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We derive the effective models for describing the behavior of the fluid in 1D-1D 
junctions (pipes) and 2D-2D junctions. Starting from the Navier-Stokes system in 
thin domain and using the two-scale convergence, we justify the two-scale model 
describing the flow through a junction. Finally, separating the variables in the two-
scale model, we obtain the effective junction condition.
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1. Introduction

Flows in thin domains like pipes and fractures are important because they appear in various applications. 
We use the name thin domains for those whose extension in one or more (say �) directions is small compared 
to the extension in other (say m) directions. Simple examples of such domains are thin pipes and bars (� = 2, 
m = 1) or thin plates and fractures (� = 1, m = 2). Numerical studies of PDEs in such domains are difficult 
due to their two-scale structure. The situation is particularly complicated when the domain consists of 
several thin domains (like the junction of pipes, bars, plates, fractures,...).

2. Two-scale convergence for thin domains

In this section we recall the definition and the basic properties of the two-scale convergence for thin 
domains introduced in [8].

Definition 1. Let ω ⊂ Rm be a bounded domain and let ε � 1 be a small parameter. For each x1 ∈ ω

we denote by S(x1) ⊂ R� a bounded domain such that a family {S(x1)}x1∈ω forms a Lipschitz domain 
Ω ⊂ Rm+� and that the measure |S(x1)| > 0:
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Ω = {z = (x1, y) ∈ Rm+� ; x1 ∈ ω , y ∈ S(x1)}

and

Γ = {z = (x1, y) ∈ Rm+� ; x1 ∈ ω , y ∈ ∂S(x1)}

For a small parameter ε � 1 we define a thin domain

Ωε = {x = (x1, x2) ∈ Rm+� ; x1 ∈ ω , x2 ∈ ε S(x1)}

and the surface

Γε = {x = (x1, x2) ∈ Rm+� ; x1 ∈ ω , x2 ∈ ε ∂S(x1)}

We say that a sequence {vε}ε>0, such that vε ∈ Lr(Ωε), Lr-two-scale converges to a function V ∈ Lr(Ω)
(we use the notation Lr-2s convergence in the sequel) if

1
ε�

∫
Ωε

vε(x)φ
(
x1,

x2

ε

)
dx →

∫
Ω

V (x1, y)φ(x1, y)dx1 dy

for any φ ∈ Lr′(Ω), where 1/r + 1/r′ = 1 if 1 < r < ∞ and r′ = 1 if r = ∞, r′ = ∞ if r = 1.

The compactness theorem for such convergence can be found in [8]. We mention only briefly the main 
results:

• If

ε−�/r|vε|Lr(Ωε) ≤ C

then there exists a subsequence (denoted by the same symbol) and V 0 ∈ Lr(Ω) such that

vε → V 0 Lr − 2s .

• If, in addition

ε1−�/r|∇vε|Lr(Ωε) ≤ C

then V 0 ∈ Y r = {V ∈ Lr(Ω) ; ∇yV ∈ Lr(Ω)} and

ε∇vε → ∇yV
0 Lr − 2s .

Furthermore, if vε = 0 on Γε, then V 0 = 0 on Γ (we should notice that the trace on Γ makes sense for 
functions from Y r).

• If vε are vector functions Lr − 2s converging to V0, and, in addition

divvε = 0

then

divy V0 = 0 , divx1

⎛⎜⎝ ∫
S(x1)

V0(x1, y)dy

⎞⎟⎠ = 0 .
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Fig. 1. Three thin pipes in junction.

3. Junction of pipes

In this section we look for the effective model to describe the flow through the junction of pipes. In real-life 
situations, two (or several) pipes are often interconnected (for instance watering systems and water-works 
are networks of thin pipes). Places where several pipes meet are called junctions. Multiple pipes systems 
may be as small as two pipes separating or rejoining or as complex as several hundreds of interconnected 
pipes forming a massive network. The basic principles of analysis are the same. Of course, the complexity 
of the computation depends on the complexity of the system. Therefore, in the present paper, we limit our 
study to the case of one junction point (Fig. 1).

The problem of junctions of elastic bars and other elastic structures has been extensively studied by 
several authors. For an exhaustive study of such problems we refer to the books of Ciarlet [2] and LeDret 
[5].

The case of junction of two intersected pipes with a flow governed by a body force was treated in [12]. The 
multiple junction problem with Dirichlet boundary condition was studied in [1]. An interesting algorithm for 
the domain decomposition as well as some numerical simulations were given. The results similar to the ones 
presented here were derived in [9] and [11] (see also [6] and [14] for generalizations) but using completely 
different, and much more complicated, approach of asymptotic expansions and boundary layers.

For some k ∈ N we define the set consisting of k pipes. After adimensionalization (taking the average 
length of the pipe for the characteristic length) we denote the m-th pipe by

Õm
ε = {(xm, ym) ; 0 < xm < �m , ym = (ym1 , ym2 ) ∈ ωm

ε },

where 0 < ε � 1 is a small parameter (the ratio between the average pipe’s thickness and length), �m > 0
is the rescaled length of the m-th pipe and

ωm
ε = ε ωm , ωm ⊂ R2 − bounded set

is the (rescaled) cross section of the m-th pipe. Each pipe is described using its own orthogonal coordinate 
system (0, im, jm, km). Those coordinate systems are (possibly) different but they all have the same origin 0.

Let

Om
ε = ε dm im + Õm

ε

denote its translation for ε dm in direction of im, the central axis of the m-th pipe. The number dm ≥ 0 is 
chosen so that each pipe might or might not contain the origin 0. However it is not too far from the origin. 
To join the pipes together we need the central set of the junction

O0
ε = ε O0 , O0 ⊂ R3
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Fig. 2. Partition of the domain.

where O0 is a bounded set containing the origin 0 chosen to keep the pipes together in a bundle, i.e., such 
that

Ωε =
k⋃

m=0
Om

ε

is a bounded, connected set with Lipschitz boundary, as depicted in Fig. 2 for k = 3.
The boundary consists of the ends of the pipes

Σm
ε = {(�εm, ym) ; ym = (ym1 , ym2 ) ∈ ωm

ε } , with �εm = �m + ε dm ≈ �m ,

and the walls of the pipes

Γε = ∂Ωε\
(

k⋃
m=1

Σm
ε

)
.

The flow is governed by the stationary Navier-Stokes system. Denoting by pε the pressure and by uε =
(uε

1, u
ε
2, u

ε
3) the velocity, it reads

− Δuε + Re (uε · ∇)uε + ∇pε = Re

Fr2 g , divuε = 0 in Ωε

uε = 0 , on Γε

uε × im = 0 and pε = pm on Σm
ε . (1)

The prescribed values pm ∈ R are assumed to be constants, for simplicity. The vector g = −g k is 
the gravitational acceleration with k being the unit vector perpendicular to the surface of the Earth. 
Adimensional numbers Re (Reynolds) and Fr (Freude) could depend on ε.

Remark 1. It is not enough to impose the pressure on the end of the pipe to have a well-posed problem. 
We either impose the whole normal stress or we impose the condition that the components of the velocity 
perpendicular to the pipe are zero. We choose the second option. However, in case of thin pipe, imposing 
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that the component of the velocity tangential to Σm
ε , (I − im ⊗ im)uε, equals zero on Σm

ε is not a serious 
restriction because the only part of the velocity on the boundary that counts is the normal part, due to the 
St-Venant principle for thin domains. It is well-known that two flows with same normal velocities on Σm

ε

and different tangential velocities, differ only in some small boundary layer in vicinity of Σm
ε (see [13] and 

[10]).

3.1. A priori estimates

Sharp a priori estimates are essential for use of the two-scale convergence. To do so, we start from the 
weak formulation and use Poincaré and trace inequalities as well as the Sobolev embedding theorems. The 
constants in those inequalities depend on the domain geometry and thus on ε. To derive sharp a priori 
estimates we need to know exactly how those constants depend on ε. First of all, it is well known (see e.g. 
[7] and [8]) that the Poincaré constant behaves as ε and the embedding constant H1 ↪→ L4 like ε1/4 i.e.

|v|L2(Om
ε ) ≤ C ε |∇v|L2(Om

ε ) for all v such that v = 0 on Γε (2)

|v|L4(Om
ε ) ≤ C ε1/4 |∇v|L2(Om

ε ) for all v such that v = 0 on Γε . (3)

We will also need the Nečas inequality

|ϕ|L2(Ωε) ≤
C

ε
| ∇ϕ |W−1,2

Γε
(Ωε) , (4)

for all ϕ ∈ L2
0(Ωε) (see e.g. [10], [11] or [8] for the proof). Here

W 1,2
Γε

(Ωε) = {v ∈ H1(Ωε)3 ; v = 0 on Γε }

and W−1,2
Γε

(Ωε) denotes its dual space.
Finally we need the trace inequality. Lemma A2 from [11] claims that there exists a constant C > 0, 

independent on ε, such that, for every ϕ ∈ W 1,2
Γε

(Ωε) and m = 1, . . . , k we have

|ϕ|L2(Σm
ε ) ≤ C| ∇ϕ |L2(Ωε) . (5)

Before we proceed, we define the renormalised pressure

qε = pε − Re

Fr2 g · x .

Now our system reads

− Δuε + Re (uε · ∇)uε + ∇qε = 0 , divuε = 0 in Ωε

uε = 0 , on Γε , finally for all 1 ≤ j ≤ m we have

uε × im = 0 and qε = qεm ≡ pm − Re

Fr2 g · x on Σm
ε . (6)

Note that, owing to the definition of �εm and the fact that the m-th pipe has small thickness, we have

qεm = qm + O(ε) ,

where

qm = pm − �m g
Re

Fr2 cos ∠(k , im) .
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Theorem 1. Suppose that ε5/2Re � 1 and Re
Fr2 ≤ C. Then the problem (6) has a solution that satisfies the 

following estimates

|∇uε|L2(Ωε) ≤ C ε2

|uε|L2(Ωε) ≤ C ε3 (7)

|∇qε|W−1,2
Γε

(Ωε) ≤ C ε2

|qε|L2(Ωε) ≤ C ε ,

where C > 0 is some constant independent on ε. In addition, all the above estimates hold if Ωε is replaced 
by Om

ε for any m ∈ {1, . . . , k}.

Before we proceed we need to estimate the boundary integral appearing in the weak formulation of the 
problem.

Lemma 1. Under the hypothesis Re
Fr2 ≤ C there exists some C0 > 0, such that the following estimate holds 

for any w ∈ V ∣∣∣∣∣∣∣
k∑

m=1

∫
Σm

ε

qεm w · im

∣∣∣∣∣∣∣ ≤ C0ε
2|∇w|L2(Ωε) , (8)

where

V = {v ∈ H1(Ωε)3 ; v = 0 on Γε ; v × im = 0 on Σm
ε , divv = 0 } .

Proof. Since the w is divergence free, integration leads to

0 =
∫

Om
ε ∩{s<xm

1 <t}

divw =
∫
ωm

ε

w(t, ym) · im dym −
∫
ωm

ε

w(s, ym) · im dym

so that

t 
→
∫
ωm

ε

w(s, ym) · im dym

is constant. Thus ∫
ωm

ε

w(s, ym) · im dym = 1
�εm

∫
Om

ε

w · im

for any dmε ≤ s ≤ �εm. Now, we easily obtain, using (2),∣∣∣∣∣∣∣
∫

Σm
ε

w · im

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1
�εm

∫
Om

ε

w · im

∣∣∣∣∣∣∣ ≤ Cε2|∇w|L2(Ωε) . (9)

Now
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∣∣∣∣∣∣∣
∫

Σm
ε

qεm w · im

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

Σm
ε

(qm + O(ε) )w · im

∣∣∣∣∣∣∣ .

It follows easily from (9) ∣∣∣∣∣∣∣qm
∫

Σm
ε

w · im

∣∣∣∣∣∣∣ ≤ Cε2|∇w|L2(Ωε)

and (5) implies ∣∣∣∣∣∣∣
∫

Σm
ε

O(ε) w · im

∣∣∣∣∣∣∣ ≤ Cε|Σm
ε |1/2|w|L2(Σm

ε ) ≤ Cε2|∇w|L2(Ωε) ,

finishing the proof of (8). �
Proof of Theorem 1. We follow the steps from [11] in standard fixed-point procedure. We define the ball

Bε = {v ∈ V ; |∇v|L2(Ωε) ≤ 2C0ε
2} ,

where C0 is the constant from the trace estimate (8). The operator T : Bε → V is defined by taking 
T (v) = u where, for given v ∈ Bε, function u ∈ V is the unique solution of the linear problem:

Find u ∈ V such that for every w ∈ V

∫
Ωε

∇u · ∇w + Re

∫
Ωε

(v · ∇)u · w =
k∑

m=1

∫
Σm

ε

qεm w · im . (10)

That problem has a unique solution, since the quadratic form

a(u,w) =
∫
Ωε

∇u · ∇w + Re

∫
Ωε

(v · ∇)u · w

is coercive on V for v ∈ Bε. Indeed, since v ∈ Bε, condition ε5/2Re � 1 implies

a(u,u) ≥ (1 − CRe
√
ε|∇v|L2(Ωε))|∇u|2L2(Ωε) ≥ (1 − CRe ε5/2)|∇u|2L2(Ωε) ,

so that

a(u,u) ≥ 1
2 |∇u|2L2(Ωε) .

Then the Lax-Milgram theorem implies that T is well defined.
We intend to use the Banach (contraction) fixed-point theorem to prove the existence of the solution of 

the problem (6).
First we need to prove that T (Bε) ⊂ Bε. Since for v ∈ Bε (Lemma 1)

1
2 |∇T (v)|2L2(Ωε) ≤ a(T (v), T (v)) =

k∑
m=1

∫
m

qεm T (v) · im ≤ C0ε
2|∇T (v)|L2(Ωε) ,
Σε
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we have T (v) ∈ Bε.
Next we prove that T is a contraction. We take v, w ∈ Bε. Then

|∇T (v) −∇T (w)|2L2(Ωε) = Re

∫
Ωε

(v · ∇)(T (v) − T (w)) · (T (v) − T (w)) +

+ Re

∫
Ωε

((v − w) · ∇)T (w) · (T (v) − T (w)) ≤

≤ Re|v|L4(Ωε) |∇(T (v) − T (w))|L2(Ωε) |T (v) − T (w)|L4(Ωε) +

+ Re|v − w|L4(Ωε) |∇(T (w)|L2(Ωε) |T (v) − T (w)|L4(Ωε) ≤
≤ CRe ε5/2( |∇(T (v) − T (w))|2L2(Ωε) +

+|∇(T (v) − T (w))|L2(Ωε)|∇(v − w)|L2(Ωε))

Since, by assumption, Re ε5/2 � 1 we have

|∇T (v) −∇T (w)|L2(Ωε) ≤ CRe ε5/2|∇(v − w)|L2(Ωε)

proving that

|T (v) − T (w)|V ≤ λ|v − w|V

with λ < 1. Thus T : Bε → Bε is a contraction and, due to the Banach fixed-point theorem it has a unique 
fixed point, proving the existence of a solution uε ∈ Bε. At the same time, since that solution is in the ball 
Bε, we have proved the first estimate from (7). The second one follows from the Poincaré inequality (2).

The existence of the pressure can be proved in the same way as in case of the Dirichlet boundary condition. 
Indeed, we know that

P ≡ −Δuε + Re (uε · ∇)uε ∈ H−1(Ωε)

where H−1(Ωε) stands for the dual space of H1
0 (Ωε)3. Furthermore, if z ∈ W, with

W = {z ∈ H1
0 (Ωε)3 ; div z = 0} ⊂ V ,

then

〈P | z〉 = 0 .

Due to the DeRham theorem we know that

W0 = {Q ∈ H−1(Ωε) ; W ⊂ Ker Q} = {∇q ; q ∈ L2
0(Ωε)}

Thus, there exists some qε ∈ L2
0(Ωε) such that

Δuε −Re (uε · ∇)uε = ∇qε .

The boundary condition

qε = qεm on Σm
ε
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holds in the sense of H−1/2
n (Σm

ε ) = H
1/2
n (Σm

ε )′, and

H1/2
n (Σm

ε ) = {w ∈ H1/2(Σm
ε )3 ; w × im = 0 }

(see e.g. [8]). To estimate the pressure we take a test function v with zero trace on Γε. We have

∫
Ωε

∇uε · ∇v + Re

∫
Ωε

(uε · ∇)uε v + 〈∇pε | v〉 =
k∑

m=1

∫
Σm

ε

qεm v · im ,

so that

| 〈∇qε | v〉 | ≤ Cε2|∇v|L2(Ωε) .

Finally, the Nečas inequality (4) finishes the proof of the theorem. �
Remark 2. It is worth noticing that we have not proved the uniqueness of the solution. The contraction 
theorem does guarantee the uniqueness of the fixed point, meaning that our problem has only one solution 
inside the ball Bε. However we can not exclude the possibility that there exists some solution with larger 
norm, since we have lost the energy equality due to the pressure boundary condition. Even for small data. 
We have proved that there exists a solution satisfying the a priori estimate (7) but we have not proved 
that all possible solutions satisfy such estimate. Obviously, for given velocity, the corresponding pressure is 
unique due to the linearity.

4. Convergence

Before we proceed we define the rescaled pipes

Õm = {(xm, zm) ; 0 < xm < �m , zm = (zm1 , zm2 ) ∈ ωm}

and their lateral boundaries

Γ̃m = {(xm, zm) ; 0 < xm < �m , zm = (zm1 , zm2 ) ∈ ∂ωm} .

Using the compactness theorem ([8], Theorem 1, Proposition 4 and Proposition 7) and denoting by uε,m

and qε,m the restrictions of uε and qε on m-th pipe Om
ε , we have the following convergences (after possible 

extraction of subsequences). There exist functions

Um ∈ Y2
m = {V ∈ L2(Õm)3 , ∇zmV ∈ L2(Õm)6} , |V|Y2

m
= |∇zmV|L2(Õm)

Qm ∈ L2(0, �m) ,

such that

ε−2uε,m → Um L2(Õm) − two scale (11)

ε−1∇uε,m → ∇ymUm L2(Õm) − two scale

qε,m → Qm(xm) L2(Õm) − two scale .

Furthermore
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Um = 0 on Γ̃m (12)

divzmUm (xm, zm) = 0 in Õm (13)

∂

∂xm

⎛⎝ ∫
ωm

Um
1 (xm, zm)dzm

⎞⎠ = 0 , Um
1 = Um · im (14)

k∑
m=1

⎛⎝ ∫
ωm

Um
1 (xm, zm)dzm

⎞⎠ = 0 (15)

Our next step is to choose the appropriate test functions. We need the functions of the form

Ψm
ε = Ψm

(
ε dm + xm,

ym

ε

)
.

Each function Ψm (xm, zm) is defined on m-th rescaled pipe Õm and they should be equal to zero on the 
wall of the pipe Γ̃m. Furthermore we need them to be divergence-free

divzmΨm (xm, zm) = 0 .

In addition, we impose an important condition

k∑
m=1

∫
ωm

Ψm(0, zm) · im dzm = 0 (16)

Now, we need to extend those functions to O0
ε in order to construct a continuous test function on the entire 

Ωε. The easy way to do it is to impose that Ψm and Ψ0 have the same value on the interface between Om
ε

and O0
ε , denoted by Zm

ε (see Fig. 2). We denote by x0 = (x0
1, y

0
1 , y

0
2) the standard Cartesian coordinates 

and by z0 = x0/ε. Now

Ψ0 = Ψ0(z0) .

divz0Ψ0 (
z0) = 0 , Ψ0 = Ψm on Zm

ε , Ψ0 = 0 on ∂O0
ε \

k⋃
m=1

Zm
ε (17)

Such function exists due to the condition (16). Finally

Ψ0
ε = Ψ0(x0/ε) .

With such test-function

Ψε = Ψm
ε on Om

ε , m = 0, 1, . . . , k ,

we are ready to pass to the limit. The variational formulation reads

ε−2
∫
Ωε

∇uε · ∇Ψε + Re ε−2
∫
Ωε

(uε · ∇)uε · Ψε −

− ε−2
∫

qε div Ψε = ε−2
k∑

m=1
qεm

∫
m

Ψε · im .
Ωε Σε
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The first term is a sum of integrals Im such that

Im = ε−2
∫

Om
ε

∇uε · ∇Ψm
ε = ε−2

∫
Om

ε

1
ε
∇ymuε · ∇zmΨm

(
xm,

ym

ε

)
+

+ ε−2
∫

Om
ε

∂uε

∂xm

∂Ψm

∂xm

(
xm,

ym

ε

)
+ O(ε) →

→
�m∫
0

∫
ωm

∇zmUm · ∇zmΨm (xm, zm) dxm dzm ,

for m > 0, while for m = 0

I0 = ε−2
∫
O0

ε

∇uε · ∇Ψ0
ε = ε−3

∫
O0

ε

∇uε · ∇z0Ψ0 ≤

≤ ε−3|O0
ε |1/2 |∇uε|L2(Ωε)|∇z0Ψ0|L∞ ≤ C

√
ε → 0 .

The second integral tends to zero, since

Re ε−2
∫
Ωε

(uε · ∇)uε · Ψε ≤ Re ε−2|∇uε|L2(Ωε)|u
ε|L2(Ωε)|Ψε|L∞ ≤ CRe ε3 .

The third integral is the sum of integrals

Jm = ε−2
∫

Om
ε

qε,m div Ψm
ε = ε−2

∫
Om

ε

qε,m
∂Ψm

1
∂xm

→

→
�m∫
0

∫
ωm

Qm ∂Ψm
1

∂xm
(xm, zm) dxm dzm ,

for m > 0. Here

Ψm
1 = Ψm · im .

It should be noticed that, due to (17), we have J0 = 0. For the last integral on the right-hand side we have

ε−2
k∑

m=1

∫
Σm

ε

qεm Ψε · im =
k∑

m=1
qm

∫
Σm

Ψm
1 (�m, zm) + O(ε) .

We now have the two-scale problem for the limit functions (Um, Qm)

k∑
m=1

(∫
Õm

∇zmUm · ∇zmΨm (xm, zm) dxm dzm − (18)

−
∫

Qm ∂Ψm
1

∂xm
(xm, zm) dxm dzm

)
=

k∑
m=1

qm

∫
m

Ψm
1 (�m, zm) .
Õm Σ
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To define the two-scale problem properly, we need an appropriate functional space:

Wm =
{

v ∈ Y2
m ; divzm v = 0 , v = 0 on Γ̃m ,

∫
ωm

v(xm, zm) · im dzm = const.

}
, m = 1, . . . , k ,

W =
{

V = (V1, . . . ,Vk) ; Vm ∈ Wm ,

k∑
m=1

∫
ωm

Vm(0, zm) · im dzm = 0
}

|Vm|Wm = |Vm|Y2
m

, |V|W =
k∑

m=1
|Vm|Wm .

We notice that for Ψm ∈ Wm

k∑
m=1

∫
Õm

Qm ∂Ψm
1

∂xm
=

k∑
m=1

�m∫
0

Qm(xm) ∂

∂xm

∫
ωm

Ψm · im (xm, zm) dzm dxm = 0

The problem now reads: Find U = (U1, . . . , Uk) ∈ W such that for all Ψ = (Ψ1, . . . , Ψk) ∈ W

k∑
m=1

∫
Õm

∇zmUm · ∇zmΨm (xm, zm) dxm dzm =
k∑

m=1
qm

∫
Σm

Ψm(�m, zm) · im dzm . (19)

Here

Σm = {�m} × ωm

denotes the end of the pipe Õm.
The quadratic form

A(U,W) =
k∑

m=1

∫
Õm

∇zmUm · ∇zmVm dxm dzm

defined on W is obviously coercive since

A(U,U) =
k∑

m=1

∫
Õm

|∇zmUm|2 dxm dzm = |U|2W .

Thus the above two-scale problem has a unique solution, due to the Lax-Milgram theorem. Uniqueness 
implies that in (11) the whole sequence converges and not the subsequence (i.e. it has only one accumulation 
point). Obviously Um

2 = Um · jm = 0 and Um
3 = Um · km = 0 for all m = 1, . . . , k. Since our unknown 

function is scalar in each pipe, the two-scale problem (19) reduces to:
Find U = (U1, . . . , Uk) ∈ W such that for all ψ = (ψ1, . . . , ψk) ∈ W

k∑
m=1

∫
∇zmUm · ∇zmψm (xm, zm) dxm dzm =

k∑
m=1

qm

∫
m

ψm(�m, zm) dzm , (20)

Õm Σ
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with

Wm =
{
v ∈ Y 2

m ; , v = 0 on Γm ,

∫
ωm

v(xm, zm) dzm = const.

}
,

m = 1, . . . , k ,

W =
{
V = (V 1, . . . , V m) ; V m ∈ Wm ,

k∑
m=1

∫
ωm

V m(0, zm) dzm = 0
}

Y 2
m = {V ∈ L2(Õm) , ∇zmV ∈ L2(Õm)} , |V |Y 2

m
= |∇zmV |L2(Õm) .

Furthermore (18) implies that

k∑
m=1

( ∫
Õm

∇zmUm · ∇zmψm (xm, zm) dxm dzm − (21)

−
∫

Õm

Qm ∂ψm

∂xm
(xm, zm) dxm dzm

)
=

k∑
m=1

qm

∫
Σm

ψm(�m, zm) dzm ,

for any (ψ1, . . . , ψk) such that ψm ∈ L2(0, �m; H1
0 (ωm)). Since Um are unique, so are the Qm.

One solution to that problem is easy to construct by taking

Um = Gm(zm) ∂Qm

∂xm
(xm) (22)

with

−ΔGm = 1 in ωm , Gm = 0 on ∂ωm . (23)

Furthermore ∂Qm

∂xm (xm) = const. = Am so that

Qm(xm) = Amxm + B . (24)

The constant Am is to be determined from the condition

k∑
m=1

∫
ωm

Um(0, zm) dzm = 0 ,

since U = (U1, . . . , Uk) ∈ W and B is independent on m (continuity of the pressure). That leads to

k∑
m=1

Am

∫
ωm

Gm(zm) dzm = 0 .

Furthermore, we must impose

Qm(�m) = qm

leading to
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Am�m + B = qm ⇒ Am = qm −B

�m
.

Combining, we obtain

k∑
m=1

qm −B

�m
G

m = 0

where

G
m =

∫
ωm

Gm(zm) dzm .

It implies the Kirchoff law for B, the pressure at the origin

B =
(

k∑
m=1

G
m

�m

)−1 k∑
m=1

qm G
m

�m
(25)

Now (22)-(25) defines one solution of the two-scale problem (21). As the solution is unique, that is the only 
solution. We have proved the following theorem

Theorem 2. Let (uε, qε) be the solution of the Navier-Stokes system (6) and let uε,m and let qε,m be their 
restrictions on Om

ε . Then

ε−2uε,m → Um im L2 − two scale on Om
ε

qε,m → Qm(xm) L2 − two scale on Om
ε ,

where U = (U1, . . . , Uk) ∈ W and Q = (Q1, ..., Qk) ∈ L2(0, �1) × . . .×L2(0, �k) is the unique solution of the 
two-scale problem (21). Furthermore, (21) can be decoupled and its solution is given by (22)-(25).

It is important to notice that the pressure B in the junction node is given by the Kirchoff formula (25). 
Denoting by r the vector

r =
g Re

∑k
j=1 G

j ij
Fr2 ∑k

j=1
G

j

�j

and by

P =

⎛⎝ k∑
j=1

G
j

�j

⎞⎠−1
k∑

j=1

pj G
j

�j

the weighted mean of the exterior pressures pj, it reads

B = P − r · k (26)
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5. Junction of 2D thin domains

In this section we want to find a model for describing the flow through two thin domains with extensions 
in two dimensions much larger than in the third (fractures, gaps,...). The results can be easily generalized 
to the case of more than two domains. It can also be generalized on situations when those thin domains are 
not intersecting on their boundaries but somewhere in the middle. We chose to treat the case of a layer of 
liquid lubricant with slider that has one edge.

5.1. The geometry

Let (O, i1, j1, k1) and (O, i2, j2, k2) be two orthonormal basis with joint origin O. Let Π1 and Π2 be two 
plains such that Πm is spanned by (im, jm) and km is its normal, with m = 1, 2. We assume that they are 
not parallel and that their intersection is a line L spanned by the vector e. Both those plains Π1 and Π2
separate the space R3 in two half-spaces

M+
1 = {x ∈ R3 ; x · k1 > 0}

M−
1 = {x ∈ R3 ; x · k1 < 0}

M+
2 = {x ∈ R3 ; x · k2 > 0}

M−
2 = {x ∈ R3 ; x · k2 < 0} .

Without loosing generality we can choose that vector to be the first vector of the both canonical bases, i.e.

i1 = i2 = e .

Now, let ωm ⊂ R2, m = 1, 2 be bounded domains with Lipschitz boundaries. We identify the domains ωm

with sets

Γ−
m = {x = x e + ymjm ∈ Πm ; (x, ym) ∈ ωm} ⊂ Πm , m = 1, 2 .

Those are the lower boundaries of the fluid domain.
We assume that the boundaries ∂ω1 and ∂ω2 intersect and that their intersection is a segment J =

[0, �] × {0}. Thus the intersection of Γ−
1 and Γ+

2 is the line C, starting from the origin O, with length �

C = {O + λe ; 0 < λ < �} .

Let hm : ωm →]0, +∞[ be smooth functions such that hm ≥ α0 > 0. For m = 1, 2, we denote by

Ωm
ε = {x = x e + ymjm + zmkm ∈ R3 ; (x, ym) ∈ ωm ; 0 < zm < εhm(x, ym)} ,
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and for ε = 1 we get Ωm
1 . If the angle between the two domains Ω1

ε and Ω2
ε is obtuse or right, then Ω2

ε ⊂ M+
1

and Ω1
ε ⊂ M+

2 . Thus the fluid domain is

Ωε = Ω1
ε ∪ Ω2

ε .

If the angle is acute then we need to cut-off the edges

E1
ε = Ω1

ε ∩M−
2 , E2

ε = Ω2
ε ∩M−

1

so that

Ωε = (Ω1
ε ∪ Ω2

ε)\(E1
ε ∪ E2

ε ) .

The intersection

Cε = Ω1
ε ∩ Ω2

ε

is nonempty, by construction.
It is a thin set with one edge equal to C. It can be described as

Cε = {x ∈ Ωε ; 0 < km · x < εhm(x, ym) , m = 1, 2 ; 0 < e · x < �} ,

with x = e · x, ym = jm · x.
We could add a domain O0

ε to join Ω1
ε and Ω2

ε together, as we did with pipes in the previous section, but 
we choose not to, for diversity.

We denote the parts of the boundary of Ωε as follows (again m = 1, 2):
Upper boundary:

Γ+
ε,m = {x = x e + ymjm + ε hm(x, ym)km ∈ Ωε ; (x, ym) ∈ ωm } .

The lateral boundary:

Σm
ε = { x = x e + ymjm + zmkm ∈ Ωε ; (x, ym) ∈ ∂ωm \J ;

0 < zm < εhm(x, ym)} .

For ε = 1 we get Γ+
1,m and Σm

1 . Finally

Γ+
ε = Γ+

ε,1 ∪ Γ+
ε,2 , Γ− = Γ−

1 ∪ Γ−
2 , Σε = Σ1

ε ∪ Σ2
ε .
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The flow is governed by the Navier-Stokes system

− Δuε + Re (uε · ∇)uε + ∇pε = Re

Fr2 g , divuε = 0 in Ωε

uε = 0 , on Γ+
ε , uε = ε2w , on Γ−

uε × n = 0 and pε = q on Σε , (27)

where

w = w e

is a constant vector, representing the velocity of relative motion for two lubricated surfaces. For simplicity, 
we have chosen the usual scaling ε2 for that velocity, in order to get the standard Reynolds equation (see 
e.g. [8] or [3]), but other scalings are also possible and can be treated likewise.

As the domain is thin, it is reasonable to assume that, on each of the boundaries Σ1
ε and Σ2

ε the boundary 
pressure q does not depend on the third variable zm, m = 1, 2. Before we proceed we subtract the hydrostatic 
pressure from pε. We define

rε = pε − Re

Fr2 x · g . (28)

Now

−Δuε + Re (uε · ∇)uε + ∇rε = 0 in Ωε , rε = r ≡ q − Re

Fr2 x · g on Σε . (29)

5.2. A priori estimates

We start by recalling that we again have

|v|L2(Ωε) ≤ Cp ε |∇v|L2(Ωε) for all v such that v = 0 on Γ+
ε (30)

|v|L4(Ωε) ≤ C4 ε
1/4 |∇v|L2(Ωε) for all v such that v = 0 on Γ+

ε . (31)

Theorem 3. Suppose that ε2Re � 1 and Re
Fr2 ≤ C. Assume, in addition, that q ∈ C1(R3). Then the problem 

(27) has a solution such that the following estimates hold

|∇uε|L2(Ωε) ≤ C ε
√
ε

|uε|L2(Ωε) ≤ C ε2√ε (32)

|rε|L2(Ωε) ≤ C
√
ε ,

for some constant C > 0 independent on ε.

Again we first need to estimate the boundary integral appearing in the weak formulation of the problem 
and coming from the pressure boundary condition.

Lemma 2. Under the hypothesis of Theorem 3 there exists some C� > 0, such that the following estimate 
holds for any w ∈ V ∣∣∣∣∣∣

∫ (
q − Re

Fr2 x · g
)

w · n

∣∣∣∣∣∣ ≤ C�ε
3/2|∇w|L2(Ωε) , (33)
Σε
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where

V = {v ∈ H1(Ωε)3 ; v = 0 on Γ+
ε ; v × n = 0 on Σε , divv = 0 } .

Proof. Let w ∈ V. Then∫
Σε

(
q − Re

Fr2 x · g
)

(w · n) =
∫
Ωε

div
{(

q − Re

Fr2 x · g
)

w
}

=

=
∫
Ωε

(
∇q − Re

Fr2 g
)

· w ≤ C

(
|∇q|L∞(Ωε) + Re

Fr2 g

)
|w|L1(Ωε) ≤

≤ C|Ωε|1/2|w|L2(Ωε) ≤ ( due to (30) ) ≤ Cε3/2|∇w|L2(Ωε) . �
Next step is to lift the non-homogeneous boundary condition on Γ−.

Lemma 3. There exists a function bε ∈ H1(Ωε)3 such that

divbε = 0 in Ωε , bε = 0 on Γ+
ε , bε = ε2w on Γ− , bε × n = 0 on Σε .

Furthermore, the function bε can be chosen such that there exists a constant Cb > 0 satisfying

|∇bε|L2(Ωε) ≤ Cb ε
√
ε . (34)

Proof. Outside of the thin layer near the junction, function bε = bε · e can be chosen such that bε equals

ε2
(

1 − zm

ε hm

)
w

on each Ωm
ε (except in a small boundary layer) and is smoothly connected between. We need to construct 

the appropriate connection in the boundary layer near the junction. Before we proceed we have to precise 
the geometry of the layer. Let

h∞
m = |hm|L∞(ωm)

and let

S1
ε = {x ∈ R3 ; 0 < x < � , 0 < y1 < εh∞

2 , 0 < z1 < εh1(x, y1)} (35)

S2
ε = {x ∈ R3 ; 0 < x < � , 0 < y2 < εh∞

1 , 0 < z2 < εh2(x, y2)} ,

with

x = x e + ym jm + zm km in Sm
ε , m = 1, 2 .

Then the layer around the junction is

Sε = S1
ε ∪ S2

ε (36)

and the interfaces between Sε and Ωm
ε \Sε are denoted
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γ1
ε = {x ∈ R3 ; 0 < x < � , y1 = ε h∞

2 , 0 < z1 < εh1(x, ε h∞
2 )} (37)

γ2
ε = {x ∈ R3 ; 0 < x < � , y2 = ε h∞

1 , 0 < z2 < εh2(x, ε h∞
1 )} .

Let x⊥ = y1 j1 + z1 k1 = y2 j2 + z2 k2 be such that x = x e +x⊥ and let ζ⊥ = x⊥/ε. Depending on the need 
it can be written as

ζ⊥ = η1 j1 + ξ1 k1 = η2 j2 + ξ2 k2

with

ηm = ym/ε , ξm = zm/ε .

We now construct the rest of the function bε in the layer Sε by taking

b̃ε(x,x⊥) = B1
ε (x, ζ⊥) e + εB2

ε (x, ζ⊥) j1 + εB3
ε (x, ζ⊥)k1

We now define the rescaled layer

S = {(x, ζ⊥) ∈ R3 ; (x, ε ζ⊥) ∈ Sε } , (38)

with boundary parts

γ1 = {(x, ζ⊥) ∈ R3 ; 0 < x < � , η1 = h∞
2 , 0 < ξ1 < h1(x, ε h∞

2 )}
γ2 = {(x, ζ⊥) ∈ R3 ; 0 < x < � , η2 = h∞

1 , 0 < ξ2 < h2(x, ε h∞
1 )}

Γ− = {(x, ζ⊥) ∈ S ; ξ1 = 0 or ξ2 = 0 } (39)

Γ+ = {(x, ζ⊥) ∈ S ; ξ1 = h1(x, ε η1) or ξ2 = h2(x, ε η2) } .

In order to meet the divergence-free condition as well as the boundary conditions we choose Bε =
(B1

ε , B
2
ε , B

3
ε ) such that

∂B1
ε

∂x
+ ∂B2

ε

∂η1 + ∂B3
ε

∂ξ1 = 0 in S

with boundary conditions

Bε = 0 on Γ− , Bε = ε2w on Γ+

and

Bε = ε2
(

1 − ξm

hm

)
w on γm , m = 1, 2 .

Since w is perpendicular to the normal vector on Γ− as well as on γm, the necessary condition for the 
existence of such Bε is satisfied. Furthermore, as the domain S does not depend on ε, there exists such Bε

satisfying the estimate

|Bε|H1(S) ≤ Cε2

(see e.g. [4]). A direct computation now yields
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|b̃ε|H1(Sε) ≤ Cε2 .

Now the function

bε(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε2

(
1 − z1

ε h1(x,y1)

)
w in Ω1

ε\Sε

ε2
(
1 − z2

ε h2(x,y2)

)
w in Ω2

ε\Sε

b̃ε (x) in Sε

has all the required properties. �
Proof of Theorem 3. The discussion on the existence of the solution is very similar as in Theorem 1 from 
the previous section, and the key role has the a priori estimate. We only scratch the proof, pointing out the 
differences. Let

W = {u ∈ H1(Ωε)3 ; divu = 0 , u = 0 on Γ+
ε ∪ Γ− u × n = 0 on Σε } .

As in the proof of Theorem 1, we define the ball

Bε = {v ∈ V ; |∇v|L2(Ωε) ≤ Mε3/2} ,

where the constant M > 0 is defined as

M = 3
√

2(Cb + C�)

and Cb, C� are the constants from Lemma 3 and Lemma 2, respectively. The operator T : Bε → V is defined 
by taking T (v) = u where, for given v ∈ Bε, function u ∈ V is the unique solution of the linear problem:

Find u ∈ V such that u = ε2w on Γ− and, for every w ∈ W∫
Ωε

∇u · ∇w + Re

∫
Ωε

(v · ∇)u · w =
∫
Σε

q w · n . (40)

Due to the non-homogeneous boundary condition on Γ−, we look for the solution of (40) in the form 
u = z + bε, with z ∈ W (function bε lifts the boundary value and was constructed in Lemma 2). Then the 
bilinear form

H(z,w) =
∫
Ωε

∇z · ∇w + Re

∫
Ωε

(v · ∇)z · w

is coercive on W × W. Now the Lax-Milgram theorem guarantees the existence and uniqueness of the 
solution of the problem

H(z,w) =
∫
Σε

qw · n −
∫
Ωε

∇bε · ∇w + Re

∫
Ωε

(v · ∇)bε · w , w ∈ W .

We proceed by proving that T (Bε) ⊂ Bε. To construct the test function for the estimate, we need to 
homogenize the boundary condition for the velocity on Γ−. Let bε be the function constructed in Lemma 2. 
We use the function

w = u − bε ∈ V
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as the test function in (40). It gives (using Lemma 2 and Lemma 3)∫
Ωε

|∇u|2 + Re

∫
Ωε

(v · ∇)u · u =
∫
Ωε

∇u · ∇bε +

+ Re

∫
Ωε

(v · ∇)u · bε +
∫
Σε

(
q − Re

Fr2 x · g
)

(u − bε) · n ≤

≤
[
(Cb + C�)ε3/2 + C2

4CbRe ε2 |∇v|L2(Ωε)

]
|∇u|L2(Ωε) + C�Cbε

3 .

Since, by assumption, Re ε2 � 1, we have M C2
4CbRe ε2 ≤ (Cb +C�), for ε sufficiently small. On the other 

hand, again for ε small enough

Re

∫
Ωε

(v · ∇)u · u ≤ Re ε2 C2
4M |∇u|2L2(Ωε) ≤

1
2 |∇u|2L2(Ωε)

so that

|∇u|2L2(Ωε) ≤ 4(Cb + C�)ε3/2|∇u|L2(Ωε) + 2C�Cbε
3 ≤

≤ 1
2 |∇u|2L2(Ωε) +

[
8(Cb + C�)2 + 2C�Cb

]
ε3

≤ 1
2 |∇u|2L2(Ωε) +

[
3(Cb + C�) ε3/2

]2
,

implying that

|∇T (v)|L2(Ωε) ≤ Mε3/2 .

The rest of the proof follows exactly the same arguments as in the proof of Theorem 1. �
5.3. Two-scale limit

Theorem 4. Let (uε, rε) be the solution to the problem (29) and let m ∈ {1, 2}. Then

ε−2uε,m → Um
x e + Um

y jm L2(Ωm) − two scale (41)

ε−1∇uε,m → ∇xymUm L2(Ωm) − two scale

rε,m → Rm(x, ym) L2(Ωm) − two scale , (42)

where

Um = (Um
x , Um

y ) ∈ Y2
m =

{
V ∈ L2(Ωm)2 ,

∂V
∂ξm

∈ L2(Ωm)2
}

(43)

Rm ∈ L2(ωm) (44)

Um = 0 on Γ+
m (45)

Um = w e on Γ−
m (46)

divxym

⎛⎜⎝ hm(x,ym)∫
Um(x, ym, ξm)dξm

⎞⎟⎠ = 0 (47)

0
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∇xymφ = ∂φ

∂x
e + ∂φ

∂ym
jm (48)

divxymUm = ∂Um
x

∂x
+

∂Um
y

∂ym
, (49)

and satisfies the two-scale problem

2∑
m=1

∫
Ωm

(
∂Um

∂ξm
· ∂Ψm

∂ξm
+ Rm divxym Ψm

)
=

=
2∑

m=1

∫
Σm

1

(
q − Re

Fr2 x · g
)

(Ψm · n) (50)

for any Ψm = (Ψm
x ,Ψm

y ) ∈ Y2
m such that Ψm = 0 on Γ±

m , (51)

with x = x e + ym jm. Furthermore, functions Um and Rm satisfy the coupled Reynolds equations

Um = ξm

2 (hm − ξm)∇xymRm + w

(
1 − ξm

hm

)
e (52)

divxym

(
h3
m∇xymRm

)
= 6w ∂hm

∂x
in ωm (53)

Rm = q − Re

Fr2 x · g on ∂ωm\C

h1∫
0

U1 · j1 dξ1 =
h2∫
0

U2 · j2 dξ2 on C (the junction condition) . (54)

Proof. Using the a priori estimates (32), we can now pass to the two-scale limit in each Ωm
ε , using the 

compactness theorem ([8], Theorem 1, Proposition 4 and Proposition 7). Indeed, denoting uε,m and rε,m

the restrictions on Ωm
ε , those a priori estimates imply

ε−2uε,m → Um
x (x, ym, ξm) e + Um

y (x, ym, ξm) jm L2 − two scale on Ωm
ε

ε−1∇uε,m → ∂Um

∂ξm
L2 − two scale on Ωm

ε

rε,m → Rm(x, ym) L2 − two scale on Ωm
ε , (55)

where (43)-(49) holds. As in a previous case, we need to construct a good test-function, write down a 
variational formulation and pass to the two-scale limit. We start by taking two functions

Ψm ∈ Y2
m ∩ C1(Ωm

1 )2 , m = 1, 2,

where Ωm
1 stands for Ωm

ε with ε = 1. We need to correct the test function in a boundary layer near the 
junction. Before we proceed we have to precise the geometry of the layer. Let S1

ε and S2
ε be defined by (35). 

Then the layer around the junction is defined as in (36) by

Sε = S1
ε ∪ S2

ε

and the interfaces between Sε and Ωm
ε \Sε are denoted γ1

ε and γ2
ε like in (37). We impose the condition
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h1(x,0)∫
0

Ψ1(x, 0, ξ1) · j1 dξ1 =
h2(x,0)∫

0

Ψ2(x, 0, ξ2) · j2 dξ2

We chose Ψ3 on S (here S denotes Sε with ε = 1, as in (38) and γm denotes γm
ε with ε = 1 as in (39)) 

such that

divη1ξ1 Ψ3 = ∂Ψy

∂η1 + ∂Ψz

∂ξ1 = 0 in S1

Ψ3(x, h∞
2 , ξ1) = Ψ1(x, εh∞

2 , ξ1) for 0 < x < � , 0 < ξ1 < h1(x, 0)

Ψ3(x, h∞
1 , ξ2) = Ψ2(x, εh∞

1 , ξ2) for 0 < x < � , 0 < ξ2 < h1(x, 0)

Ψ3 = 0 on ∂S1\(γ2 ∪ γ1) .

Then we pose

Ψε(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ψ1

(
x, y1, z1

ε

)
in Ω1

ε\Sε

Ψ2
(
x, y2, z2

ε

)
in Ω2

ε\Sε

Ψ3
(
x, y

1

ε , z1

ε

)
in Sε

Using Ψε as a test function leads to∫
Ωε

∇uε · ∇Ψε + Re

∫
Ωε

(uε · ∇)uε · Ψε −
∫
Ωε

rε divΨε =

=
∫
Σε

(
q − Re

Fr2 x · g
)

(Ψε · n) (56)

We multiply the equation (56) by 1
ε and we get for the right hand side

1
ε

∫
Σε

(
q − Re

Fr2 x · g
)

(Ψε · n) =
∫
Σ1

(
q − Re

Fr2 x · g
)

(Ψ1 · n) + O(ε) ,

with Ψ1 denoting Ψε for ε = 1. The third integral on the left hand-side

1
ε

∫
Ωε

rε div Ψε = 1
ε

2∑
m=1

∫
Ωm

ε \Sε

rε divxym Ψε + 1
ε

∫
Sε

rε
∂(Ψε)1
∂x

=

= 1
ε

2∑
m=1

∫
Ωm

ε

rε divxym Ψε + O(ε) →
2∑

m=1

∫
Ωm

Rm divxym Ψm

The second integral on the left-hand side

Re

ε

∫
Ωε

(uε · ∇)uε · Ψε ≤ C Re |∇uε|2L2(Ωε)|Ψε|L∞(Ωε) ≤ Cε3 Re → 0 .

Finally, for the first integral on the left-hand side
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1
ε

∫
Ωε

∇uε · ∇Ψε = 1
ε

2∑
m=1

∫
Ωm

ε \Sε

∇uε · ∇Ψε + 1
ε

∫
Sε

∇uε · ∇Ψε =

= I1 + I2 .

Now

I2 ≤ 1
ε2 |∇uε|L2(Ωε)|∇Ψε|L∞(Sε)|Sε|1/2 ≤ Cε1/2 → 0

and

I1 = 1
ε

∫
Ω1

ε

∇uε · ∇
[
Ψ1

(
x, y1,

z1

ε

)]
+ 1

ε

∫
Ω2

ε

∇uε · ∇
[
Ψ2

(
x, y2,

z2

ε

)]
−

− 1
ε

⎧⎪⎨⎪⎩
∫

Sε∩Ω1
ε

∇uε · ∇
[
Ψ1

(
x, y1,

z1

ε

)]
+

∫
Sε∩Ω2

ε

∇uε · ∇
[
Ψ2

(
x, y2,

z2

ε

)]⎫⎪⎬⎪⎭ .

The last two integrals can be estimated in the same manner as I2 and they tend to zero as ε → 0. For 
smooth Ψm we obviously have

∇Ψ1
(
x, y1,

z1

ε

)
= ∇xy1Ψ1

(
x, y1,

z1

ε

)
+ ε−1 ∂Ψ1

∂ξ1

(
x, y1,

z1

ε

)
and

∇Ψ2
(
x, y2,

z2

ε

)
= ∇xy2Ψ2

(
x, y2,

z2

ε

)
+ ε−1 ∂Ψ2

∂ξ2

(
x, y2,

z2

ε

)
.

Since

1
ε

∫
Ω1

ε

∇xy1uε · ∇xy1

[
Ψ1

(
x, y1,

z1

ε

)]
≤

√
|Ω1

ε|
ε

|∇uε|L2(Ωε)|∇Ψ1|L∞(Ω1) ≤ Cε → 0

and

1
ε

∫
Ω2

ε

∇xy2uε · ∇xy2

[
Ψ2

(
x, y2,

z2

ε

)]
≤

√
|Ω2

ε|
ε

|∇uε|L2(Ωε)|∇Ψ2|L∞(Ω2) ≤ Cε → 0 .

It only remains to pass to the limit in the integrals

1
ε2

∫
Ωm

ε

∂uε

∂ξm
·
(
∂Ψm

∂ξm

)(
x, ym,

zm

ε

)
.

Using the two-scale compactness (55), we get for m = 1, 2

1
ε2

∫
m

∂uε

∂ξm
·
(
∂Ψm

∂ξm

)(
x, ym,

zm

ε

)
→

∫
m

∂U0

∂ξm
· ∂Ψm

∂ξm
.

Ωε Ω
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Finally, we have arrived at the two-scale problem (50). As in the previous section, we can prove that the 
two-scale problem (45), (46), (47) and (50) has a unique solution. That solution can be constructed by 
separating the scales in (50) and it satisfies the coupled Reynolds equations (53). �
Remark 3. The junction condition (54) combined with (52) gives the continuity of the fluxes across the 
junction line C

h3
1
∂R1

∂y1 = h3
2
∂R2

∂y2 on C .

Furthermore, we need to remember that we have redefined the pressure by taking (28). If we go back to the 
original pressure

pε = rε + Re

Fr2 x · g

in each Ωm, m = 1, 2, converges to

Pm = Rm + Re

Fr2 (x e · g + ym jm · g) = Rm + Re

Fr2 x · g .

Now the junction condition for physical pressure P reads

h3
1
∂P 1

∂y1 + Re

Fr2 j1 · g = h3
2
∂P 2

∂y2 + Re

Fr2 j2 · g on C .
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