ϕj
θt(0;ϕ) = ej

so ∇ψi
t(xi−1

t ) has determinant αi,i(xi−1
t , t) �= 0. Thus by the Inverse Function Theorem, ψi

t has inverse 
Λi
t ∈ Cr+2−i(Oxi−1

t , Rp) and ∇Λi
t = [∇ψi

t]−1(Λi
t) on neighborhood Oxi−1

t = ψi
t(Uxi−1

t ) of xi−1
t with

Uxi−1
t =

{
ϕ : ‖∇ψi

t(ϕ) −∇ψi
t(xi−1

t )‖ <
1

2‖(∇ψi
t(xi−1

t ))−1‖

}
, (5.44)

and ‖ · ‖ being Frobenius norm. Hence, ∇Λi
t((Λi

t)−1)∇ψi
t = I and

σ̂i = {∇Λi
tαi}(Λi

t)−1 = ei ∈ R
p. (5.45)

Moreover, Λi
t has the form (5.42) if ψi

t has similar form. ψi
t has this form by its definition as well as the 

facts αi is locally Lipschitz and does not depend upon ϕ1, ..., ϕi−1. (5.42) and induction then imply that

ek = σ̂k = {∇Λi,1
t σπ

k } ◦ (Λi,1
t )−1 ∀k ≤ i.
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Next,

(∇σ̂j)σ̂k − (∇σ̂k)σ̂j = (∇σπ
j )σπ

k − (∇σπ
k )σπ

j = 0 ∀ 1 ≤ k, j ≤ d (5.46)

by Lemma 1. Now, since σ̂k = ek ∈ R
p for 1 ≤ k ≤ i, (5.46) implies

(∇σ̂j)ek = (∇σ̂j)ek − (∇ek)σ̂j = 0 ∀ 1 ≤ k ≤ i < j

on a neighborhood O of x. Therefore, σ̂j and (by a similar argument) αi+1 can not depend upon ϕ1, . . . , ϕi

so we can take i = r by induction and

σ̂ = {(∇Λt)σπ} ◦ Λ−1
t =

(
Ir κ

0 κ̃

)
∈ R

p+1×d on Λt(Ox),

where κ ∈ R
r×(d−r) and κ̃ ∈ R

(p−r)×(d−r) do not depend on the variables ϕ1, . . . , ϕr. Since σ̂ has also 
rank r, it follows that κ̃ = 0.

It remains to show there is a relatively open Ox,s ⊂ DT containing (x, s) such that (ϕ, t) → Λt(ϕ) is 
twice continuously differentiable on Ox,s. The desired differentiability of ψi, αi and Λi follow from their 
definitions and [∂]. For V ⊂ R

p and γ > 0, we let V γ = {v + γ : v ∈ V, γ ∈ R
p with |γ| ≤ γ}.

We let Ox,s = Ox,s
r , Iis = (s − ti, s + ti) ∩ [0, T ), where ti, Ox,s

i are found recursively, Ox,s
i ⊂ DT is 

relatively open, contains {x} × Iis and Λi,1 : Ox,s
i → R

p. Let t0 = T , Ux,s
0 = Bx(1), Ox,s

0 = Bx(1) × I0
s and 

for i = 1, 2, ..., r define

Ki = sup
(ϕ,t)∈Ox,s

i−1

(|Λi−1,1
t (ϕ) − Λi−1,1

t (x)|/|ϕ− x|) ∨ 1

Li = sup
(ϕ,t)∈Ox,s

i−1

(‖∇ψi
t(Λ

i−1,1
t (ϕ)) −∇ψi

s(Λi−1,1
s (ϕ))‖/|t− s|) ∨ 1

M i = sup
(ϕ,t)∈Ox,s

i−1

(|ψi
t(Λ

i−1,1
t (ϕ)) − ψi

t(xi−1
t )|/|ϕ− x|) ∨ 1

N i = sup
(ϕ,t)∈Ox,s

i−1,|γi|≤γi

(|Λi
t(ψi

t(Λ
i−1,1
t (ϕ)) + γi) − Λi

t(ψi
t(Λ

i−1,1
t (ϕ)))|/γi) ∨ 1

Ux,s
i =

{
ϕ ∈ Ux,s

i−1 : ‖∇ψi
s(Λi−1,1

s (ϕ)) −∇ψi
s(xi−1

s )‖ <
1

8‖(∇ψi
s(xi−1

s ))−1‖

}

recursively. (γi is a vector of size γi so the supremum in N i is over vectors below this size.) Ux,s
i must 

contain a ball Bx((Ki + 1)ε) for some ε = εi > 0. Let γi = ε
Ni , δi = min

{
γ1

M1 , ...,
γi

Mi

}
, Ox,s

i = Bx(δi) × Iis

and 0 < ti < ti−1 be such that sup
t∈Ii

s

‖(∇ψi
t(xi−1

t ))−1‖ ≤ 2‖(∇ψi
s(xi−1

s ))−1‖ and Liti <
1

16‖(∇ψi
s(xi−1

s ))−1‖
. 

We need only show that ψi
s(Λi−1,1

s (Bx(δi))) ⊂ ψi
t(Uxi−1

t ) for all t ∈ Iis.
First, (ψi

t(Λ
i−1,1
t (Bx(ε))))γi ⊂ ψi

t(Λ
i−1,1
t (Bx((Ki + 1)ε))) for t ∈ Is follows by considering ϕ ∈ Bx(ε) and

|Λi
t(ψi

t(Λ
i−1,1
t (ϕ)) + γi) − xi−1

t | ≤ |Λi−1,1
t (ϕ) − xi−1

t |

+ |Λi
t(ψi

t(Λ
i−1,1
t (ϕ)) + γi) − Λi

t(ψi
t(Λ

i−1,1
t (ϕ)))|

< Kiε + N iγi < (Ki + 1)ε.

Now, ψi
t(Λ

i−1,1
t (Bx(δi))) ⊂ (ψi

t(Λ
i−1,1
t (Bx(ε))))γi for t ∈ Iis since ϕ ∈ Bx(δi) implies
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|ψi
t(Λ

i−1,1
t (ϕ)) − ψi

t(xi−1
t )| < M iδi ≤ γi

and ϕ ∈ (ψi
t(Λ

i−1,1
t (Bx(ε)))γi .

Finally, ψi
t(Λ

i−1,1
t (Ux,s

i )) ⊂ ψi
t(Uxi−1

t ) for t ∈ Iis, since ϕ ∈ Ux,s
i implies

‖∇ψi
t(Λ

i−1,1
t (ϕ)) −∇ψi

t(xi−1
t )‖ ≤ ‖∇ψi

t(Λ
i−1,1
t (ϕ)) −∇ψi

s(Λi−1,1
s (ϕ))‖

+ ‖∇ψi
s(Λi−1,1

s (ϕ)) −∇ψi
s(xi−1

s )‖
+ ‖∇ψi

s(xi−1
s ) −∇ψi

t(xi−1
t )‖

≤ 2Li|t− s| + 1
8‖(∇ψi

s(xi−1
s ))−1‖

<
1

4‖(∇ψi
s(xi−1

s ))−1‖

<
1

2‖(∇ψi
t(xi−1

t ))−1‖

for t ∈ Is so ϕ ∈ Uxi−1
t . �
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