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In this paper we compute asymptotics for the coefficients of an infinite class 
of overpartition rank generating functions. Using these results, we show that 
N(a, c, n), the number of overpartitions of n with rank congruent to a modulo 
c, is equidistributed with respect to 0 ≤ a < c, for any c ≥ 2, as n → ∞ and, in 
addition, we prove some inequalities between ranks of overpartitions conjectured by 
Ji, Zhang and Zhao (2018), and Wei and Zhang (2018) for n = 6 and n = 10.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

1.1. Motivation

A partition of a positive integer n is a non-increasing sequence of positive integers (called parts), usually 
written as a sum, which add up to n. The number of partitions of n is denoted by p(n). For example, 
p(4) = 5, as the partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. Extending the definition, we 
set, by convention, p(0) = 1 and p(n) = 0 for n < 0.

Among many other famous achievements, Ramanujan [24] proved that if n ≥ 0, then

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

In order to give a combinatorial proof of these congruences, Dyson [12] introduced the rank of a partition, 
often known also as Dyson’s rank, which is defined to be the largest part of the partition minus the number 
of its parts. Dyson conjectured that the partitions of 5n +4 form 5 groups of equal size when sorted by their 
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ranks modulo 5, and that the same is true for the partitions of 7n + 5 when working modulo 7, conjecture 
which was proved by Atkin and Swinnerton-Dyer [5].

An overpartition of n is a partition in which the first occurrence of a part may be overlined. We denote by 
p(n) the number of overpartitions of n. For example, p(4) = 14, as the overpartitions of 4 are 4, 4, 3 +1, 3+
1, 3 +1, 3+1, 2 +2, 2+2, 2 +1 +1, 2+1 +1, 2 +1+1, 2+1+1, 1 +1 +1 +1, 1+1 +1 +1. Overpartitions 
are natural combinatorial structures associated with the q-binomial theorem, Heine’s transformation or 
Lebesgue’s identity. For an overview and further motivation, the reader is referred to [9] and [22].

Both the partition and overpartition ranks have been extensively studied. By proving that some generating 
functions associated to the rank are holomorphic parts of harmonic Maass forms, Bringmann and Ono [8]
showed that the rank partition function satisfies some other congruences of Ramanujan type. In the same 
spirit, Bringmann and Lovejoy [7] proved that the overpartition rank generating function is the holomorphic 
part of a harmonic Maass form of weight 1/2, while Dewar [10] made certain refinements.

It is customary to denote by N(m, n) the number of partitions of n with rank m and by N(a, m, n) the 
number of partitions of n with rank congruent to a modulo m. The corresponding quantities for overparti-
tions, N(m, n) and N(a, m, n), are denoted by an overline.

By means of generalized Lambert series, Lovejoy and Osburn [18] gave formulas for the rank differences 
N(s, �, n) −N(t, �, n) for � = 3 and � = 5, while rank differences for � = 7 were determined by Jennings-Shaffer 
[14]. Recently, by using q-series manipulations and the 3 and 5-dissection of the overpartition rank generation 
function, Ji, Zhang and Zhao [16] proved some identities and inequalities for the rank difference generating 
functions of overpartitions modulo 6 and 10, and conjectured a few others. Some further inequalities were 
conjectured by Wei and Zhang [26].

It is one goal of this paper to prove these conjectures. The other, more general, goal is to compute 
asymptotics for the ranks of overpartitions and this is what we will start with, the inequalities mentioned 
above, as well as the asymptotic equidistribution of N(a, c, n), following then as a consequence. In doing 
so, we rely on the Hardy-Ramanujan circle method and the modular transformations for overpartitions 
established by Bringmann and Lovejoy [7]. While the main ideas are essentially those used by Bringmann 
[6] in computing asymptotics for partition ranks, several complications arise and some modifications need 
to be carried out.

The paper is structured as follows. The rest of this section is dedicated to introducing some notation 
that is needed in the sequel and to formulating our main results. An outline of the proof of Theorem 1 is 
given in Section 2, and its proof in detail, along with that of the equidistribution of N(a, c, n), is given in 
Section 3. In the final section we show how to use Theorem 1 in order to prove the inequalities conjectured 
by Ji, Zhang and Zhao [16], and Wei and Zhang [26], which are stated in Theorems 2–4 together with some 
other inequalities.

1.2. Notation and preliminaries

The overpartition generating function (see, e.g., [9]) is given by

P (q) :=
∑
n≥0

p(n)qn = η(2z)
η2(z) = 1 + 2q + 4q2 + 8q3 + 14q4 + · · · , (1.1)

where

η(z) := q
1
24

∞∏
n=1

(1 − qn)

denotes, as usual, Dedekind’s eta function and q = e2πiz, with z ∈ C and Im(z) > 0. If we use the standard 
q-series notation
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(a)n :=
n−1∏
r=0

(1 − aqr),

(a, b)n :=
n−1∏
r=0

(1 − aqr)(1 − bqr),

for a, b ∈ C and n ∈ N ∪ {∞}, then we know from [17] that

O(u; q) :=
∞∑

n=0

∞∑
m=−∞

N(m,n)umqn =
∞∑

n=0

(−1)nq
1
2n(n+1)

(uq, q/u)n

= (−q)∞
(q)∞

⎛⎝1 + 2
∑
n≥1

(1 − u)(1 − u−1)(−1)nqn2+n

(1 − uqn)(1 − u−1qn)

⎞⎠ . (1.2)

If 0 < a < c are coprime positive integers, and if by ζn = e
2πi
n we denote the primitive n-th root of unity, 

we set

O
(a
c
; q
)

:= O (ζac ; q) = 1 +
∞∑

n=1
A
(a
c
;n
)
qn. (1.3)

Let k be a positive integer. Set k̃ = 0 if k is even, and k̃ = 1 if k is odd. Moreover, put k1 = k
(c,k) , 

c1 = c
(c,k) , and let the integer 0 ≤ � < c1 be defined by the congruence � ≡ ak1 (mod c1). If bc ∈ (0, 1), let

s(b, c) :=

⎧⎪⎪⎨⎪⎪⎩
0 if 0 < b

c ≤ 1
4 ,

1 if 1
4 < b

c ≤ 3
4 ,

2 if 3
4 < b

c < 1,
and t(b, c) :=

{
1 if 0 < b

c < 1
2 ,

3 if 1
2 < b

c < 1.

Throughout we will use, for reasons of space, the shorthand notation s = s(b, c) and t = t(b, c). In what 
follows, 0 ≤ h < k are coprime integers (in case k = 1, we set h = 0 and this is the only case when h = 0 is 
allowed), and h′ ∈ Z is defined by the congruence hh′ ≡ −1 (mod k). Further, let

ωh,k := exp
(
πi

k−1∑
μ=0

((μ
k

))((hμ

k

)))

be the multiplier occurring in the transformation law of the partition function, where

((x)) :=
{
x− �x	 − 1

2 if x ∈ R \ Z,
0 if x ∈ Z.

Remark 1. The sums

S(h, k) :=
k−1∑
μ=0

((μ
k

))((hμ

k

))

are known in the literature as Dedekind sums. For a nice discussion of their properties and how to compute 
them for small values of h, the reader is referred to [4, p. 62].
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We next define several Kloosterman sums. Here and throughout we write 
∑′

h to denote summation over 
the integers 0 ≤ h < k that are coprime to k.

If c | k, let

Aa,c,k(n,m) := (−1)k1+1 tan
(πa

c

) ∑′

h

ω2
h,k

ωh,k/2
· cot

(
πah′

c

)
· e−

2πih′a2k1
c · e 2πi

k (nh+mh′),

and

Ba,c,k(n,m) := − 1√
2

tan
(πa

c

) ∑′

h

ω2
h,k

ω2h,k
· 1
sin
(
πah′

c

) · e− 2πih′a2k1
c · e 2πi

k (nh+mh′).

If c � k and 0 < �
c1

≤ 1
4 , let

Da,c,k(n,m) := 1√
2

tan
(πa

c

) ∑′

h

ω2
h,k

ω2h,k
· e 2πi

k (nh+mh′),

and if c � k and 3
4 < �

c1
< 1, let

Da,c,k(n,m) := − 1√
2

tan
(πa

c

) ∑′

h

ω2
h,k

ω2h,k
· e 2πi

k (nh+mh′).

To state our results, we need at last the following quantities. The motivation behind their expressions 
becomes clear if one writes down explicitly the computations done in Section 3. If c � k, let

δc,k,r :=

⎧⎪⎪⎨⎪⎪⎩
1
16 − �

2c1 + �2

c21
− r �

c1
if 0 < �

c1
≤ 1

4 ,

0 if 1
4 < �

c1
≤ 3

4 ,
1
16 − 3�

2c1 + �2

c21
+ 1

2 − r
(
1 − �

c1

)
if 3

4 < �
c1

< 1,
(1.4)

and

ma,c,k,r :=

⎧⎪⎪⎨⎪⎪⎩
− 1

2c21
(2(ak1 − �)2 + c1(ak1 − �) + 2rc1(ak1 − �)) if 0 < �

c1
≤ 1

4 ,

0 if 1
4 < �

c1
≤ 3

4 ,

− 1
2c21

(2(ak1 − �)2 + 3c1(ak1 − �) − 2rc1(ak1 − �) − c21(2r − 1)) if 3
4 < �

c1
< 1.

(1.5)

1.3. Statement of results

We are now in shape to state our main results.

Theorem 1. If 0 < a < c are coprime positive integers with c > 2, and ε > 0 is arbitrary, then

A
(a
c
;n
)

= i

√
2
n

∑
1≤k≤√

n
c|k, 2�k

Ba,c,k(−n, 0)√
k

· sinh
(
π
√
n

k

)

+ 2
√

2
n

∑
1≤k≤√

n
c�k, 2�k, c1 �=4
r≥0, δc,k,r>0

Da,c,k(−n,ma,c,k,r)√
k

· sinh
(

4π
√
δc,k,rn

k

)
+ Oc(nε). (1.6)
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Remark 2. In computing the sums Ba,c,k and Da,c,k from Theorem 1, the integer h′ is assumed to be even, 
cf. Bringmann and Lovejoy [7, pp. 14–15].

While the sums involved in the asymptotic formula of A 
(
a
c ;n
)

might look a bit cumbersome at first, for 
small values of c they can be computed without much effort. We exemplify below the particular instances 
when c = 3 and c = 10; we will come back to Example 2, in more detail, in Section 4.

Example 1. If a = 1 and c = 3, the second sum in (1.6) does not contribute (as δ3,k,r = 0), while the main 
asymptotic contribution from the first sum is given by the term corresponding to k = 3. If h = 1, we have 
h′ = 2 and ω1,3 = e

πi
6 , and if h = 3, we have h′ = −2 and ω2,3 = e−

πi
6 . Without difficulty, we see that 

B1,3,3(−n, 0) = −2i
√

2 if n ≡ 1 (mod 3), and B1,3,3(−n, 0) = i
√

2 if n ≡ 0, 2 (mod 3), from where

A

(
1
3 ;n
)

∼

⎧⎪⎪⎨⎪⎪⎩
4√
3n

tan
(π

3

)
sinh

(
π
√
n

3

)
if n ≡ 1 (mod 3),

− 2√
3n

tan
(π

3

)
sinh

(
π
√
n

3

)
if n ≡ 0, 2 (mod 3).

Example 2. If a = 1 and c = 10, the first sum in (1.6) does not contribute, while the main asymptotic 
contribution from the second sum is given by the term corresponding to k = 1. In this case, k1 = � = 1, 
c1 = 10 and the only positive value of δ10,1,r is attained for r = 0. As such, we have δ10,1,0 = 9

400 , m1,10,1,0 = 0
and D1,10,1(−n, 0) = 1√

2 tan
(

π
10
)
, hence

A

(
1
10 ;n

)
∼ 2√

n
tan
( π

10

)
sinh

(
3π

√
n

5

)
.

On using Theorem 1 together with the identity

∞∑
n=0

N(a, c, n)qn = 1
c

∞∑
n=0

p(n)qn + 1
c

c−1∑
j=1

ζ−aj
c · O(ζjc ; q), (1.7)

which follows by the orthogonality of roots of unity, and the well-known fact (see, e.g., [13]) that

p(n) ∼ 1
8ne

π
√
n

as n → ∞, we obtain the following consequence.

Corollary 1. If c ≥ 2, then for any 0 ≤ a ≤ c − 1 we have, as n → ∞,

N(a, c, n) ∼ p(n)
c

∼ 1
c
· e

π
√
n

8n .

Remark 3. A similar result for partition ranks was obtained recently by Males [19].

Remark 4. A Rademacher-type convergent series expansion for p(n) was found by Zuckerman [27, p. 321, 
eq. (8.53)], and is given by

p(n) = 1
2π
∑
2�k

√
k
∑′

h

ω2
h,k

ω2h,k
· e− 2πinh

k · d

dn

(
1√
n

sinh
(
π
√
n

k

))
.
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The following inequalities were conjectured by Ji, Zhang and Zhao [16, Conjecture 1.6 and Conjecture 
1.7], and Wei and Zhang [26, Conjecture 5.10].

Conjecture 1 (Ji–Zhang–Zhao, 2018).

(i) For n ≥ 0 and 1 ≤ i ≤ 4, we have

N(0, 10, 5n + i) + N(1, 10, 5n + i) ≥ N(4, 10, 5n + i) + N(5, 10, 5n + i).

(ii) For n ≥ 0, we have

N(1, 10, n) + N(2, 10, n) ≥ N(3, 10, n) + N(4, 10, n).

Conjecture 2 (Wei–Zhang, 2018). For n ≥ 11, we have

N(0, 6, 3n) ≥ N(1, 6, 3n) = N(3, 6, 3n) ≥ N(2, 6, 3n), (1.8)

N(0, 6, 3n + 1) ≥ N(1, 6, 3n + 1) = N(3, 6, 3n + 1) ≥ N(2, 6, 3n + 1), (1.9)

N(1, 6, 3n + 2) ≥ N(2, 6, 3n + 2) ≥ N(0, 6, 3n + 2) ≥ N(3, 6, 3n + 2). (1.10)

As an application of Theorem 1, we prove these conjectures and, in fact, a bit more.

Theorem 2. For n ≥ 0, we have

N(1, 10, n) + N(2, 10, n) ≥ N(3, 10, n) + N(4, 10, n), (1.11)

N(0, 10, n) + N(3, 10, n) ≥ N(2, 10, n) + N(5, 10, n), (1.12)

N(0, 10, n) + N(1, 10, n) ≥ N(4, 10, n) + N(5, 10, n). (1.13)

Theorem 3. For n ≥ 0, we have

N(0, 6, n) + N(1, 6, n) ≥ N(2, 6, n) + N(3, 6, n), (1.14)

N(0, 6, 3n) + N(3, 6, 3n) ≥ N(1, 6, 3n) + N(2, 6, 3n), (1.15)

N(0, 6, 3n + 1) + N(3, 6, 3n + 1) ≥ N(1, 6, 3n + 1) + N(2, 6, 3n + 1), (1.16)

N(0, 6, 3n + 2) + N(3, 6, 3n + 2) ≤ N(1, 6, 3n + 2) + N(2, 6, 3n + 2), (1.17)

N(0, 3, 3n) ≥ N(1, 3, 3n) = N(2, 3, 3n), (1.18)

N(0, 3, 3n + 1) ≥ N(1, 3, 3n + 1) = N(2, 3, 3n + 1), (1.19)

N(0, 3, 3n + 2) ≤ N(1, 3, 3n + 2) = N(2, 3, 3n + 2). (1.20)

Theorem 4. For n ≥ 11, we have

N(0, 6, 3n) ≥ N(1, 6, 3n) ≥ N(2, 6, 3n), (1.21)

N(0, 6, 3n + 1) ≥ N(1, 6, 3n + 1) ≥ N(2, 6, 3n + 1), (1.22)

N(1, 6, 3n + 2) ≥ N(2, 6, 3n + 2) ≥ N(0, 6, 3n + 2) ≥ N(3, 6, 3n + 2). (1.23)
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Remark 5. Similar identities and inequalities were studied, for instance, by Alwaise, Iannuzzi and Swisher 
[1], Bringmann [6], and Mao [20] for ranks of partitions, and by Jennings-Shaffer and Reihill [15], and Mao 
[21] for M2-ranks of partitions without repeated odd parts. By establishing identities for the overpartition 
rank generating functions evaluated at roots of unity analogous to those found in [15, pp. 35–38] for the 
M2-rank, the reader can come up with many other such inequalities.

Remark 6. Ji, Zhang and Zhao [16] proved (1.13) for n ≡ 0 (mod 5), whereas the inequality (1.14) is new.

Remark 7. The identities from (1.8) and (1.9) were proved by Ji, Zhang and Zhao [16], who further proved 
that N(0, 6, 3n) > N(2, 6, 3n) for n ≥ 1, and N(0, 6, 3n +1) > N(2, 6, 3n +1) for n ≥ 0. While (1.14) follows 
easily now for n ≡ 0, 1 (mod 3), the inequality is not at all clear for n ≡ 2 (mod 3), as the same authors 
also showed that N(0, 6, 3n + 2) < N(2, 6, 3n + 2) for n ≥ 1 and N(1, 6, 3n + 2) > N(3, 6, 3n + 2) for n ≥ 0. 
For a list of the identities and inequalities already proven, see [16, Theorem 1.4].

Remark 8. The identity and inequalities from (1.8) were also proved by Wei and Zhang [26, p. 25].

2. Strategy of the proof

For the reader’s benefit, we outline the main steps in proving Theorem 1, along with several other 
estimates that will be used in what follows.

2.1. Circle method

The main idea of our approach is the Hardy-Ramanujan circle method. By Cauchy’s Theorem we have, 
for n > 0,

A
(a
c
;n
)

= 1
2πi

∫
C

O
(
a
c ; q
)

qn+1 dq,

where C may be taken to be the circle of radius e− 2π
n parametrized by q = e−

2π
n +2πit with t ∈ [0, 1], in 

which case we obtain

A
(a
c
;n
)

=
1∫

0

O
(a
c
; e− 2π

n +2πit
)
· e2π−2πintdt.

If h1
k1

< h
k < h2

k2
are adjacent Farey fractions in the Farey sequence of order N := �n1/2	, we put

ϑ′
h,k := 1

k(k1 + k) and ϑ′′
h,k := 1

k(k2 + k) .

Splitting the path of integration along the Farey arcs −ϑ′
h,k ≤ Φ ≤ ϑ′′

h,k, where Φ := t − h
k and 0 ≤ h < k ≤ N

with (h, k) = 1, we have

A
(a
c
;n
)

=
∑
h,k

e−
2πinh

k

ϑ′′
h,k∫

−ϑ′
h,k

O
(a
c
; e 2πi

k (h+iz)
)
· e 2πnz

k dΦ, (2.1)

where z = k − kΦi.
n
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The reader familiar with some basics from Farey theory might immediately recognize the inequality

1
k + kj

≤ 1
N + 1

for j = 1, 2, together with several other known facts (which are otherwise very easy to prove) such as

Re(z) = k

n
, Re

(
1
z

)
>

k

2 , |z|− 1
2 ≤ n

1
2 · k− 1

2 and ϑ′
h,k + ϑ′′

h,k ≤ 2
k(N + 1) .

For a nice introduction to Farey fractions, one can consult [3, Chapter 5.4].

2.2. Modular transformation laws

Our next step in the proof of Theorem 1 requires the modular transformations1 for O
(
a
c ; q
)

established 
by Bringmann and Lovejoy [7], the proof of which can be found in [7, pp. 11–17]. For 0 < a < c coprime 
with c > 2, and s = s(b, c) and t = t(b, c) as in Section 1.2, let

U
(a
c
; q
)

= U
(a
c
; z
)

:=
η
(
z
2
)

η2(z) sin
(πa

c

)∑
n∈Z

(1 + qn)qn2+n
2

1 − 2 cos
(2πa

c

)
qn + q2n ,

U(a, b, c; q) = U(a, b, c; z) :=
η
(
z
2
)

η2(z)e
πia
c

( 4b
c −1−2s

)
q

sb
c + b

2c− b2
c2
∑
m∈Z

q
m
2 (2m+1)+ms

1 − e−
2πia

c qm+ b
c

,

V (a, b, c; q) = V(a, b, c; z) :=
η
(
z
2
)

η2(z)e
πia
c

( 4b
c −1−2s

)
q

sb
c + b

2c− b2
c2
∑
m∈Z

q
m(2m+1)

2 +ms
(
1 + e−

2πia
c qm+ b

c

)
1 − e−

2πia
c qm+ b

c

,

O (a, b, c; q) = O(a, b, c; z) := η(2z)
η2(z) e

πia
c

( 4b
c −1−t

)
q

tb
2c+ b

2c− b2
c2
∑
m∈Z

(−1)m q
m
2 (2m+1)+mt

2

1 − e−
2πia

c qm+ b
c

,

V
(a
c
; q
)

= V
(a
c
; z
)

:= η(2z)
η2(z) q

1
4
∑
m∈Z

qm
2+m

(
1 + e−

2πia
c qm+ 1

2

)
1 − e−

2πia
c qm+ 1

2
.

Furthermore, if

Ha,c(x) := ex

1 − 2 cos
( 2πa

c

)
ex + e2x , (2.2)

we consider, for ν ∈ Z, k ∈ N and k̃ as defined in Section 1.2, the Mordell-type integral

Ia,c,k,ν :=
∫
R

e−
2πzx2

k Ha,c

(
2πiν
k

− 2πzx
k

− k̃πi

2k

)
dx.

If k is even and c | k, or if k is odd, a = 1 and c = 4k, there might be a pole at x = 0. In these cases we 
need to take the Cauchy principal value of the integral. We will make this precise at a later stage.

1 In passing, we correct the definitions of U(a, b, c; q) and V(a, b, c; q), as some misprints occurred in their original expressions 
from [7, p. 8]. The necessary changes become clear on consulting the proof, see [7, pp. 11–17].
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By using Poisson summation and proceeding similarly to Andrews [2], Bringmann and Lovejoy [7] proved 
the following transformation laws.2

Theorem 5 ([7, Theorem 2.1]). Assume the notation above and let q = e
2πi
k (h+iz) and q1 = e

2πi
k

(
h′+ i

z

)
, with 

z ∈ C and Re(z) > 0.

(1) If c | k and 2 | k, then

O
(a
c
; q
)

= (−1)k1+1i · e−
2πa2h′k1

c · tan
(πa

c

)
· cot

(
πah′

c

)
ω2
h,k

ωh,k/2
z−

1
2 · O

(
ah′

c
; q1
)

+
4 sin2 (πa

c

)
· ω2

h,k

ωh,k/2 · k
z−

1
2

k−1∑
ν=0

(−1)νe− 2πih′ν2
k · Ia,c,k,ν(z).

(2) If c | k and 2 � k, then

O
(a
c
; q
)

= −
√

2i · eπih′
8k − 2πia2h′k1

c · tan
(πa

c

) ω2
h,k

ω2h,k
z−

1
2 · U

(
ah′

c
; q1
)

+
4
√

2 sin2 (πa
c

)
· ω2

h,k

ω2h,k · k z−
1
2

k−1∑
ν=0

e−
πih′
k (2ν2−ν) · Ia,c,k,ν(z).

(3) If c � k, 2 | k and c1 
= 2, then

O
(a
c
; q
)

= 2e−
2πia2h′k1

c1c · tan
(πa

c

) ω2
h,k

ωh,k/2
z−

1
2 · (−1)c1(�+k1) · O

(
ah′,

�c

c1
, c; q1

)

+
4 sin2 (πa

c

)
· ω2

h,k

ωh,k/2 · k
z

1
2

k−1∑
ν=0

(−1)νe− 2πih′ν2
k · Ia,c,k,ν(z).

(4) If c � k, 2 | k and c1 = 2, then

O
(a
c
; q
)

= e−
πia2h′k1

c · tan
(πa

c

) ω2
h,k

ωh,k/2 · k
z−

1
2 · V

(
ah′

c
; q1
)

+
4 sin2 (πa

c

)
· ω2

h,k

ωh,k/2 · k
z

1
2

k−1∑
ν=0

(−1)νe− 2πih′ν2
k · Ia,c,k,ν(z).

(5) If c � k, 2 � k and c1 
= 4, then

O
(a
c
; q
)

=
√

2e
πih′
8k − 2πia2h′k1

c1c · tan
(πa

c

) ω2
h,k

ω2h,k
z−

1
2 · U

(
ah′,

�c

c1
, c; q1

)

+
4
√

2 sin2 (πa
c

)
· ω2

h,k

ω2h,k · k z
1
2

k−1∑
ν=0

e−
πih′
k (2ν2−ν) · Ia,c,k,ν(z).

2 Some further corrections are in order; namely, the “−” sign in front of the expressions from (3)–(6) in their original formulation 
[7, Theorem 2.1] should be a “+”, and the other way around for (1) and (2), the reason being that the “±” sign from the expression 
of the residues λ±

n,m (see [7, p. 13]) is meant to be a “∓”. All necessary modifications are made here.
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(6) If c � k, 2 � k and c1 = 4, then

O
(a
c
; q
)

= e
πih′
8k − 2πia2h′k1

c1c · tan
(πa

c

) ω2
h,k√

2 · ω2h,k
z−

1
2 · V

(
ah′,

�c

c1
, c; q1

)

+
4
√

2 sin2 (πa
c

)
· ω2

h,k

ω2h,k · k z
1
2

k−1∑
ν=0

e−
πih′
k (2ν2−ν) · Ia,c,k,ν(z).

In addition to these modular transformations, we need some further estimates.

2.3. The Mordell integral Ia,c,k,ν

In the previous subsection we introduced

Ia,c,k,ν =
∫
R

e−
2πzx2

k Ha,c

(
2πiν
k

− 2πzx
k

− k̃πi

2k

)
dx. (2.3)

Recalling the definition (2.2), it is easy to see that

Ha,c(x) = 1
4 sinh

(
x
2 + πia

c

)
sinh

(
x
2 − πia

c

) ,
and so Ha,c(x) can only have poles in points of the form

x = 2πi
(
n± a

c

)
with n ∈ Z.

For 2 | k, c | k and ν = ka
c or ν = k

(
1 − a

c

)
, there may be a pole at x = 0. The same is true if 2 � k, 

ν = 0, a = 1 and c = 4k. In both cases we must consider the Cauchy principal value of the integral Ia,c,k,ν, 
that is, instead of R we choose as path of integration the real line indented below 0.

The following3 is adapted after [6, Lemma 3.1].

Lemma 1. Let n ∈ N, N = �n1/2	 and z = k
n − kΦi, where − 1

k(k+k1) ≤ Φ ≤ 1
k(k+k2) and h1

k1
< h

k < h2
k2

are 
adjacent Farey fractions in the Farey sequence of order N . If

ga,c,k,ν :=

⎧⎪⎪⎨⎪⎪⎩
(
min

{∣∣ν
k − 1

4k + a
c

∣∣ , ∣∣νk − 1
4k − a

c

∣∣})−1 if k is odd, ν 
= 0 and a
c 
= 1

4k ,(
min

{∣∣ν
k + a

c

∣∣ , ∣∣ νk − a
c

∣∣})−1 if k is even and ν /∈
{

ka
c , k

(
1 − a

c

)}
,

c
a otherwise,

and {x} = x − �x	 is the fractional part of x ∈ R, then

z
1
2 · Ia,c,k,ν �c k

− 1
2 · n 1

2 · ga,c,k,ν .

3 Note that there are a few typos in the formulation of the original result from which this lemma is inspired. More precisely, in 
the statement of [6, Lemma 3.1], n 1

4 should read n 1
2 , k should read k− 1

2 and the 6kc factor from the definition of ga,c,k,ν should 
be removed. These changes, however, do not affect the proof.
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Proof. Let us first treat the case when k is odd and we encounter no poles. We have k̃ = 1 and

Ia,c,k,ν =
∫
R

e−
2πzx2

k Ha,c

(
2πiν
k

− 2πzx
k

− πi

2k

)
dx.

If we write πzk = reiφ with r > 0, then |φ| < π
2 since Re(z) > 0. The substitution τ = πzx

k yields

z
1
2 · Ia,c,k,ν(z) = k

πz
1
2

∫
L

e−
2kτ2
πz Ha,c

(
2πiν
k

− πi

2k − 2τ
)
dτ, (2.4)

where L is the line passing through 0 at an angle of argument ±φ. One easily sees that, for 0 ≤ t ≤ φ,∣∣∣∣e− 2kR2e2it
πz Ha,c

(
2πiν
k

− πi

2k ± 2Reit
)
dx

∣∣∣∣→ 0 as R → ∞.

As the integrand from (2.4) has no poles, we can shift the path L of integration to the real line and obtain

z
1
2 · Ia,c,k,ν(z) = k

πz
1
2

∫
R

e−
2kt2
πz Ha,c

(
2πiν
k

− πi

2k − 2t
)
dt.

The inequality ∣∣∣∣sinh
(
πiν

k
− πi

4k − t± πia

c

)∣∣∣∣ ≥ ∣∣∣sin(πνk − π

4k ± πa

c

)∣∣∣
follows immediately for t ∈ R from the definition of sinh and some easy manipulations, while the estimate

∣∣∣sin(πν
k

− π

4k − πa

c

)∣∣∣ ∣∣∣sin(πν
k

− π

4k + πa

c

)∣∣∣�c min
{∣∣∣∣νk − 1

4k + a

c

∣∣∣∣ , ∣∣∣∣νk − 1
4k − a

c

∣∣∣∣}
is clear. Therefore we have

z
1
2 · Ia,c,k,ν(z) �c

k

min
{{

ν
k − 1

4k + a
c

}
,
{

ν
k − 1

4k − a
c

}}
|z| 12

∫
R

e−
2k
π Re

( 1
z

)
t2dt,

and, noting that

∣∣∣e− 2kt2
πz

∣∣∣ = e−
2k
π Re

( 1
z

)
t2 , Re

(
1
z

)− 1
2

· |z|− 1
2 ≤

√
2 ·

√
n · k−1,

the claim follows on making the substitution t �→
√

2k Re
( 1
z

)
π · t.

If k is even and c � k, then we proceed similarly as above. If, however, the integrand in (2.3) has a pole 
at x = 0, in both of the cases c | k and c � k, instead of R, we must consider the path of integration to be 
the real line indented below 0.

For simplicity, let us present the case when 2 | k, as the case 2 � k is completely analogous. After doing 
the same change of variables as before and (if needed) shifting the path of integration (which will now 
consist of a straight line passing through 0 at an angle ±φ with a small segment centered at 0 removed 
and replaced by a semicircle inclined also at an angle ±φ), the new path of integration will be given by 
γR,ε = [−R, −ε] ∪ Cε ∪ [R, ε], where Cε is the positively oriented semicircle of radius ε around 0 below the 
real line and
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Ia,c,k,ν = k

πz

∫
γR,ε

e−
2kt2
πz Ha,c

(
2πiν
k

− 2t
)
dt = k

4πz

∫
γR,ε

e−
2kt2
πz

sinh(t) sinh
(
t− 2πia

c

)dt.
If we let DR,ε be the enclosed path of integration γR,ε ∪ [R, R + πia/c] ∪ [R + πia/c, −R + πia/c] ∪ [−R +
πia/c, −R] and we set

f(w) := e−
2kw2
πz

sinh(w) sinh
(
w − 2πia

c

) ,
then by the Residue Theorem we obtain

4πz
k

· Ia,c,k,ν = − 2π
sin
( 2πa

c

) +

⎛⎜⎝ −R∫
−R+πia/c

+
R+πia/c∫

−R+πia/c

+
R∫

R+πia/c

⎞⎟⎠ e−
2kw2
πz

sinh(w) sinh
(
w − 2πia

c

)dw,
since inside and on DR,ε the only pole of f is at w = 0, with residue

Res
w=0

f(w) = i

sin
( 2πa

c

) .
On [−R + πia/c, −R] and [R + πia/c, R] we have 

∣∣sinh(w) sinh
(
w − 2πia

c

)∣∣ ≥ sinh2 R and 
∣∣∣e− 2kw2

πz

∣∣∣ =

e−
2k
π Re

( 1
z

)
R2 , thus the two corresponding integrals tend to 0 as R → 0, whereas on [−R+ πia/c, R+ πia/c]

we have, after a change of variables,

R+πia/c∫
−R+πia/c

e−
2kw2
πz

sinh(w) sinh
(
w − 2πia

c

)dw =
R∫

−R

e−
2k
(
t+πia

c

)2
πz

sinh
(
t + πia

c

)
sinh

(
t− πia

c

)dt.
Proceeding now along the same lines as before, we obtain

z
1
2 · Ia,c,k,ν(z) �

(πa
c

)−1
· k

|z| 12

∫
R

e−
2k
π Re

( 1
z

)
t2dt,

and the proof is complete. �
2.4. Kloosterman sums

The following is a variation of [2, Lemma 4.1], cf. Bringmann [6, Lemma 3.2].

Lemma 2. Let m, n ∈ Z, 0 ≤ σ1 < σ2 ≤ k and D ∈ Z with (D, k) = 1.

(i) We have

∑′

h
σ1≤Dh′≤σ2

ω2
h,k

ω2h,k
· e 2πi

k (hn+h′m) � (24n + 1, k) 1
2 · k 1

2+ε. (2.5)
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(ii) If c | k, we have

tan
(πa

c

) ∑′

h
σ1≤Dh′≤σ2

ω2
h,k

ω2h,k

1
sin
(
πah′

c

) · e− 2πih′a2k1
c · e 2πi

k (nh+mh′) � (24n + 1, k) 1
2 · k 1

2+ε. (2.6)

(ii) If c | k, we have

tan
(πa

c

) ∑′

h
σ1≤Dh′≤σ2

ω2
h,k

ω2h,k
(−1)k1+1 cot

(
πah′

c

)
·e−

2πih′a2k1
c ·e 2πi

k (nh+mh′) � (24n+1, k) 1
2 ·k 1

2+ε. (2.7)

The implied constants are independent of a and k, and ε > 0 can be taken arbitrarily.

Proof. Part (i) follows simply on replacing ωh,k by 
ω2

h,k

ω2h,k
in the proof of Andrews [2, Lemma 4.1]. As the 

proof of (2.7) is completely analogous to that of (2.6), we deal only with part (ii). We set c̃ = c if k is odd, 
and c̃ = 2c if k is even. Since e−

2πih′a2k1
c depends only on the residue class of h′ modulo c̃, the left-hand 

side of (2.6) can be rewritten as

tan
(πa

c

)∑
cj

e−
2πia2k1cj

c

sin
(πacj

c

) ∑′

h
σ1≤Dh′≤σ2

h′≡cj (mod c̃)

ω2
h,k

ω2h,k
· e 2πi

k (nh+mh′),

where cj runs over a set of primitive residues modulo c̃. Furthermore, we have

∑′

h
σ1≤Dh′≤σ2

h′≡cj (mod c̃)

ω2
h,k

ω2h,k
· e 2πi

k (nh+mh′) = 1
c̃

∑′

h
σ1≤Dh′≤σ2

ω2
h,k

ω2h,k
· e 2πi

k (nh+mh′)
∑

r (mod c̃)

e
2πir

c̃ (h′−cj)

= 1
c̃

∑
r (mod c̃)

e−
2πircj

c̃ (h′−cj)
∑′

h
σ1≤Dh′≤σ2

h′≡cj (mod c̃)

ω2
h,k

ω2h,k
· e 2πi

k

(
nh+

(
m+ kr

c̃

)
h′)

and the proof is concluded on invoking part (i) and noting that krc̃ ∈ Z. �
3. Asymptotics for A 

(
a
c
;n
)

and N(a, c, n)

We turn our focus now to the proof of Theorem 1 and proceed as described in the strategy outlined in 
Section 2, the whole section being dedicated to this purpose.

Proof of Theorem 1. On using Cauchy’s Theorem and splitting the path of integration into Farey arcs as 
explained in Section 2.1, we obtain, from (2.1) and Theorem 5,

A
(a
c
;n
)

= i tan
(πa

c

) ∑
h,k

ω2
h,k

ωh,k/2
(−1)k1+1 cot

(
πah′

c

)
e−

2πia2h′k1
c − 2πinh

k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 e

2πnz
k O

(
ah′

c
; q1
)
dΦ
2|k, c|k
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−
√

2i tan
(πa

c

) ∑
h,k

2�k, c|k

ω2
h,k

ω2h,k
e

πih′
8k − 2πia2h′k1

c − 2πinh
k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 e

2πnz
k U

(
ah′

c
; q1
)
dΦ

+ 2 tan
(πa

c

) ∑
h,k

2|k, c�k, c1 �=2

ω2
h,k

ωh,k/2
(−1)c1(�+k1)e−

2πia2h′k1
c1c − 2πinh

k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 e

2πnz
k O

(
ah′,

�c

c1
, c; q1

)
dΦ

+ tan
(πa

c

) ∑
h,k

2|k, c�k, c1=2

ω2
h,k

ωh,k/2
e−

πia2h′k1
c − 2πinh

k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 e

2πnz
k V

(
ah′

c
; q1
)
dΦ

+
√

2 tan
(πa

c

) ∑
h,k

2�k, c�k, c1 �=4

ω2
h,k

ω2h,k
e

πih′
8k − 2πia2h′k1

c1c − 2πinh
k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 e

2πnz
k U

(
ah′,

�c

c1
, c; q1

)
dΦ

+ 1√
2

tan
(πa

c

) ∑
h,k

2�k, c�k, c1=4

ω2
h,k

ωh,k/2
e

πih′
8k − 2πia2h′k1

c1c − 2πinh
k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 e

2πnz
k V

(
ah′,

�c

c1
, c; q1

)
dΦ

+ 4 sin2
(πa

c

)∑
h,k
2|k

ω2
h,k

ωh,k/2 · k
e−

2πinh
k

k−1∑
ν=0

(−1)νe− 2πih′ν2
k

ϑ′′
h,k∫

−ϑ′
h,k

z
1
2 e

2πnz
k Ia,c,k,ν(z)dΦ

+ 4
√

2 sin2
(πa

c

)∑
h,k
2�k

ω2
h,k

ω2h,k · k e
− 2πinh

k

k−1∑
ν=0

e−
πih′
k (2ν2−ν)

ϑ′′
h,k∫

−ϑ′
h,k

z
1
2 e

2πnz
k Ia,c,k,ν(z)dΦ

=:
∑
1

+
∑
2

+
∑
3

+
∑
4

+
∑
5

+
∑
6

+
∑
7

+
∑
8

.

For the reader’s convenience, we divide our proof into several steps. We start by estimating the sums 
∑

2, 
∑

5
and 

∑
6, which, as we shall see, will give the main contribution. The sums 

∑
1, 
∑

3, 
∑

4, 
∑

7 and 
∑

8 will 
go into an error term and will be dealt with at the end. Here the analysis will also split, as the latter two 
sums can be treated together.

3.1. Estimates for the sums 
∑

2, 
∑

5 and 
∑

6

To estimate 
∑

2, notice that we can write

∑
n∈Z

(1 + qn)qn2+n
2

1 − 2 cos
( 2πa

c

)
qn + q2n = 1

2 sin2 (πa
c

) + 2
∑
n≥1

(1 + qn)qn2+n
2

1 − 2 cos
( 2πa

c

)
qn + q2n

= 1
2 sin2 (πa

c

) + 2
∑
2|n

(1 + qn)qn2+n
2

1 − 2 cos
( 2πa

c

)
qn + q2n

+ 2q 1
2
∑ (1 + qn)qn2+n−1

2

1 − 2 cos
( 2πa

c

)
qn + q2n
2�n
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= 1
2 sin2 (πa

c

) +
∑
r≥1

a2(r)e
2πimrh′

k − 2πr
kz + q

1
2
∑
r≥1

b2(r)e
2πinrh′

k − 2πr
kz ,

where mr, nr ∈ Z and the coefficients a2(r) and b2(r) are independent of k and h.
On replacing z by z1 = z/2 in (1.1), we have

U
(
ah′

c
; q1
)

= sin
(
πah′

c

)
η
(
z1
2
)

η2(z1)
∑
n∈Z

(1 + qn1 )qn
2+n

2
1

1 − 2qn1 cos
( 2πah′

c

)
+ q2n

1

= sin
(
πah′

c

)
η
(
z1
2
)

η2(z1)

(
1

2 sin2 (πah′

c

) + 2
∑
n≥1

(1 + qn1 )qn
2+n

2
1

1 − 2qn1 cos
( 2πah′

c

)
+ q2n

1

)

= q
− 1

16
1 · P (q1) ·

(
1

2 sin
(
πah′

c

) + 2 sin
(
πah′

c

)∑
n≥1

(1 + qn1 )qn
2+n

2
1

1 − 2qn1 cos
( 2πah′

c

)
+ q2n

1

)
,

where we write q1 = e2πiz1 . It follows that

∑
2

= −
√

2i tan
(πa

c

) ∑
h,k

2�k, c|k

ω2
h,k

ω2h,k
e

πih′
8k − 2πia2h′k1

c − 2πinh
k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 · e 2πnz

k · U
(
ah′

c
; q1
)
dΦ

= − i√
2

tan
(πa

c

) ∑
2�k, c|k

∑′

h

ω2
h,k

ω2h,k

1
sin
(
πah′

c

)e− 2πia2h′k1
c − 2πinh

k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 · e 2πnz

k + π
8kz · Ũ

(
ah′

c
; q1
)
dΦ,

with

Ũ
(
ah′

c
; q1
)

= 1 + 4 sin2
(
πah′

c

)(∑
r≥1

a2(r)e
2πimrh′

k − 2πr
kz + q

1
2
∑
r≥1

b2(r)e
2πinrh′

k − 2πr
kz

)
.

We treat the sum coming from the constant term and the two sums coming from the case r ≥ 1 separately. 
The former will contribute to the main term, while the latter two sums will contribute to the error term. 
We denote the associated sums by S1, S2 and S3 and we first estimate S2 (S3 is dealt with in a similar 
manner).

We recall, from Section 2.1, the easy facts that

Re(z) = k

n
, Re

(
1
z

)
>

k

2 , |z|− 1
2 ≤ n

1
2 · k− 1

2 and ϑ′
h,k + ϑ′′

h,k ≤ 2
k(N + 1) . (3.1)

We write

ϑ′′
h,k∫

−ϑ′
h,k

=

1
k(N+k)∫

− 1
k(N+k)

+

− 1
k(N+k)∫

− 1
k(k1+k)

+

1
k(k2+k)∫

1
k(N+k)

(3.2)

and denote the associated sums by S21, S22 and S23. This way of splitting the integral is motivated by the 
Farey dissection used by Rademacher [23, pp. 504–509]. It allows us to interchange summation with the 
integral and yields a so-called complete Kloosterman sum and two incomplete Kloosterman sums. Lemma 2
applies to both types of sums.
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We first consider S21. As we have already seen,

p(n) ∼ 1
8ne

π
√
n,

thus p(n) < eπ
√
n as n → ∞. Clearly, the coefficients of O(u; q), regarded as a series in q when evaluated at 

a root of unity u = ζac , satisfy

∣∣∣A(a
c
;n
)∣∣∣ ≤ ∞∑

m=−∞
|N(m,n)ζamc | ≤

∞∑
m=−∞

N(m,n) = p(n),

thus, in light of the transformation behavior shown in Theorem 5, the coefficients a2(r) and b2(r) satisfy

|a2(r)|, |b2(r)| ≤ eπ
√
r as r → ∞. (3.3)

As the integral that appears inside the sum does not depend on h, in evaluating S21 we can perform 
summation with respect to h. Using, in turn, the bound (3.3), Lemma 2, the estimates from (3.1), and the 
well-known bound σ0(n) = o(nε) for all ε > 0, we obtain

S21 �
∣∣∣∣∣

∞∑
r=1

a2(r)
∑
c|k

tan
(πa

c

) ∑′

h

ω2
h,k

ω2h,k
· 1
sin
(
πah′

c

) · e− 2πih′a2k1
c − 2πinh

k + 2πimrh′
k

·

1
k(N+k)∫

− 1
k(N+k)

z−
1
2 · e− 2π

kz

(
r− 1

16
)
+ 2πzn

k dΦ

∣∣∣∣∣
�

∞∑
r=1

|a2(r)| · e−πr
∑
k

k−1+ε · (24n + 1, k) 1
2 �

∑
d|24n+1
d≤N

d
1
2
∑
k≤N

d

(dk)−1+ε

�
∑

d|24n+1
d≤N

d−
1
2+ε

N/d∫
1

x−1+εdx =
∑

d|24n+1
d≤N

d−
1
2 · dε ·

(
N

d

)ε

�
∑

d|24n+1

d−
1
2 · n ε

2

� nε+ ε
2 � nε.

For a proof of the fact that σ0(n) = o(nε) see, e.g., [3, p. 296]. Here we bound trivially∑
d|24n+1

d−
1
2 <

∑
d|24n+1

1 = σ0(24n + 1) = o(nε)

and choose 0 < ε < ε/2, where σ0(n) denotes, as usual, the number of divisors of n.
Since S22 and S23 are treated in the exact same way, we only consider S22. Writing

− 1
k(N+k)∫

− 1
k(k1+k)

=
N+k−1∑
�=k1+k

− 1
k(�+1)∫

− 1
k�

we see that
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S22 �
∣∣∣∣∣

∞∑
r=1

a2(r)
∑
c|k

N+k−1∑
�=k1+k

− 1
k(�+1)∫

− 1
k�

z−
1
2 · e− 2π

kz

(
r− 1

16
)
+ 2πzn

k dΦ

· tan
(πa

c

) ∑′

h
N<k+k1≤�

ω2
h,k

ω2h,k
· 1
sin
(
πah′

c

) · e− 2πih′a2k1
c − 2πinh

k + 2πimrh′
k

∣∣∣∣∣.
Again, from basic facts of Farey theory, it follows that

N − k < k1, k2 ≤ N and k1 ≡ −k2 ≡ −h′ (mod k),

conditions which imply the restriction of h′ to one or two intervals in the range 0 ≤ h′ < k. Therefore we 
can use Lemma 2 to estimate the above expression just as in the case of S21.

As for the estimation of S1, we can split the integration path into

ϑ′′
h,k∫

−ϑ′
h,k

=

1
kN∫

− 1
kN

−

− 1
k(k1+k)∫

− 1
kN

−

1
kN∫
1

k(k2+k)

and denote the associated sums by S11, S12 and S13. The sums S12 and S13 contribute to the error term 
and, since they are of the same shape, we only consider S12. Further, decomposing

− 1
k(k1+k)∫

− 1
kN

=
k1+k−1∑
�=N

− 1
k(�+1)∫

− 1
k�

gives

S12 �

∣∣∣∣∣∣∣
∑
c|k

k1+k−1∑
�=N

− 1
k(�+1)∫

− 1
k�

z−
1
2 · e π

8kz + 2πzn
k dΦ

· tan
(πa

c

) ∑′

h
�<k1+k−1≤N+k−1

ω2
h,k

ω2h,k
· 1
sin
(
πah′

c

) · e− 2πih′a2k1
c − 2πinh

k

∣∣∣∣∣∣∣ .
Using the facts that

Re(z) = k

n
, Re

(
1
z

)
< k and |z|2 ≥ k2

n2 ,

this sum can be estimated as before against O(nε). Thus,

∑
2

= i
∑
c|k

Ba,c,k(−n, 0)

1
kN∫

− 1
kN

z−
1
2 · e 2πzn

k + π
8kz dΦ + O(nε). (3.4)

We stop here for the moment with the estimation of 
∑

2 and turn our attention to 
∑

5. This sum is 
treated in a similar manner, but some comments regarding necessary modifications are in order. On noting 
that
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U (a, b, c; q) =
η
(
z
2
)

η2(z)e
πia
c

( 4b
c −2s

)
q

sb
c − b2

c2

(∑
m≥0

e−
πia
c q

m(2m+1)
2 +ms+ b

2c

1 − e−
2πia

c qm+ b
c

−
∑
m≥1

e
πia
c q

m(2m+1)
2 −ms− b

2c

1 − e
2πia

c qm− b
c

)
, (3.5)

we see that

e
πih′
8k − 2πia2h′k1

c1c · U
(
ah′,

�c

c1
, c; q1

)
=
∑
r≥r0

a5(r)e
2πimrh′

k e
− πr

kc21z + e
πih′
k

∑
r≥r1

b5(r)e
2πinrh′

k e
− πr

kc21z , (3.6)

where mr, nr, r0, r1 ∈ Z. By the same argument as for S21, one sees immediately that the part which might 
contribute to the main term can come only from those terms with r < 0. A straightforward, but rather 
tedious, computation shows that such terms can arise only for s = 0, m = 0 in the first sum, respectively 
for s = 2, m = 1 in the second sum obtained by expressing U

(
ah′, �c

c1
, c; q1

)
as shown in (3.5). In the former 

case, the contribution is given by

e−
2πia2h′k1

c1c + 4πiah′�
c1c −πiah′

c · q
− 1

16− �2
c21

+ �
2c1

1

∑
r

δc,k,r>0

e−
2πiah′r

c · q
�r
c1
1 ,

and, in the latter, by

−e−
2πia2h′k1

c1c + 4πiah′�
c1c − 3πiah′

c · q
− 1

16− �2
c21

+ 3�
2c1

− 1
2

1

∑
r

δc,k,r>0

e
2πiah′r

c · q
(
1− �

c1

)
r

1 .

To evaluate 
∑

5, note that one can split the sum over k into groups based on the value k1, which is defined 
in terms of c1 and �. In each such group, the value of δc,k,r (hence the condition δc,k,r > 0) is independent of 
k, and the number of terms satisfying δa,c,k,r > 0 is finite and bounded in terms of c1 (hence of c). Moreover, 
the coefficients a5(r) and b5(r) are independent of k in any such fixed group. Since the terms with r < 0
from (3.6) can be estimated as in the case of S2, we obtain

∑
5

=
√

2 tan
(πa

c

) ∑
k,r

c�k, 2�k, c1 �=4
δc,k,r>0

∑′

h

ω2
h,k

ω2h,k
e

2πi
k (−nh+ma,c,k,rh

′) ·
ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 · e 2πnz

k + 2π
kz δc,k,rdΦ + O(nε), (3.7)

with δc,k,r and ma,c,k,r as defined in (1.4) and (1.5). In a completely similar way, we compute

∑
6

= 1√
2

tan
(πa

c

) ∑
k,r

c�k, 2�k, c1=4
δ′c,k,r>0

∑′

h

ω2
h,k

ω2h,k
· e 2πi

k (−nh+ma,c,k,rh
′) ·

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 · e 2πnz

k + 2π
kz δc,k,rdΦ

+ 1√
2

tan
(πa

c

) ∑
k,r

c�k, 2�k, c1=4
δ′′c,k,r>0

∑′

h

ω2
h,k

ω2h,k
· e 2πi

k (−nh+m′
a,c,k,rh

′) ·
ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 · e 2πnz

k + 2π
kz δ

′
c,k,rdΦ

+ O(nε),

where we define
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δ′c,k,r :=

⎧⎪⎪⎨⎪⎪⎩
1
16 − 3�

2c1 + �2

c21
− r �

c1
if 0 < �

c1
≤ 1

4 ,

1
16 − 3�

2c1 + �2

c21
+ 1

2 − r
(
1 − �

c1

)
if 1

4 < �
c1

≤ 3
4 ,

1
16 − 5�

2c1 + �2

c21
+ 3

2 − r
(
1 − �

c1

)
if 3

4 < �
c1

< 1,

and

m′
a,c,k,r :=

⎧⎪⎪⎨⎪⎪⎩
− 1

2c21
(2(ak1 − �)2 + 3c1(ak1 − �) + 2rc1(ak1 − �)) if 0 < �

c1
≤ 1

4 ,

− 1
2c21

(2(ak1 − �)2 + 3c1(ak1 − �) − 2rc1(ak1 − �) − c21(2r − 1)) if 1
4 < �

c1
≤ 3

4 ,

− 1
2c21

(2(ak1 − �)2 + 5c1(ak1 − �) − 2rc1(ak1 − �) − c21(2r − 3)) if 3
4 < �

c1
< 1.

An easy computation shows that if c1 = 4, then δa,c,k,r ≤ 0 for all r ≥ 0, and that δ′a,c,k,r > 0 if and only 
if r = 0, m = 1, s = 1 and � = 2, case which is impossible as it leads to ak1 ≡ 2 (mod 4), and by assumption 
k is odd, while the condition (a, c) = 1 implies that a is odd as well. Therefore 

∑
6 will only contribute to 

the error term.
To finish the estimation of these sums, we are only left with computing integrals of the form

Ik,v =

1
kN∫

− 1
kN

z−
1
2 · e 2π

k

(
nz+ v

z

)
dΦ,

which, upon substituting z = k
n − ikΦ, are equal to

Ik,v = 1
ki

k
n+ i

N∫
k
n− i

N

z−
1
2 · e 2π

k

(
nz+ v

z

)
dz. (3.8)

To compute these integrals, we proceed in the way described by Dragonette [11, p. 492] and made more 
precise by Bringmann [6, p. 3497]. In doing so, we enclose the path of integration by including the smaller 
arc of the circle through kn ± i

N and tangent to the imaginary axis at 0, which we denote by Γ. If z = x + iy, 
then Γ is given by x2 + y2 = wx, with w = k

n + n
N2k . Using the fact that 2 > w > 1

k , Re(z) ≤ k
n and 

Re
( 1
z

)
< k on the smaller arc, the integral along this arc is seen to be of order O

(
n− 3

4
)
. By Cauchy’s 

Theorem, the path of integration in (3.8) can be further changed into the larger arc of Γ, hence

Ik,v = 1
ki

k
n+ i

N∫
k
n− i

N

z−
1
2 · e 2π

k

(
nz+ v

z

)
dz + O

(
n− 1

8
)
.

Making the substitution t = 2πv
kz gives

Ik,v = 2π
k

(
2πv
k

) 1
2 1

2πi

γ+i∞∫
γ−i∞

t−
3
2 · et+α

t dt + O
(
n− 1

8
)
,

where γ ∈ R and α = 4π2vn
k2 . Using the Hankel integral formula, we compute (see, e.g., [25, §3.7 and §6.2])

1
2πi

γ+i∞∫
t−

3
2 · et+α

t dt = 1√
πα

· sinh(2
√
α),
γ−i∞
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hence

Ik,v =
√

2
kn

· sinh
(

4π
√
vn

k

)
+ O

(
n− 1

8
)
. (3.9)

On applying (3.9) to (3.4) and (3.7) for v = 1
16 and v = δc,k,r respectively, we have

∑
2

+
∑
5

+
∑
6

= i

√
2
n

∑
1≤k≤√

n
2�k, c|k

Ba,c,k(−n, 0)√
k

· sinh
(
π
√
n

k

)

+ 2
√

2
n

∑
1≤k≤√

n
c�k, 2�k, c1 �=4
r≥0, δc,k,r>0

Da,c,k(−n,ma,c,k,r)√
k

· sinh
(

4π
√
δc,k,rn

k

)
+ O(nε).

3.2. Estimates for the sums 
∑

1, 
∑

3 and 
∑

4

We show that these sums contribute only to the error term. Let us start our discussion with 
∑

1, which 
equals

∑
1

= i tan
(πa

c

) ∑
h,k

2|k, c|k

ω2
h,k

ωh,k/2
(−1)k1+1 cot

(
πah′

c

)
e−

2πia2h′k1
c − 2πinh

k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 · e 2πnz

k · O
(
ah′

c
; q1
)
dΦ.

Although not written down explicitly in [7], one can readily see, e.g., by inspecting the proof of Theorem 
2.1 from [7, pp. 11–17], that

O
(
ah′

c
; q1
)

= 4 sin2
(
πah′

c

)
η(2z1)
η(z2

1)
∑
n∈Z

(−1)nqn
2+n

1
1 − 2qn1 cos

(2πah′

c

)
+ q2n

1

= η(2z1)
η(z2

1)

⎛⎝1 + 8 sin2
(
πah′

c

)∑
n≥1

(−1)nqn
2+n

1
1 − 2qn1 cos

( 2πah′

c

)
+ q2n

1

⎞⎠
= P (q1)

⎛⎝1 + 8 sin2
(
πah′

c

)∑
n≥1

(−1)nqn
2+n

1
1 − 2qn1 cos

( 2πah′

c

)
+ q2n

1

⎞⎠ ,

where we set q1 = e2πiz1 . We can rewrite this as

O
(
ah′

c
; q1
)

= 1 +
∑
r≥1

a1(r) · e
2πimrh′

k · e− 2πr
kz ,

with mr ∈ Z and the coefficients a1(r) being independent of k and h. Now the sum coming from r ≥ 1 will 
go, as we have seen in the case of S2, into an error term of the form O(nε), hence

∑
1

= i tan
(πa

c

) ∑
h,k

ω2
h,k

ωh,k/2
(−1)k1+1 cot

(
πah′

c

)
e−

2πia2h′k1
c − 2πinh

k

ϑ′′
h,k∫

−ϑ′
h,k

z−
1
2 · e 2πnz

k dΦ + O(nε).
2|k, c|k
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As for the sum coming from the constant term, let us denote it simply by S, on splitting the path of 
integration exactly as in the case of S1 and working out the estimates in a similar manner, we obtain

S = i
∑

c|k, 2|k
Aa,c,k(−n, 0)

1
kN∫

− 1
kN

z−
1
2 · e 2πnz

k dΦ + O(nε).

By applying part (iii) of Lemma 2 and arguing as in the case of S21 (except that now mr = 0), we get∣∣∣∣∣∣∣i
∑

c|k, 2|k
Aa,c,k(−n, 0)

1
kN∫

− 1
kN

z−
1
2 · e 2πnz

k dΦ

∣∣∣∣∣∣∣�
∑
k

k
1
2+ε · (24n + 1, k) 1

2 · 1
k(N + 1)n

1
2 k−

1
2

�
∑
k

k−1+ε · (24n + 1, k) 1
2 �

∑
d|24n+1
d≤N

d−
1
2+ε

N/d∫
1

x−1+εdx

�
∑

d|24n+1
d≤N

d−
1
2 · dε ·

(
N

d

)ε

� nε,

proving the claim.
We next deal with 

∑
3 and 

∑
4. The reader interested in writing down the computations explicitly will 

see that the two sums can be expressed as

O
(
ah′,

�c

c1
, c; q1

)
=
∑
r≥0

a3(r) · e
2πimrh′

k · e−
πr

kc21z

and

V
(
ah′

c
; q1
)

=
∑
r≥0

a4(r) · e
2πinrh′

k · e−
(2r+1)π

4kz ,

where mr, nr ∈ Z and the coefficients a3(r) and a4(r) are independent of k and h. Since r ≥ 0, it is obvious 
that both sums will be of order O(nε), the argument being the same as for S2.

3.3. Estimates for the sums 
∑

7 and 
∑

8

The estimation of the remaining sums 
∑

7 and 
∑

8 is not difficult and is inspired by Bringmann [6, p. 
3497]. Let us, however, elaborate a bit more here. Again, we split the path of integration as in (3.2). The 
resulting sums can each be bounded on the various intervals of integration by(∑

k

k−1

)(∑′

h

1
)

·
k−1∑
ν=0

k−1 ·N−1 · z 1
2 · Ia,c,k,v(z) � N−1 · n 1

2 · k− 1
2 · ga,c,k,ν � kε � nε, (3.10)

for any ε > 0. Here we have used, in turn, a trivial bound for the Kloosterman sums appearing in front of 
the integrals from 

∑
7 and 

∑
8, Lemma 1, and the easy estimate∑

1≤ν≤k

ga,c,k,ν �
∑

1≤ν≤4ck

1
ν
� kε.

By this we conclude the rather lengthy proof of Theorem 1. �



22 A. Ciolan / J. Math. Anal. Appl. 480 (2019) 123444
Proof of Corollary 1. Let us first assume c > 2. On combining Theorem 1 and identity (1.7), we obtain

N(a, c, n) = 1
c

c−1∑
j=1

ζ−aj
c

(
i

√
2
n

∑
c′|k, 2�k

Bj′,c′,k(−n, 0)√
k

· sinh
(
π
√
n

k

)

+ 2
√

2
n

∑
c′�k, 2�k, c̃�=4
r≥0, δc′,k,r>0

Dj′,c′,k(−n,mj′,c′,k,r)√
k

· sinh
(

4π
√
δc′,k,rn

k

))

+ p(n)
c

+ Oc(nε), (3.11)

where c′ = c
(c,j) , j

′ = j
(c,j) , c̃ = c′

(c′,k) and ε > 0 is arbitrary. As n → ∞, we know that

p(n) ∼ 1
8ne

π
√
n.

Since c′ ≥ 2 (as j ≤ c − 1), summation of the Bj′,c′,k terms in (3.11) can only start from k = 3, meaning 

that the asymptotic contribution of these sums is (at most) of order sinh
(

π
√
n

3

)
, thus dominated by p(n).

We claim that the same is true for the contribution coming from the Dj′,c′,k sums. For this, note that, 
directly from the definition (1.4), it follows that δc,k,r ≤ 1

16 , therefore

sinh
(

4π
√
δc,k,rn

k

)
≤ sinh

(
π
√
n

k

)
.

If summation of the Dj′,c′,k terms in (3.11) starts from k = 3 (note that 2 � k), then there is nothing to 
prove; so assume k = 1. It is an easy exercise to prove that equality above cannot be, in fact, obtained, and 
that, since c1 = c, we have δc,k,r ≤ 1

16 − 1
2c + 1

c2 = 1
16 − c−2

2c2 , with c ≥ 3, thereby proving the claim.
In case c = 2, we leave it as an exercise, to the interested reader, to prove that the coefficients of O(−1; q)

are of order O(nε) and are thus dominated by p(n). This can be done by using the transformation behavior 
described in [7, Corollary 4.2] and carrying out estimates similar to those from the proof of Theorem 1. �
4. A few inequalities

In this section we prove the inequalities stated in Theorems 2–4. We will elaborate more on Theorem 2, 
while only sketching the main steps in the proofs of Theorems 3 and 4, as the ideas are similar.

Before giving the proof of Theorem 2, we must establish some identities. The following is an easy gener-
alization of [16, Lemma 3.1].

Lemma 3. If a ∈ N is odd and 5 � a, then

O(ζa10; q) =
∞∑

n=0
(N(0, 10, n) + N(1, 10, n) −N(4, 10, n) −N(5, 10, n))qn

+ (ζ2a
10 − ζ3a

10 )
∞∑

n=0
(N(1, 10, n) + N(2, 10, n) −N(3, 10, n) −N(4, 10, n))qn.

Proof. Plugging u = ζa10 into (1.2) gives

O(ζa10; q) =
∞∑

N(m,n)ζam10 qn = (−q)∞
(q)∞

∞∑ (1 − ζa10)(1 − ζ−a
10 )(−1)nqn2+n

(1 − ζa qn)(1 − ζ−aqn)
. (4.1)
n=0 n=−∞ 10 10
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Using the fact that N(a, m, n) = N(m − a, m, n), which can be easily deduced from N(m, n) = N(−m, n)
(see, e.g., [17, Proposition 1.1]), and noting that ζ5a

10 = −1 and 1 − ζa10 + ζ2a
10 − ζ3a

10 + ζ4a
10 = 0 for 5 � a odd, 

we can rewrite (4.1) as

O(ζa10; q) =
∞∑

n=0

9∑
�=0

N(�, 10, n)ζ�a10qn

=
∞∑

n=0
(N(0, 10, n) + (ζa10 − ζ4a

10 )N(1, 10, n) + (ζ2a
10 − ζ3a

10 )N(2, 10, n)

+ (ζ3a
10 − ζ2a

10 )N(3, 10, n) + (ζ4a
10 − ζa10)N(4, 10, n) −N(5, 10, n))qn

=
∞∑

n=0
(N(0, 10, n) + (1 + ζ2a

10 − ζ3a
10 )N(1, 10, n) + (ζ2a

10 − ζ3a
10 )N(2, 10, n)

+ (ζ3a
10 − ζ2a

10 )N(3, 10, n) − (1 + ζ2a
10 − ζ3a

10 )N(4, 10, n) −N(5, 10, n))qn

=
∞∑

n=0
(N(0, 10, n) + N(1, 10, n) + N(4, 10, n) −N(5, 10, n)qn

+ (ζ2a
10 − ζ3a

10 )
∞∑

n=0
(N(1, 10, n) + N(2, 10, n) −N(3, 10, n) −N(4, 10, n))qn,

which concludes the proof. �
In a similar fashion, we have the following result. For a proof of the case a = 1, see [16, Lemma 2.1].

Lemma 4. If a ∈ N is odd and 3 � a, then

O(ζa6 ; q) =
∞∑

n=0
(N(0, 6, n) + N(1, 6, n) −N(2, 6, n) −N(3, 6, n))qn.

Proof of Theorem 2. Setting a = 1 and a = 3 in Lemma 3, we obtain

O(ζ10; q) =
∞∑

n=0
(N(0, 10, n) + N(1, 10, n) −N(4, 10, n) −N(5, 10, n))qn

+ (ζ2
10 − ζ3

10)
∞∑

n=0
(N(1, 10, n) + N(2, 10, n) −N(3, 10, n) −N(4, 10, n))qn, (4.2)

and

O(ζ3
10; q) =

∞∑
n=0

(N(0, 10, n) + N(1, 10, n) −N(4, 10, n) −N(5, 10, n))qn

+ (ζ4
10 − ζ10)

∞∑
n=0

(N(1, 10, n) + N(2, 10, n) −N(3, 10, n) −N(4, 10, n))qn. (4.3)

Subtracting (4.3) from (4.2) yields

∞∑
(N(1, 10, n) +N(2, 10, n)−N(3, 10, n)−N(4, 10, n))qn = O(ζ10; q) −O(ζ3

10; q)
ζ10 + ζ2 − ζ3 − ζ4 = O(ζ10; q) −O(ζ3

10; q)
1 + 4 cos

( 2π ) ,

n=0 10 10 10 5
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thus proving (1.11) is equivalent to showing that, for n ≥ 0,

A

(
1
10 ;n

)
≥ A

(
3
10 ;n

)
.

For a = 1, c = 10 we have m1,10,1,0 = 0 and δc,k,r > 0 if and only if r = 0, in which case δc,k,r = 9
400 , hence

A

(
1
10 ;n

)
= 2
√

2
n

∑
1≤k≤√

n
k≡1,9 (mod 10)

Da,c,k(−n,m1,10,k,0)√
k

· sinh
(

3π
√
n

5k

)
+ Oc(nε), (4.4)

whereas, for a = 3 and c = 10, we have δc,k,r > 0 if and only if r = 0, in which case δc,k,r = 9
400 , thus

A

(
3
10 ;n

)
= 2
√

2
n

∑
1≤k≤√

n
k≡3,7 (mod 10)

Da,c,k(−n,m3,10,k,0)√
k

· sinh
(

3π
√
n

5k

)
+ Oc(nε). (4.5)

We further compute

D1,10,1(−n, 0) = 1√
2

tan
( π

10

)
,

and so the term corresponding to k = 1 in the sum from (4.4) is given by

2√
n

tan
( π

10

)
sinh

(
3π

√
n

5

)
.

Using a trivial bound for the Kloosterman sum from (4.5) and taking into account the contributions coming 
from the various error terms involved, estimates which we make explicit at the end of this section, we see 
that this term is dominant for n ≥ 1030, hence

A

(
1
10 ;n

)
≥ A

(
3
10 ;n

)
for n ≥ 1030. In Mathematica we see that the inequality is true for n < 1030 as well.

To prove (1.12), we set a = 1 and a = 3 in Lemma 3 and obtain

O(ζ10; q) =
∞∑

n=0
(N(0, 10, n) + N(3, 10, n) −N(2, 10, n) −N(5, 10, n))qn

+ (1 + ζ2
10 − ζ3

10)
∞∑

n=0
(N(1, 10, n) + N(2, 10, n) −N(3, 10, n) −N(4, 10, n))qn, (4.6)

and

O(ζ3
10; q) =

∞∑
n=0

(N(0, 10, n) + N(3, 10, n) −N(2, 10, n) −N(5, 10, n))qn

+ (1 − ζ10 + ζ4
10)

∞∑
n=0

(N(1, 10, n) + N(2, 10, n) −N(3, 10, n) −N(4, 10, n))qn. (4.7)
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Combining (4.6) and (4.7) and setting α = 1+ζ2
10−ζ3

10
1−ζ10+ζ4

10
, we obtain

O(ζ10; q) − α · O(ζ3
10; q) = (1 − α)

∞∑
n=0

(N(0, 10, n) + N(3, 10, n) −N(2, 10, n) −N(5, 10, n))qn,

hence, as it is easy to see that α = −(1 + 2 cos(π/5)), proving the claim amounts to showing

A

(
1
10 ;n

)
+
(
1 + 2 cos π5

)
A

(
3
10 ;n

)
≥ 0

for all n ≥ 0, which follows from the estimates used for proving (1.11). The proof of (1.13) follows simply 
on adding the inequalities (1.11) and (1.12). �

We can also sketch now the proofs of Theorems 3 and 4.

Proof of Theorem 3 (Sketch). Reasoning along the same lines, on setting a = 1 in Lemma 4 and recalling 
(1.3), the claim is equivalent to proving

A

(
1
6 ;n
)

≥ 0

for n ≥ 0. It is easy to see that, for a = 1 and c = 6, we have m1,6,1,0 = 0 and δc,k,r > 0 if and only if r = 0, 
in which case δc,k,r = 1

144 , thus the dominant term of

A

(
1
6 ;n
)

= 2
√

2
n

∑
1≤k≤√

n
k≡1,5 (mod 6)

D1,6,k(−n,m1,6,k,0)√
k

· sinh
(

3π
√
n

5k

)

is given by

2√
n

tan
(π

6

)
sinh

(
π
√
n

3

)
.

By working out similar bounds as in the proof of (1.11) and checking numerically for the small values of n, 
the proof of (1.14) is concluded.

The inequalities (1.15)–(1.17) are equivalent to those from (1.18)–(1.20). The proof relies on the identity

O(ζ2
6 ; q) =

∞∑
n=0

(N(0, 6, n) −N(1, 6, n) −N(2, 6, n) + N(3, 6, n))qn

=
∞∑

n=0
(N(0, 6, n) −N(1, 6, n) −N(4, 6, n) + N(3, 6, n))qn

=
∞∑

n=0
(N(0, 3, n) −N(1, 3, n))qn

and details are left to the interested reader. The fact that N(1, 3, n) = N(2, 3, n) follows easily from adding 
the identities N(1, 6, n) = N(5, 6, n) and N(2, 6, n) = N(4, 6, n). �
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Proof of Theorem 4 (Sketch). By using either [26, Lemma 5.1] (on identifying the notation R(u; q) =
O(u; q)) or identity (1.7) (which, in combination with (1.2), amounts to the same result), we have

∞∑
n=0

N(0, 6, n)qn = 1
6
(O(1; q) + 2O(ζ6; q) + 2O(ζ2

6 ; q) + O(ζ3
6 ; q)), (4.8)

∞∑
n=0

N(1, 6, n)qn = 1
6(O(1; q) + O(ζ6; q) − O(ζ2

6 ; q) −O(ζ3
6 ; q)), (4.9)

∞∑
n=0

N(2, 6, n)qn = 1
6(O(1; q) − O(ζ6; q) − O(ζ2

6 ; q) + O(ζ3
6 ; q)), (4.10)

∞∑
n=0

N(3, 6, n)qn = 1
6(O(1; q) − 2O(ζ6; q) + 2O(ζ2

6 ; q) −O(ζ3
6 ; q)). (4.11)

In light of Remark 7, to prove the inequalities (1.21)–(1.23) it suffices to show that, for n ≥ 11,

N(1, 6, n) ≥ N(2, 6, n),

N(0, 6, 3n) ≥ N(1, 6, 3n), N(0, 6, 3n + 1) ≥ N(1, 6, 3n + 1),

N(0, 6, 3n + 2) ≤ N(1, 6, 3n + 2).

Therefore, on combining (4.9) and (4.10), the first inequality above is equivalent to

A

(
1
6 ;n
)

≥ 0, (4.12)

whereas, for i = 0, 1, the second and third are equivalent, on combining (4.8) and (4.9), to

A

(
1
6 ; 3n + i

)
+ 3A

(
1
3 ; 3n + i

)
≥ 0 and A

(
1
6 ; 3n + 2

)
+ 3A

(
1
3 ; 3n + 2

)
≤ 0. (4.13)

Again, the attentive reader might wonder what happens with the term O(−1; q) (coming from the case 
j = c/2 in (1.7)), to which Theorem 5 does not apply, as its statement is formulated under the assumption 
c > 2. However, while working out the transformations found by Bringmann and Lovejoy in this case, see 
[7, Corollary 4.2], and doing the same estimates as in the proof of Theorem 1, one can easily infer that the 
sums involved are of order O(nε). Therefore, as n grows large, we only need to prove (4.12) and (4.13), 
which follow immediately from Theorem 1. Again, explicit bounds can be provided just as described in the 
next subsection, and a numerical check for the small values of n concludes the proof. �
4.1. Some explicit computations

As we have mentioned earlier, we will now fill in the missing details from the proof of (1.11), by explaining 
how to bound the different sums and error terms appearing in (4.4) and (4.5). The same arguments apply 
for all the other inequalities. We have already seen that

A

(
1
10 ;n

)
= 2
√

2
n

∑
1≤k≤√

n
k≡1,9 (mod 10)

Da,c,k(−n,m1,10,k,0)√
k

· sinh
(

3π
√
n

5k

)
,

and that the term corresponding to k = 1 in (4.4) equals
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2√
n

tan
( π

10

)
sinh

(
3π

√
n

5

)
. (4.14)

By using a trivial bound for the Kloosterman sums involved, the remaining terms can be estimated against

4√
n

∑
2≤k≤N−1

10

k
1
2 · sinh

(
3π

√
n

5(10k + 1)

)
+ 4√

n

∑
1≤k≤N−9

10

k
1
2 · sinh

(
3π

√
n

5(10k + 9)

)
, (4.15)

and the contribution coming from U
(
h′, �

10 , 10; q1
)

is seen to be less than

√
2 · e2π

∞∑
r=1

|a5(r)| · e−
πr
50

∑
1≤k≤N

k≡1,9 (mod 10)

k−
1
2 +

√
2 · e2π

∞∑
r=1

|b5(r)| · e−
πr
50

∑
1≤k≤N

k≡1,9 (mod 10)

k−
1
2 . (4.16)

Making the path of integration symmetric in (3.4) introduces an error that can be estimated against

2 · e2π+π
8 · n− 1

2
∑

1≤k≤N
k≡1,9 (mod 10)

k
1
2 , (4.17)

while integrating along the smaller arc of Γ gives an error not bigger than

8π · e2π+ π
16 · n− 3

4
∑

1≤k≤N
k≡1,9 (mod 10)

k. (4.18)

The sums 
∑

2, 
∑

4 and 
∑

6 do not contribute in the case c = 10, whereas 
∑

1, 
∑

3 can be treated simulta-
neously. The contribution coming from O

(
h′

10 ; q1
)

can be estimated against

2 · e2π
√

10

∑
1≤k≤ N

10

k−
1
2 + 2 · e2π

√
10

∞∑
r=1

|a1(r)| · e−πr
∑

1≤k≤ N
10

k−
1
2 , (4.19)

and that coming from O
(
h′, �

2 , 10; q1
)

against

2 · e2π
∞∑
r=1

|a3(r)| · e−
πr
50

∑
1≤k≤N

k≡1,9 (mod 10)

k−
1
2 . (4.20)

Using the bound (3.3) for |a3(r)|, |a5(r)| and |b5(r)|, we get 
∑∞

r=1 |a3(r)| ·e−
πr
50 < 1.17944 and 

∑∞
r=1 |a3(r)| ·

e−
πr
50 < 4.01014 · 1019, and similarly for a5(r) and b5(r). Finally, the estimates in Lemma 1 can be made 

explicit so as to give

∑
7

≤ 2e2π√π

5 ·
∑
2�k

k−
3
2

k∑
ν=1

(
min

{∣∣∣∣νk − 1
4k + 1

10

∣∣∣∣ , ∣∣∣∣νk − 1
4k − 1

10

∣∣∣∣})−1

(4.21)

and

∑
8

≤ 2e2π√2π
5 ·

( ∑
2|k, 5�k

k−
3
2

k∑
ν=1

(
min

{∣∣∣∣νk + 1
10

∣∣∣∣ , ∣∣∣∣νk − 1
10

∣∣∣∣})−1

+ 1
10

√
10

∑
N

k−
1
2

)
. (4.22)
1≤k≤ 10
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For a = 3 and c = 10, we proceed just like in (4.15) to get

4√
n

∑
1≤k≤N−3

10

k
1
2 · sinh

(
3π

√
n

5(10k + 3)

)
+ 4√

n

∑
1≤k≤N−7

10

k
1
2 · sinh

(
3π

√
n

5(10k + 7)

)

as an overall bound for the main contribution in (4.5) and we use the same estimates from (4.16)–(4.22) on 
changing whatever necessary, e.g., the sums will now run over k ≡ 3 (mod 10) and k ≡ 7 (mod 10). Putting 
all estimates together, we see that the term in (4.14) is dominant for n ≥ 1030. The inequality (1.11) can 
be checked numerically in Mathematica to hold true also for n < 1030.
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