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1. Introduction

In this paper, we study a diffuse interface model for two-phase flow in a bounded domain Q C R3. The
model is governed by compressible Navier-Stokes equations coupled with Allen-Cahn equations, i.e.,

pt + div(pu) =0,
(pu)t + div(pu @ u) + VP = vAu + (v + A\)Vdivu — 1div(Vx @ Vx — @]{)7
(px)¢ + div(pxu) = —p, (1.1)
pp = —tAx + p%x’)(),
which is complemented by the initial-boundary conditions
pl,0) = polw),  (pu)(,0) = mo(),  x(x,0) = xo(a), (1:2)
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ulog =0, Vx-n|aq =0. (1.3)

Here p,u, x, P denote the total fluid density, the mean velocity of the fluid mixture, the concentration of
one selected constituent, and the pressure, respectively. I is a 3 x 3 identity matrix, and p is the chemical
potential and n is a normal unit vector. The viscosity coefficients v, A satisfy v > 0, 2v + 3\ > 0. The
thermodynamic pressure P = pQ%pp’X) where f(p, x) is the potential energy density. As in [4], we take the

specific free energy f as below

Foo=Z 1 (-5, (1.4

where the adiabatic constant v > 1 and the constant /¢ denotes the thickness of the interfacial region. In
this context, we get

of(psx) _ p

P =p7, PT— 0%

; - X)-

For simplicity, we assume that « = 1 throughout the rest of the paper.

The model (1.1) proposed by Blesgen [2] describes the behavior of gas phases in a flowing liquid. In the
last several years, significant mathematical progress for Navier-Stokes/Allen-Cahn system has been achieved
by many mathematicians. When the density p is a positive constant, (1.1) corresponds to the incompressible
Navier-Stokes/Allen-Cahn system. In this case, Xu, Zhao, Liu in [16] investigated the axisymmetric solu-
tions in 3D and obtained the global regularity of the finite energy solutions with large viscosity and small
initial data. With the specific free energy f as (1.4), Zhao, Guo, Huang [17] proved that the solutions of
Navier-Stokes/Allen-Cahn system converge to that of the Euler/Allen-Cahn system in a proper small time.
The existence of the trajectory attractor was obtained by Gal and Grasselli [10] by using the trajectory
approach. Li, Ding, Huang in [15] obtained the existence and uniqueness of local strong solution as well as
a blow-up criterion.

For the compressible case, it is much more complicated and mathematically difficult to study. The first
mathematical work on this model is obtained by Feireisl, Petzelto?, Rocca, Schimperna in [8] where the
existence of global weak solution in three dimensions was obtained with initial density bounded and away
from vacuum. Note that the model in [8] is slightly different from (1.1) in the sense that there are some
singular terms in the system due to the different choice of f and that the viscosity coefficients depend on
X- One of the key estimates in [8] is the equi-integrability of the pressure, where the Bogovskii operator
B : [Wlﬁ(%]* — Lo (see Geissert, Heck, Hieber [11]) and the imbedding L'()) — [Wlﬁ%]* are
used, provided 63_—77 > 3 which implies that v > 6. For the steady Navier-Stokes/Allen-Cahn system, this
constraint can be relaxed to v > 3, see Axmann and Mucha’ work [1]. For the non-isothermal model, we
refer the readers to [13] where local existence and uniqueness of strong solutions with arbitrary initial data
are obtained.

Motivated by [16,17], Ding, Li, and Luo [4] considered the compressible model (1.1) in one dimension
with f as in (1.4), and obtained the existence and uniqueness of global strong/classical solutions as well as
the global existence of weak solution provided that v > 1 and that the initial density is bounded and away
from zero. Very recently, Chen and Guo [3] extended Ding-Li-Luo’s results to the more general case that
po > 0. In view of (1.4), the model (1.1) enjoys similar structures as compressible Navier-Stokes equations
for isentropic flow although it contains some terms with strong nonlinear couplings. In this paper, we will
adapt Lions-Feireisl’s approach for compressible Navier-Stokes equations to extend the one-dimensional case
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for weak solution as in [4] to the three-dimensional case with the condition of v as close as possible to those

for compressible Navier-Stokes equations.’

Before stating our main result, we derive the energy equality provided that the solutions are smooth

enough.

Multiplying (1.1), by u, integrating over €2, and using the boundary condition (1.3), we have

d 1 1
7 / <§pu2 + o 1p7> dx + / (v|Vul]* + (v + N)|divu|?) dx
Q Q
2
=— /div(VX ® Vy — @H) “u dx.
Integrating by parts, the last term of (1.5) can be rewritten as

2 2

f/div(Vx®fo |V;< ]I)wudx/(Vx@szVu |V;<
Q Q

Multiplying (1.1); by p, integrating over €2, and using (1.1),, one obtains
/P#(&:X + Vx - u)dz + /u2 dz = 0.
Q Q

Taking (1.1), into (1.7) and integrating by parts, we get

d [(1 1
o <§|V><|2 + 770 - 1)2> da + /u2 da
Q Q

2
=— / (Vx ®Vx:Vu-— @divu) dx.

Combining (1.5), (1.6), (1.8), one has

i 1 u? +
at | \2”
Q

1 1
o VA 5 VX + (¢ - 1)2> da

+/V\Vu|2 + (v + N\)|divu|* + p? dz =0,
Q

which yields

plu® € L%(0,T; LY());
u € L*(0,T; HY (D));

X € L>(0,T; H'());

p € L>(0,T; L7(Q));
we€ L2((0,T) x Q),

divu) dr.

(1.6)

(1.7)

(1.9)

(1.10)

! See the celebrated works by Lions [14] (v > 2 for 3d), Feireisl-Novotny-Petzeltova [7] (y > £ for 3d), Jiang-Zhang [12] (v > 1

for spherically symmetric solution).
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under some suitable assumptions on the initial data. Moreover, assuming that x € L>((0,T) x Q), we can
apply the regularity theorem of elliptic equation to (1.1), to obtain

X € L2(0,T; W>3%2 (Q)),

where the indices of the Sobolev spaces are due to the last two estimates of (1.10).

Throughout this paper, we will use D to denote C§°, D’ to denote the sense of distributions and C
to denote a genetic positive constant. Following the strategy in [7], [14], we define the finite energy weak
solution (p, u, x, 1) to (1.1)-(1.3) as below.

Definition 1.1. For any 0 < T' < +o00, (p, u, X, pt) is the finite energy weak solution to (1.1)-(1.3) if

® p=0,peL>(0,T]; L7(Q)), u € L2([0,T]; Hy (Q)), p € L*(0,T; L*()),
X €10,1], x € L¥(0,T]; B (@) 0 L2(0, T5 W52 (@),
with (p, pu, x)(0,2) = (po(z), mo(x), xo(z)) for a.e. x € Q;

e The equations (1.1) hold in D’((0,7) x2) and (1.1), holds in D’((0, T") x R?) provided p, u are prolonged
to zero in R3/Q;

e the equation (1.1), is satisfied in the sense of renormalized solution [5], i.e.

9:b(p) + div(b(p)u) + [b'(p)p — b(p)]divu = 0

holds in D'((0,T) x ), for any b € C*(R) such that ¥'(z) = 0 for all z € R large enough;
e The energy inequality

E(t)+//(V\Vu\2+(u+)\)|divu|2+u2) dudt < E(0)
0 Q

holds for a.e. ¢t € [0,T], where

1 1 1 1
Eit)= [ | zplul? T+ VX4 Sp(* - 1)? ) d 1.11
() Q/(pr Lo+ AP+ 08— 1) o (111)

and

1 |mo|? 1 1 1
50 = [ (5720 + Lo+ 1l + g - 0?) de

Now we are in the position to state our main result.
Theorem 1.1. Let Q C R? be a bounded domain of class C*T%,k > 0, and the initial data satisfy

Po Z 07 Lo S L’Y(Q),

(mo)?
Po
xo € 10,1], xo0 € HY(Q).

mo=0 if py=0, c L'(Q),

Then there exists a global weak solution {p,u,x, 1} with finite energy over (0,00) x £ to (1.1)-(1.3) for any
given vy > 2.
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2. Faedo-Galerkin approximation
In this section, we will construct an approximation system for (1.1) and obtain the global existence.
2.1. Local existence of the approximation

For any given € > 0,8 > 0, we construct the following approximation system for (1.1)-(1.3)
pe + div(pu) = eAp,
(pu); + div(pu @ u) + Vp? 4+ 6V (p* + p) + eVp - Vu

wﬂ), (2.1)

=vAu+ (v + N)Vdivu — div(Vx ® Vx — 5

(px)t + div(pxu) = —p + exAp,
pr = —Ax + p(x* = x),

which is complemented by the initial and boundary conditions
(pa PUaX)|t:O = (po,é,mo,éaXOﬁ) on Q, (22)
ap ox
L
on on

where § € (0,1/4), mo.s = po.suo.s, Po.s,X0.5 € C3(Q),ups € C3(Q) satisfying

— 0, (2.3)
o0

dpo.s -0
om |sa ’

pos — po inL7(Q) as 0 —0,

Up,s = £ 775*(mo>
’ 00,6 Vo)

0<6<pos <67,

mo . 2 (2.4)
Postos - —— in L*(Q)) as 6 —0,
V e ()
mo,s — Mo in L'(Q) as §—0,
0
0 < X0,6 < 1) X0,8 = 07
om |gq

Xos — Xo in L¥(Q)NHYQ) as §—0,

where 3 > 0 is sufficiently large, 75 is the standard mollifier, p5 € C§°(2), 0 < s < 1 on Q and @5 =1 on
{z € Q|dist(x, Q) > ¢}. The first line of (2.4) will enable the density to be bounded and away from zero,
see Proposition 2.1.

We consider a sequence of finite dimensional space

X, =span{®y,...,9,}, n €N,

where ®; is the i-th eigenfunction of the Dirichlet problem of Laplacian equation, corresponding the ¢-th
eigenvalue \;

—Aq)z = )\1(1)2 on Q,
®iloq = 0.
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For any given g,0 > 0, we look for a function u,, € C([0,T]; X,,) such that

Py - Pdr — /mo,g - ddx
Q

[VAu, + (v + \)Vdivu, — div(ppu, @ uy,)] - Pdads

|
o\ﬁ O\w D\
O —

Vxn|?
- / {V[pz +6(p% + )] + €Vpn - Vu, + div(Vix, @ Vi, — %)} - ddads (2.5)
Q
for any ® € X,,, t € [0,T], where p,, = pn(uy) satisfying
Otpn + div(prun) = €Apy,
Pn|t:0 = PO,67 (26)
Ol _ g
on |y
and x,, = xn(u,) satisfying
1 1,
atXn + Uy - vXn = _QAXn - _(Xn - Xn)v
P2 Pn
Xnlt=0 = X0,5, (2.7)
oxn|
om po

Here we recall the proposition which is given in Chapter 7, [9].

Proposition 2.1. Let 2 C R? be a bounded domain of class C*t", 1 > 0. Assume that the initial function
po.s is positive and belongs to class C**(SY), with boundary condition %L,ﬂaﬂ =0. Let

Up — Pn [un}

be the solution mapping for any u, € C([0,T]; C3(Q;R3)) where p, is the unique solution of (2.6). Then

¢ t
(iIelg P0,5)€XP 7/||divun||Loo(Q) ds | < pn(z,t) < (sug P0,5)€XP /”divun”Loc(Q) ds (2.8)
T FAS

0 0

forallt €[0,T], z € Q.
Moreover, the mapping takes bounded sets in the space C ([0, T); C2(2;R?)) into bounded sets in the space

W= Oipn € C([0,TY; Cy(ﬁ)
~ Lenec(o, ;0% (@)

and
u, € C([0,T]; C2(Q)) — pufun] € CH((0,T) x Q)

18 continuous.
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Given p, and u,, the system (2.7) is a standard parabolic system. Then we get the following lemma
which is about the local existence and uniqueness of x,,.

Lemma 2.1. Let Q@ C R? be a bounded domain of class C?*T®, 0 < a < i. Suppose that wu, €
C([0,T); C3(QR?)), pn = pnlun] with pos strictly positive. Finally, assume that xo05 € C3(Q) satisfying

9xo,s

52> lon = 0. Then there exists a unique classical solution x, to (2.7) such that

Xn € L([0,T]; H' () N L*([0, T); H(%)).

Due to (2.5), Proposition 2.1 and Lemma 2.1, the approximate problem (2.1)-(2.3) can be solved on
a short time interval [0,7},] by means of the standard fixed point theorem on a special Banach space
C([0,Ty); X»), where T,, < T. Noting that the obtained solution is only local in time, we will extend it to
a global one by showing T;, = T in the next subsection.

2.2. Global existence of the approrimation

In order to show T, = T, we need an estimate of u,, uniformly for ¢ from the following global energy
estimate. We test (2.7); by x» to obtain

prdi(xp — 1) — Axp — 1) + ppun - V(X — 1) + 2pn(xs — 1) = —2pa(xs — 1)* — 2|Vxa|* 0,
which yields
Xa—1<0 (2.9)

by using the maximum principle for parabolic equation. On the other hand, from (2.7) and the standard
maximum principle for parabolic equations, one has

Xn > 0. (2.10)

Therefore, we have

0<xn<l. (2.11)

Thanks to (2.1),, we can test testing (2.1), by u, to obtain

/pn,unatxn dx + /PnMnVXn Uy dr + /,ui dx = 0. (2.12)
Q Q

Taking (2.1), into account and integrating by parts, one gets

d 1 o 1 2 2 / 2
Ry - 1
pm [QVxnI + 1Pl =17 det [, da
Q Q
2
+/ [Vxn ® Vxn : Vu, — ‘Vén‘ divun} dx
= —s/Vpn “Vxn (O — xn) da. (2.13)
Q

Using u,, as a test function in (2.1), and integrating over €2, we have
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d 1 1

- - %% 24 _ - B8

dt/<2pn +5(pn+ﬁ_1pn)>dx
Q

+ [ (V|Vun|® + (v + N)|divu, ) dz + 5/(’yp;{_2 + 08027V pn|? da (2.14)
Q

2 . |vXn|2 . _
+26e [ |Vpl2dx — Vxn ® Vxn: Vu, — levu dr =0
Q Q

D

which combined (2.13) and yields

LR
at | |20 T T
Q

1 1 1
PZ‘HS(/%%‘FﬁPrBL) +§|VXn|2 4Pn( —1)} dx

—I—/ufl dx—i—/ V[V, | + (v 4 A)|dive,|?] dx—i—s/(’ypZ_Q+66p£_2)|Vpn|2 dx

Q Q Q

+25€/|V,0n dr = —E/Vpn Vxn (X2 = Xn) da. (2.15)

By (2.11), one has
e / Vpn V(6% — xn) dz| < C=[Vpnll z2oy | Vn 2

< 0el|VpnllEe() L& IIVanLzm)

Integrating (2.15) with respect to ¢ over [0, 7] and using the above inequality, we get

1 2 L, 2 1 1 2 1 2 2
aFn|Un 1 J ——p a n T Pn -1 d
/<2p |un | o gt (pn+ﬂ_1pn + 5 IVxal® + oG —1)7 | da
Q
T T
//ui da:dtJr// [V|Vu, > + (v + A)|divu,|?] dzdt
0 Q 0

T T
+e//(7px*2+5ﬁp§*2)|vpn|2 da:dt+65//|Vpn|2 dadt
0 Q

0 Q

_|_

Ce

<CEslpo,mo, xol (1+¢%7), (2.16)

where

1 \m0,5|2 [ 1 o 1 2 2
Es[po, mo, xo] = §W + ﬁpO,é + §|VX0,5| + ZPO,é(Xo,a - 1)) da.
J ,

The energy inequality (2.16) yields

/ IVun 2y dt < C(e,6) < +oo. (2.17)
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Due to dimX,, < oo and (2.8), it is easy to show that the density is bounded and bounded away from below
with a positive constant, i.e.

0< ﬁ < pn < C(n), (2.18)

for any t € [0,7*). On the other hand, the energy inequality also gives

sup /pn(t)|un(t)|2 dr < C < 400, (2.19)
te[O,T*)Q

which together with (2.18) implies

sup [ (D)0 < Cl) < 45, (2.20)
te[o,T*)Q

where T* is the maximal time for existence of the solution, and we have used the fact that all the norms
are equivalence on X,,. Then we can repeat the above analysis to extend the local solution u,, to the whole
interval [0,7T]. The functions (pn, x») also can be extended to the whole interval [0, 7] by Proposition 2.1
and Lemma 2.1.

In summary, we have proved the global existence of the following system:

Orpn, + div(ppun) = €App,
(Pnttn) + diV(pnttn @ un) + V) + 6V (o5, + pj) + €Vpn - Vuy

2
= vAu, + (v + N Vdive, — div(Vy, © Vi, — %H), (2.21)

(PnXn)t + diV(pnXntn) = —pn + EXnDpn,

Prtin = —AXn + pu (X3 — Xn),

with the initial and boundary conditions
(Pns Prtiny Xn)lt=0 = (po,5,mM0,5,X0,6) on (2.22)

Opn —, ~ Wn

on’ " on

2.3. The Faedo-Galerkin approrimation limit as n — 400

=0. (2.23)
oN

Due to the energy inequality (2.16), we observe that the terms related to p, and w, can be treated
similarly to [9]. Here we summarize the convergences and estimates related to p, and wu,, which are useful
for showing the convergence in the Allen-Cahn system. Passing the limit n — +o00, we have

pn — p weakly—(*) in L>(0,T;L°(Q)), B> 3; (2.24)

pn — p strongly in LP((0,7) x Q) for all pe[l,f+1); (2.25)

u, —u weakly in L*(0,T; H'(Q)); (2.26)
elVon®)llZz(0,m)xe) < CEslpo,mo, xol; (2.27)
[div(pnun )l Le0,1)x0) < C(€)Es[po, mo, xo] for some p>1; (2.28)
10tpn |l e 0,1y x0) + APl Lr(0,7x0)) < C(€)Eslpo, mo, xo] for some p>1; (2.29)
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where C(g) is dependent on & but independent on n.
From (2.11) and (2.16), we conclude that

Xn — X weakly—(*) in  L°°(0,T; H'(Q)) N L>®((0,T) x ), (2.30)
pn — i weakly in  L2((0,T) x Q). (2.31)

Moreover, by (2.24), (2.26) and (2.30), one obtains

pnXn = px weakly(*) in L>(0,T;L°(Q2)), (2.32)
PnXnltn — pxu weakly in L?*(0,T; L%ﬁﬂ(ﬁ)) (2.33)

Note that
div(prXxntn) = div(pntn)Xn + Prtin © VXn, (2.34)

and by virtue of (2.24), (2.26), (2.28) and (2.30), we have

||diV(annUn)||Lq((o,T)xQ) < C(E)Eé[l)oamm){o}» (2~35)

where ¢ = min{p, %} Due to (2.29) and (2.31), the right-hand side of (2.21), is also bounded in
L1((0,T) x ), i.e.

10t (P Xn) | La(0,7yx ) < C(€)Es[po, Mo, Xo- (2.36)

With the help of (2.24), (2.27), (2.30), one obtains

| on Xl < C(g)Es[po, mo, Xol- (2.37)

L2(0. W F 42 ()
Thus applying Aubin-Lions compactness lemma, we have
PnXn — pXx strongly in L((0,T) x Q). (2.38)

Then, we handle the convergence about (2.21), and show the strong convergence of x,. By virtue of
(2.24), (2.30) and (2.31),

Pnpin — pp weakly in  LP((0,T) x Q) for some p>1, (2.39)
P06 = xn) = p(X® —x)  weakly—(*) in L>(0,T; L°(2)). (2.40)

Observing that
O [pn(sz - Xn)] = atpn(_2X?z) + at(ann)(SX?z - 1)7 (2'41>

and combining with (2.29), (2.30), (2.36), we have

10: [pn (X2, — Xn)] lza0. 7)) < C(€)Es[po, mo, xo), (2.42)

which implies

P = xn) = pOC —x) in C([0,T]: L, . (), (2.43)
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Pr(X3 = Xu)xn = (O3 —X)x weakly in L?*((0,T) x Q). (2.44)

Next we multiply (2.21), by x» and integrate by parts:

T T T
//|VX7L|2 dxdt = //Pn#an dxdt — //pn(X% — Xn)Xn dzdt. (2.45)
0 Q 0 Q 0 Q

Passing the limit n — +o00 in (2.21),, one gets

pr=—Ax+p(x* —x). (2.46)

It follows that

T T T
//|Vx|2 da:dt://p,ux dxdt—//p(x%—xn)x dxdt. (2.47)
0 Q 0 Q 0 Q

By (2.30), (2.38) and (2.44), we conclude that
VXn — Vx strongly in L*((0,T) x Q). (2.48)
Then we recall a special Poincaré’s inequality in [6] to achieve the strong convergence of x,.

Lemma 2.2. Let ) C R? be a bounded reqular domain and m and k be two positive real numbers. Assume p
s a non-negative function such that

O<m:/pdx and /p%dxgk.
Q Q

Then there exists a constant ¢ = c¢(m, k,p) such that

1
Hx——/pxdm
m
Q

for any x € WLP(Q) if p > %

< e(m, &, p)[IVxllLe o)
Lr(Q)

Applying Lemma 2.2, using (2.38) and (2.48), we have
Xn — X strongly in L*(0,T; H(Q)). (2.49)

And in the view of (2.29) and (2.30), one gets

Xn — X strongly in LP((0,7)x Q) for all pell, o0), (2.50)
X2 —xn — x> —x strongly in LP((0,T)xQ) for all pell,o0), (2.51)
XnQpn = xAp weakly in LP((0,7) x Q) for some p > 1. (2.52)

In summary, we have the following existence result for the problem (2.1)-(2.3).
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Proposition 2.2. Let ¢ > 0, § > 0, and 8 > max{3,v} be fized. Then for any given T > 0, there exists at
least one solution (p,u, x, 1) to problem (2.1)-(2.3) in the following sense:

(i) The density p is a non-negative function satisfying

p e LP([0, T, W?P(Q)), dp € LP(0,T) x Q),

for some p > 1, the velocity u belongs to the space L*([0,T]; H}(SY)), equation (2.1), holds almost

everywhere in (0,T) X Q, and the initial and boundary condition on p is satisfied in the sense of traces.
Besides, the total mass is conserved, i.e.

[ ptatyda = [ pos(ayaa.

Q Q

for allt € [0,T]; and the following estimates hold

T
5//pﬁ+1da:dt§CE,
0 Q

T
55//|Vp\2dxdt§Ea[Po,m07X0]~
0

(ii) All the quantities appearing in the second equation of (2.1) are locally integrable, and the equation is
satisfied in D'((0,T) x Q). Besides, one has

pu € C([O,T];L% (©2))

weak

and pu satisfies the initial data.

(ili) All terms in (2.1); and (2.1), are locally integrable. The functions x, p satisfy the equations (2.1),
(2.1), in the sense of distribution. Moreover, x satisfies the initial data.
(iv) The energy inequality

1 1 1 1
/ (QPUF + ﬁﬂv + §|VX|2 + ZP(XQ - 1)2> dx
0

T
+//(V|Vu\2+(u+A)|divu|2+u2) dadt
0 Q

T

T
e//(vawﬂpﬁ*?wpﬁ dxdt+5e//|vp\2 dadt
0 Q Q

0

+

1 |mol? 1 1 1

< [(= T+ VX0 + oG —1)? ) d

_/<2 % +7_1P0+2| Xol +4P0(X0 )7 ) d
Q

holds for a.e. t € [0,T].
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In order to complete the proof of Theorem 1.1, we will take the vanishing limits of the artificial viscosity
and the artificial pressure in the next two sections.

3. The vanishing artificial viscosity limit

In this section, we study the limit as € — 0% for the solution (pe, ue, Xe, ft) obtained in Proposition 2.2.
Since the term £Ap, vanishes as ¢ — 0T, the density p. will lose some regularity. On the other hand, the
energy inequality yields p. € L>(0,T; L?(€)) and then the pressure term will only converge to a random
measure. It seems not enough to get the desired limits. Thus, we need a higher integrability estimate of the
density.

3.1. Higher integrability of the density

The basic idea is to test the pressure term V(p2 + 6(p2 + p2)) by a suitable function, and then get the
desired integrability estimate of the density. The choice of the suitable function relies on a linear integral
operator B which satisfies

B: feLp(Q)|/f:0 — WP,
Q

divB[f] = f, Blf]lea =0,

1Bl lwrr) < cP)fllLeie) for any 1<p<oo. (3.1)

Moreover, for g € LP(2), g-nlaq =0,

|1B[divg]|lLr () < c(@)llgllLr@) for any 1 <p < oc. (3.2)

Denote

B(t,x) = $(1)Blp. — Mol, %(t) € C2(0.T), 0<(t) <1, Mo:fﬁl / pe(t) da
Q

as the suitable function where 9 (t) guarantees that the quantity ® is a test function for the momentum
equation.
Now we are in the position to get the higher integrability estimate of the density.

Lemma 3.1. Let 8 > 3, (pe, ue, X=) be the sequences of the problem (2.1), (2.2), (2.3), then

T
//{pZ“ +8(p2 + p2*)} dwdt < C, (3.3)
0 Q

where C is independent of €.
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Proof. Testing the momentum equation by ® = ¢ (¢t)B[p. — My] and integrating over (0,7) x 2, we have

T
/ / {ap”'“ +6(p2 + pPtY )} dadt
0

Q
T
—MO/ /{p2+5 P2+ p2)} dadt + (2v + A) /w/pgdlvus dzdt
0 Q
T
/ﬂ’t/ﬂsug. . — Mp] dxdt — y/z/;/vus - VBlp. — My dadt
0

<

T
/peu‘S ® ue - VB[pe — Mp] dadt — /ﬂ; pete - B[Ape| dxdt
0

O

2

0
/
T T
- /w/p Ue - Bldiv(peue)] d:rdt+5/1/)Q/VuE - Vpe - Blpe — M| dzdt

0

2

1
/w/ (V)@@ng - §|VXE|2H) : VBp: — My] dxdt = Zlk (3.4)
Q

The boundness of Zi:l I, are treated similarly in [7]. Here we focus on Iy. Applying the regularity theorem
of elliptic equation, we have

< .
IPxell o 22, lpette + pe(x? BRI

It follows that

T
1
ol =| [0 [ (T3 @ xe = 59T ) : VBlo. — ] da

0 Q

T

<C [I9xeP, o, o IVBlo: = Moll oo
0

T

<C [Vl s, o lo-losco

0

T

<C [IVl? o,
) LF-1(Q)

<C HVX€||2L£.IL dt

548 (@)

2
Il s, o

St ~— T
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T
/ ol (1 el oyt
0

<C (3.5)
where we have used the fact that W2215 < Whe15 and 2/3 < 6(1%, and that pe € L*(0,T; LP(Q)) and
pe € L2((0,T) x Q) due to the energy inequality. Note that the inequality = 1 1 < % implies 5 > g. ]

3.2. The limit passage

With the help of the previous energy estimate, Lemma 3.1 and (2.11), we have

eVp. -Vu. =0 in L'((0,T) x Q), (3.6)
eAp. — 0 in L*0,T;W~12(Q)), (3.7)
pe — p weakly in LOH1((0,T) x Q) and weakly—(*) in L>(0,T; L?(2)), (3.8)
Xe — x weakly—(*) in L%((0,T) x Q)N L>(0,T; H(Q)), (3.9)
u. — u  weakly in L?(0,T; H} (2)), (3.10)
pe — p weakly in L?((0,T) x Q), (3.11)
pT 4+ 802+ p) = p7 +0(p% + pP)  weakly in LB ((0,T) x Q), (3.12)
where f denotes the limit function of f..
Following the same arguments as in [7], we obtain
pe—p i C([0,T]; L, (D)), (3.13)
pett= — pu  in C([0,TT; L;;Zk(g)% (3.14)
pe(ue @ue) = plu®@u) in D'((0,T) x Q). (3.15)

We will proceed to handle the x. terms in the equations. To begin with, we recall the Allen-Cahn system,
ie.,

O¢(pexe) = —div(pexetie) — pte + €ApeXe, (3.16)
Pette = —AXe + PE< XE) (3~17>

For any £ € C§°((0,T) x §2), one has

T
5//Apax€§ dxdt
0 Q

T

T T
= s//psstg dxdt + 26///)5ng - V¢ dxdt+5//p5AX€§ dxdt, (3.18)
00 0 Q

0 Q

where all terms go to 0 as ¢ — 0. It implies

eApexe = 0 in D'((0,T) x Q). (3.19)
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By virtue of (3.8) and (3.9), we have
peXxe = px  weakly—(*) in  L*=(0,T; LP(Q)),
which, in accordance with (3.10) yields

<C
HanEuE”L%O - Liﬁ(ﬂ)) <

It follows that
10 (pex) L2051 (0)) < C.
Then applying the Aubin-Lions compactness lemma, one obtains
pexe = px in C([0,T); L}, () N C(0,T]; HH(Q)),

weak
which combines (3.10) and leads to
peXelle = pxu weakly in L2(0,T; L%(Q))
By virtue of (3.8), (3.9) and (3.11), we have

Pelte — pii - weakly in LQ(OTL%(Q)),

Ax. — Ax weakly in L*(0,T; L7+ 745 (),

X§ —xe = X3 —x weakly—(*) in L*=((0,T) x Q)N L‘X’(O,T;Hl(Q))7

which together with (3.23) yield

pex=(X2 — xe) = px(X® — x) weakly—(*) in L>(0,T;L%(Q)).

Then we test equation (3.17) by x. and its limit equation by x to arrive at

T T
//|VXE|2 dxdt = /
0 Q 0
T
//|Vx\2 dzdt = //pux dxdt — //px X% — x) dxdt.
0 Q 0

0 Q Q

T
PelieXe dxdt — //pgx6 — Xe) dxdt,
0

ZO\

Similar to the analysis in Section 2.3, we are able to prove
Xe — x strongly in L*(0,T; H'(Q)),

as soon as

T T
lim //psﬂsXs dxdt*//pexe(xi‘*xs) dxdt
0 Q 0 Q
T T
://dexdt //pxx—x ) dxdt.
0 Q 0

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
(3.26)
(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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By employing (3.9), (3.23), we have
pexZ — px° weakly—(*) in  L>(0,T; L7(Q)).
On the other hand, by (3.9), one gets
X2 = x2 weakly—(*) in L%°((0,T) x Q) N L>=(0,T; H'(Q)),
which together with (3.8), (3.13) gives

px2 — px? weakly—(*) in  L(0,T;L°(Q)),

pex? — px2 weakly—(*) in L*(0,T;L°(Q)).

Noting that

pxZ = px* = (px2 — px2) + (0X2 — peX2) + (p=X2 — pX?),
we deduce from (3.33), (3.35) (3.36) that

T T

//pxg dmdt—)//px2 dxdt as e —0,
Q 0 Q

0
which implies
Xe — X strongly in LP(QF) for all pe€[l,00),
pe — p strongly in LP(Q%) for all pe[l,3),
where QF = {(z,t) € (0,T) x Q|p(x,t) > 0}, Q% = {(z,t) € (0,T) x Q|p(x,t) = 0}. It follows that
//m dxdt = //Wx dxdt,
Qr Qr

and

//Wdzdt://pwdmdtzo,

QY Q%

//WX dmdt://pux dxdt = 0.
]

QY Qr

1281

(3.33)

(3.34)

(3.35)
(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

In view of (3.28), and (3.41)-(3.43), we prove (3.32) and the strong convergence of x.. Consequently, we

have

X2 —xe = x* —x strongly in LP((0,T)xQ) for all pell,o00).

(3.44)
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Letting e — 07, we conclude that the limit of (p., ue, Xe, 1) satisfies the following system:

pe + div(pu) = 0,

(px)¢ + div(pxu) = —p,

pi = —Ax +p(x* = x),

where P = p¥ + 6(p2 + pP).

8.8. Strong convergence of the density

(pu)¢ + div(pu @ u) + VP = vAu + (v + \)Vdivu — div(Vx ® Vx —

2
Vx| I,

2 (3.45)

Observing that the equation (2.1), holds almost everywhere in (0,7") x €2, we test it by V’(p.) to obtain

0tb(pe) + div(b(pe)ue] + (V' (pe)pe — b(pe))divus
= ediv(10Vb(p:)) — elab” (p:)|Vpe |?

(3.46)

in D'((0,T) x R3), where b is a convex function belongs to C?[0,00) and 1g is the characteristic function of

Q. Integrating over (0,7) x €2, one has

/T/(b’(pe)pg — b(pe))divu, dedt < /b(po’(;) dx — /b(pg) di.
0 Q

Q Q

Let b, (z) € C°(R) satisfying

bo(2) zlog z, |z| < n,
n\%) =
(n+1)log(n+1), |z| >n+1.

By Lebesgue convergence theorem, we are able to take b(z) = zlog z, which gives

T
//psdivuE dzdt < /po’(s log pe da:—/,oE log pe dz.
0

Q Q Q

Passing to the limit as e — 0T, we arrive at

T
//pdivu dxdt < /po,(;logpo,(; d:cf/plogp dx.
0 Q

Q Q

Similarly, since (p,u) satisfies
pt +div(pu) =0
in the renormalized sense, we take b(z) = zlog z and get

T
//pdivu dxdt = /po,glogpo,g dx—/plogp dx.
0 Q

Q Q

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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From (3.50) and (3.52), we deduce that

T
/plogp — plog p(7) dx < //pdivu — pdivu dzdt, (3.53)
Q 0 Q

for any 7 € [0, T7.
In order to show the strong convergence of the density, we need additional regularity related to (p,u). It
comes from the momentum equation and is now well known as the effective viscous flux, i.e.

H. = p2 +6(p% + pP) — (2v + N)divu,, (3.54)

and its limit function

H=P— (2v+ \divu, (3.55)
where P = p¥ + 6(p2 + pP).

Lemma 3.2. Let (pe,uc, x:) be the sequences of the problem (2.1), (2.2), (2.3) and (p,u,x) be their weak

limit, then

T T
lim O/ / () $(x)Hepe dudt = 0/ Q/ () d(x)Hp dadt, (3.56)

e—0t
Q
where Y(t) € D(0,T), ¢(x) € D(Q).
Proof. The trick of the proof is to introduce the operator
Alv] = A7V (0], (3.57)

where A~ represents the inverse of the Laplace operator on R3. The operator .4 has some good properties

as follows:
A= F (- Tézlgj ), divAfp] = v;
[Aivllwir,s) < (s, D)vllps(rsy for any 1< s < oo; S (358)
A L) < c(p, s, D)||v|lLs(rsy, p finite, provided ) > Pt
Aiv]| Loy < c(s, Q)]s (rsy for s> 3.
Choosing

U(z,t) =p(t)p(x)Allap:], where ¢ €D(0,T), ¢ € D(Q),

as a test function in the momentum equation (2.1), we have
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T

Ik Q/ O H. pedudt

0

T T
= [ O (bpaueA[lst} drdt + | ¥ gbpeusA[diV(peueﬂ dadt
o Iy

0 Q

T
P [ (pete @ ue) 1 (Vo @ A[lape]) dedt — | ¥ | ¢ppeue @ ue : VA[lgpe] dadt
f o

Q 0

T
/
T T
/ ¥ / (57 +6(0% + p2)) (V6 - Allap.]) dedt + / " / Vu Vo ® Allap.] dedt
0 Q 0 Q
T T
Jr/d)/gﬁVug - A[lape] dxdt+/w/divusv¢-A[IQpE] dxdt
0 Q 0 Q
/
0

2
d)/ [(Vxe @ Vxe — %H)V@ - Allape] dzdt

T

Q
2
- /¢/¢(VXE ® Vxe — |V>2<5| I): VA[lqgpe] dxdt

0

Q
T
0
On the other hand, we use ¥(t)p(x)A[lap| as a test function for (3.45), to obtain:

T
O/¢Q/¢Hp dxdt

T

T
= [ 0w | dpuAllap] dedt + [ ¥ | ¢puAldiv(pu)] drdt
[*] [*]

T T
— Y [ (puu): (Vo Allap]) dedt — [ ¢ | ¢ppu@u: VA[lgp] dzdt
[ []

Q

T T
= [ [ (o7 +6(p* +p7)(Ve - Allap]) dzdt + [ ¢ | VuV ® Allgp] dzdt
[+ [*]

Q

Q

+ O/T ¥ Q/ oV - Allgp] dedt + O/T ¥ / divuVe - Allop] ddt
/

2
- ¢/ [(VX®VX— %H)Wﬁ] - Allap| dzdt
Q

z 12
- 5/¢/Vp5 - Vue - Allape] dedt — 5/1/)//)5% - A[div(1aVp,)] dedt = le.
Q 0 Q i=1

(3.59)
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T
/w/¢> Vx ® Vx 'VX| 1) : VA[lop| dedt = Z[’ (3.60)
0 Q

It is easy to deduce from (3.8), (3.59) that
Ailp] = Ailpl in C((0,T) x Q) and  9;4;[p.] — 9, Ailp] in C([0,T); L2 . (). (3.61)

Following the same analysis of [7], we observe that the I; converge to I; for j < 8 and I11, 112 tend to zero.
It remains to show Iy, I1o converge to Ij, I, respectively. Thanks to (3.9), (3.26), (3.31), and the imbedding
WQ’% — Wl’%, we have

Vy. ® Vye = VX ®Vy strongly in L2(0,T; L5 (Q)), (3.62)
IVxel? = [Vx|? strongly in  L2(0,T; L5 (). (3.63)

Combining with (3.61), one obtains

T

2
/¢/ |:(VX5 ®VX€ - |V)2(€| H)V¢:| A[lﬁpa] dxdt
0

Q
. o (3.64)
— /w/ [(Vx@Vx— %H)V(ﬁ] - Allqgp] dxdt  as e — 0,
0 Q
x 2
|VX5| .
Y | ¢(Vxe ® Vxe — 9 ) : VA[lap:] dxdt
0 Q
. o (3.65)
—>/¢/¢(Vx®Vx— | ;' I): VA[lgp] dzdt as e — 0.
0 Q
Taking limit in (3.59), (3.60), we complete the proof. 0O
Making use of Lemma 3.2 and the monotonicity and convexity of p¥ + &(p? + p?), one has
T T
- 1 _
//pdivu — pdivu dzdt < S //(Pp — pYTL 4+ 6(p3 + pfH1))dzdt < 0. (3.66)
0 Q 0
With the help of (3.53), we obtain
/plogp — plogp dz <0. (3.67)
Q
On the other hand, since
plogp > plogp, (3.68)

due to the convexity of z — zlog z, we deduce that

plogp=plogp a.e. in (0,T) x Q, (3.69)



1286 S. Chen et al. / J. Math. Anal. Appl. 477 (2019) 1265-1295

which implies
pe — p strongly in L'((0,T) x Q).
With the help of (3.8), (3.11) and (3.70), one obtains
Pelte — pit weakly in L%O,T;L%(Q)).

Letting € — 0, we have the following result.

(3.70)

(3.71)

Proposition 3.1. Let 8 > max{z,fy7 pp. 55 }. Then for any fized 6 > 0, there exists a weak solution (p,u, x, 1)

of the problem

pt + div(pu) =0,

(px)¢ + div(pxu) = —u,
pp = —Ax + p(x* = x),

satisfying the initial and boundary conditions

(P, pu, X)lt=0 = (po,5,m0,5,X0,6) on €,
ulago =0, Vx-nloq =0.

Moreover, the energy inequality

d [[1 o, 1 , 1 1 1

il - - 5 _= B - 20 “o(v2—1)2] 4

n {QpUIJrvler (p e + 5V + 5o~ 1)) de
Q

/u da:Jr/ \Vu|2 V+)\)|divu|2] dx <0,
Q

holds in D'(0,T).
Finally, the following estimates

Sup || VP U ||L2 < CEJ[vam()aXO]a

sup_||p(#)117(qy < CEslpo, mo, xol,
t€[0,T]

0 S[l(l)P lIp(t )”Lﬁ(Q < CEs[po, mo; Xol,
te

sup [[Vx ()| 720y < CEspo, mo, xol,
te[0,T]

lullz2 0,72 (2)) < CEslpo, mo, Xol,

|l 22 0,1y x ) < CEs[po, mo, Xo)s

hold, where the constant C is independent of 6.

(pu)¢ + div(pu @ u) + Vp¥ 4+ 6V (p? + p°) = vAu + (v + \)Vdivu — div(Vy @ Vx —

2
Vx| I,
2 (3.72)

(3.75)
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4. The vanishing artificial pressure limit

In this section, we will pass the limit as § — 07 and complete the proof of Theorem 1.1. To relax the
constraint of the adiabatic constant v as much as possible, it still needs to improve the integrability of the
density. Note that the case for v > 2 is not difficulty for compressible Navier-Stokes equations for isentropic
flow nowadays. But for the compressible Navier-Stokes/Allen-Cahn system, the stronger nonlinearity and
the poor regularity of the function x require us to use the cut-off function. It is mainly due to the convergence
in effective viscous flux, see Remark 4.1.
4.1. Higher integrability of the density

Similar to Section 3.1, we shall choose a suitable function to test the pressure term and get better estimate
for the density. The difference comes from the continuity equation (3.72),, which only holds in D’((0,7") x2).

We have to regularize its renormalized equation (for better ) to obtain a new equation, which holds almost
everywhere, i.e.

Dt Sm[b(ps)] + div(Sm[b(ps)]us) + Sm [(b(ps) — V' (ps)ps)divus] = 7, in (0,T) x R3, (4.1)
T — 0 in LY((0,T) x R®) for all «a€]l,2), (4.2)

where Sp,[f] = nm * f is the standard regularized operator and n,, is the modified kernel (see details in [7]).
Therefore, we construct the identity

B(t, x) = p()B | Sm[b(ps)] — ]{Sm[b(ps)] de|, 9(t) € C5o(0,T), 0<y(t) <1,

j{S (ps)] ~ /S (ps)]

as a test function for the momentum equation, which leads to the following result.

Lemma 4.1. Let v > 2, (ps, us, xs5) be the sequences of the problem (3.72)-(3.74), then

T
/ / W +8(p20 4 p5+9)} dxdt < C, (4.3)
0

where 6 = min{1, 3 — 1}.

Proof. Taking ®(¢,z) as a test function for (3.72),, integrating over (0,7) x © and integrating by parts,
one arrives at

T
/1/)/ Py + 8(p3 +p5))5m[b(p5)] dzdt
0

T
=2+ \) /zp/ b(ps)]divus dzdt
0
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+/Tw</p5+5(p5+ps) )(7{5 b(ps)] dm)dt

- [ / psus - B (s (os)) ~ § Slbos) dm) dodt
¥ [ (WVus — psus @ ug) : VB (S [b(ps)] — @ Sm[b(ps)] dx) dzdt
Jof f

Q

v [ psus- 5 (Sm (b(os) ~ ¥ pw)ps)divas] = 5o [(6ps) = ¥'(ps)p)divas dx) dudt
Q

Q

T
psus - B (Tm — ?{Tm d:c) dxdt — /ZZJ/P(SU& - B (div (S [b(ps)]us)) dxdt
0

Q Q

<
O—

- [v (m © Vs — %vm?ﬂ) VB (Sm[b(foé)] - f Sulbtos) da:) dudt. (4.4)
0 Q

Q

With the help of (4.2), we are able to pass the limit m — co and take b(ps) = p§ to obtain

T
[ [ o4 600+ ) dad
0

Q
T T
= /w (/p}+5(p§+p?) dx) (j{pﬁ dx) dt/l/}t/PéUé'B(Pg]{Pg dfﬂ) dadt
0 Q Q 0 Q Q
T T
+/77/}/VVU5:VB (pgy{pg dx) d:z:dtf/d)/pgu(;@u(;:VB (pg%pg dz) dxdt
0 Q Q 0 Q Q

T

T
+(1-6) /¢/p5u5 -B (pgdivu — %pgdivu dm) dxdt — /w/p(sug -B (div(pgug)) dxdt
Q 0 Q

0

T 7
1
— /w/ <VX5 ®Vxs — §|VX5|2]I> : VB (pg — 7{p§ da:) dxdt = E Ji. (4.5)
(o) k=1

Q

The estimates of J;-J7 are treated as follows:

(1)

T
|J1] Z‘/w (/pg+5(p§+/)§) dm) (]{pg dx) dt’
0 Q

Q

T
<C||psll Lo (0,7:17 () //,0} + 6(p2 + p)dadt
0

Sc(pOammXOaT)a
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provided 6 < 7.

(2)

T
| J2| :’/wt/Péué'B’ pg—%pg dx d:vdt‘
0o @ %)

T
SC/|¢t|H\/P_6||L2(Q)||\/P_6U5||L2(Q)||B s —jgpg dz | || Lo () dt
0

Q

T
<C [ Vol = ot dol gt
0

Q

T
<c / el
0

provided 6 < 3.

(3)

T
| J5] 2’/¢/VVU61VB pg—fpg dx dxdt‘
0

Q Q
T

<C [ [Vusllio) |98 4 = § o8 do | o
0 Q

T
<C [ 1Vusl 26k~ o dalogods
0 Q

provided 6 < 7.

(4)

T
| /4] —‘/ﬂ’/ﬂéua@w:VB pg—j{pg dz dxdt‘
0

Q Q

T
2 0 0
<C [ sl ollus eI V5 o8 = o d | sz,
0 Q

T
<C [ Nuslialloh = o6 ol oo,
0 Q

: 2
provided 6 < = — 1.

(5)

T
|J5] z‘(l - 9)/¢/p5u5 -B (pgdivu - %pgdivu dx) dxdt‘
0

Q
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T
SC/W%umNWMmMW<£®W—f£®WdQ
0

T
SC/ llus|| a1 ]| B <pgdivu — ?{pgdivu dw) lws @t
0

where

if 6;
7’7—6, Iy <0;

%, if v>6,

and provided 0 < %’Y —-1,0 <1.
(6)

T
| J6| ‘/w/pgug B (div(p§us)) dadt
0

L57—6 (Q)

<c / 08 sl o 1B (div(pQuus)) || on
0

<C [ Nuslfioio o8] oz,

. 2
provided § < =t — 1.

(7)

T
|J7| = ‘/1/1/ (VX5®VX5——|VX5 I):VB|pl-— p5 dx dxdt’
0 Q

dt
L (Q)

]{pﬁ dzx
Q

T

< [IIVxsPl, 20 |7
0
T
<C [ TP, 24 o 6815
0

T

/ IVl s,
7 (Q)

0

T

<c (||xawz,%(9)|xa|mm + Clhallmio ) d

o\

T
<C [ lollrcon (1 + sl ooy
0

(4.6)
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Here we have used the Gagliardo-Nirenberg inequality and the condition

2 o

y—0 T 247

holds if < 7 — 1.
The proof is completed. O

4.2. The limit passage

1291

Due to the energy inequality, Lemma 4.1 and (2.11), letting § — 0% (take the subsequence if necessary),

we have

3(p3 +p5) =0 in L}((0,T) x ),
ps —p in C(0,T;L) .(Q) and weakly—(*) in L>(0,T;L7(Q)),
X5 — x weakly—(*) in L*(0,T; H'(Q)) N L>¥((0,T) x Q),
us —u weakly in L*(0,T; Hy(Q)),
ps — p weakly in  L*((0,T) x Q),

pl — 77 weakly in L5 ((0,T) x Q).

Moreover, by (3.3),, (3.76), (3.77) and (3.80), we deduce that

2y
psus — pu  in C’([O,T];L2+7W () and weakly—(*) in L*(0,T;L"(Q)),

weak

which combines (4.11) and the compactness of L5 (Q) — H (), v > 2 and yields
ps(us @ ug) = plu®wu) in D'((0,T) x Q).
On the other hand, similar to the arguments in Subsection 3.2, one obtains

psxs — px in C([0,T); L], .., (),
psXsus — pxu weakly in  L*(0,T; LG%(Q)),
Axs — Ax  weakly in L*(0,T; L%(Q)),
x5 — x strongly in L*(0,T;H'(Q)),
Xs—xs — x> —x strongly in LP((0,T)x Q) for all pe[l,00),

psiis — P weakly in  L2(0,T; L7 (Q)).
Consequently, letting § — 0%, the limit of (ps,us, s, its) satisfies the system

pt +div(pu) =0,
[Vx[?
2

(pu); + div(pu @ u) + Vp¥ = vAu + (v + A\)Vdivu — div(Vx @ Vx —

(px)¢ + div(pxu) = —u,
i =—Ax+p(x* — ),

in D'((0,T) x Q).

I),

(4.14)

(4.15)

4.16
4.17
4.18
4.19
4.20
4.21

~ A~~~ o~
—_ — — O —

(4.22)
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4.8. Strong convergence of the density

It remains to show the strong convergence of ps in L'((0,7) x Q) and then we are able to prove p7 = p”
and pfi = pp. Firstly, we denote the cut-off functions Ty(z) = KT(%) for = € R, k = 1,2,3,--- and
T € C*(R) is a concave function satisfying

z, z<1,
T(z) =
2, z>3
It follows that
T(p) = p in LP((0,T)x Q) for any 1<p<~y+6, as k— oo, (4.23)
since
IT%(p) — pllzr(0.1)x0) < ligggf | Tk (ps) — psllLr(0,1)x9)>
and

HTk(Pé) - p5||ll),p((0’T)><Q) < 2PRPTT 9||p5||L“f+9 ((0,T)x Q) < C’2Pkp—'y—9.
As ps,us is a renormalized solution of the continuity equation in D’((0,T) x R?), we have
0Ty (ps) + div(Ty(ps)us) + (Ti.(ps)ps — Tr(ps))divus =0 in  D'((0,T) x R?).

With the help of (4.9), (4.11), (4.14), one can pass to the limit 6 — 0 to deduce that

O Ti(p) + div(Ti(p)u) + (T (p)p — T (p))divu =0 in D'((0,T) x R?),
where

Ti(ps) = Ti(p) in C([0,T]; L7 . () for in 1<p< oo,
(T (ps)ps — Ti(ps))divus — (T} (p)p — Te(p))divu  weakly in L2*((0,T) x Q).

Then we reach a situation to discuss the effective viscous flux in this level of approximation. The proof
is similar to the previous sections and this time we use the function

U(x,t) = Y(t)p(x)A[Tk(ps)], where ¢ € D(0,T), ¢ e D),
as a test function for the momentum equation. Similar analysis leads the following auxiliary result.

Lemma 4.2. Let (ps,us) be the sequence of the approximate solution obtained in Proposition 3.1. Then

§—0
Q

lim/ /(b — (2v 4+ N)divus) Tk (ps) dadt
) (4.24)

:/w/(p 77— (2v 4 N)divu) Ty (p) dxdt,
0

for any ¢ € D(0,T), ¢ € D(Q).
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Remark 4.1. Although ~ > 2, we still need the cut-off function for instance to ensure the following conver-
gence, i.e.,

T
2
/¢/¢(VX5 ® Vxs — |V>2<5\ I): VA[Tk(ps)] dadt
0 0
T

VX0 o g
- 0/1/)Q/¢(Vx®V><— T]I) : VAT, (p)] dxdt as 6 — 0,

since we only have
Vxs — Vx strongly in L*(0,T; L;%(Q)),

ps — p weakly—(*) in L>(0,T;L7(Q2)),

and

Ti(ps) = Th(p) weakly () in L((0,T) x ).

As in [7], we introduce a sequence of functions Ly, € C*(R):

zlogz, 0<z<k;
Lk(z = z Th(s)
zlog(k) + z [, 25%ds, z>k.

Let
3kT )
s
Br = logk—i—/ k(Q )ds+ =
s 3
k
we denote

br(z) = Li(2) — Bi(2).
Then by, belongs to C1(0,00) N C[0, ), b'(z) = 0 for all z € R large enough with
V' (2)z — b(z) = Ti(2). (4.25)
Therefore, we are able to deduce that
Ot Lk (ps) + div(Lg(ps)us) + Tk (ps)divus = 0. (4.26)

Since the limit functions p, u are already renormalized solutions of the continuity equation for v > 2, we
have

Ot Li(p) + div(Li(p)u) + Tk (p)divu = 0 (4.27)
in D'((0,T) x ). By (4.9), one can assume

Li(ps) = Li(p) i C(10,T): L] (). (4.28)

weak
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Taking the difference of (4.26) and (4.27), integrating with respect to time ¢, one obtains

/ (Li(ps) — Li(p)) de

Q
. (4.29)
= [ [ (wtosyus — Lutoy - T+ (Tulp)diva — Tilps)divus)o dade
00
for any ¢ € D(Q). Following the argument in [7] and thanks to u € L?(0,7T; H(£2)), we have
[ @) - Lo
Q
(4.30)

T T
://Tk(p)divu dxdt — %ir%//Tk(pg)divu(; dxdt.
—
0 Q 0O

Finally, making use of Lemma 4.2 and the monotonicity of the pressure, we are able to estimate the
right-hand side of (4.30) as below

S~
Ot — 5 P

T
Ti(p)divu dzdt — gir% / / Ti(ps)divus dadt
—
0 Q

(4.31)

< [ (Ti(p) — Ti(p))divu dzdt.

With the help of (4.3), (4.23), and v > 2, the right-hand side of (4.31) tends to zero as k — oco. Then we
conclude that

plog(p)(t) = plog(p)(t) forall t € [0,T],

as k — oo. The above identity implies the strong convergence of ps in L*((0,T) x ) and thus p7 = p?,
PH = pp-
Therefore we complete the proof of Theorem 1.1.
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