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The complete-lattice approach to optimization problems with a vector- or even 
set-valued objective already produced a variety of new concepts and results and was 
successfully applied in finance, statistics and game theory. So far, it has only been 
applied to set-valued dynamic risk measures within a stochastic framework, but not 
to deterministic calculus of variations and optimal control problems. In this paper, 
a multi-objective calculus of variations problem is considered which is turned into a 
set-valued problem by a straightforward extension. A new set-valued value function 
is introduced, for which a Bellman’s optimality principle holds. Also the classical 
result of the Hopf-Lax formula holds for the generalized value function. Finally, a 
derivative with respect to the time and a directional derivative with respect to the 
state variable of the value function are defined. The value function is proved to be 
a solution of a corresponding Hamilton-Jacobi equation.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Despite the huge importance of multi-criteria decision making, the literature on calculus of variations and 
optimal control problems with multiple criteria is comparably poor. In particular, clear-cut multi-criteria 
or even set-valued extensions of standard results like the Hamilton-Jacobi equation (and the value function 
approach in general) or Pontrjagin’s maximum principle are still missing. Some early references are [23,18]
and due to Leitmann and Yu [22,21].

A more recent example is [3] in which the authors try to single out particular Pareto optimal solutions 
(=non-dominated objective values with respect to the componentwise order). This can be considered as a 
kind of a “second level” optimization.

Applications include multicriteria calculus of variations problems in architecture [15] (compare [20] for a 
more general overview), and such problems lie within the framework of the present paper.
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The major difficulty is the missing infimum (and supremum) in higher dimensions: if the order, e.g., in 
Rd is generated by a convex cone, it is not total in general and the infimum of a subset of Rd with respect 
to this order either does not exist or is not very useful since, in case of existence, it can be “far away from 
the set.” Therefore, it is not a priori clear what the value function of a multi-criteria problem is and how to 
generalize a formula like

∂

∂t
V (x, t) + min

u
{∇V (x, t) · F (x, u) + C(x, u)} = 0

to the case of several criteria.
The often chosen way out of this dilemma is scalarization: the most popular scalarization uses a weighted 

sum of the criteria, see [6] for a general overview and alternatives. In [5] and [10], a multicriteria optimal 
control problem is studied, where the preference relation is based, respectively, on the lexicographic order 
and on a pointed convex cone containing the origin. The main methodology also relies on scalarization. In 
[13], the authors consider the problem of optimally controlling a system of ordinary differential equations 
or of stochastic differential equations with respect to a vector-valued cost functional. In the deterministic 
case, for any direction in the dual cone they find a Pareto minimal vectorial cost, that is defined as the 
value function in the given direction. Its scalar product with the direction is a viscosity solution of a scalar 
Hamilton-Jacobi equation depending on the direction.

In this paper, we apply recent developments in set optimization to multi-criteria calculus of variations 
problems. This brings the infimum and supremum back into play. However, they are taken with respect to 
set relations, thus the original multi-criteria problem is first re-written as a set-valued one. This allows a 
set-valued value function, which gives results strikingly parallel to the scalar case. Similar value functions 
have been used within a stochastic framework for dynamic multivariate risk measures, see, for example, [8].

Attention is paid to formulate appropriate differentiability notions for the set-valued functions. Novel 
contributions include Bellman’s optimality principle for a set-valued value function (Theorem 3.4 below) 
and formulas of Hopf-Lax type under convexity assumptions (Theorem 4.1). Moreover, a parametrized family
of Hamilton-Jacobi equations is obtained as multicriteria counterpart for the scalar HJ equation where the 
parametrization runs through the elements of the dual of the ordering cone (Theorem 6.4). The Bellman 
principle in Theorem 3.4 is a true set-valued result insofar as it refers to solutions of set-valued optimization 
problems in the complete lattice sense (see [11] for details and references as well as the definition at the end 
of Section 2). This remark also applies to the Hopf-Lax formula in Theorem 4.1.

Finally, it is worth noting that our set-valued value function cannot be reduced to the “point-plus-cone” 
case (i.e., essentially a vector-valued function) in general, even if the original problem has a vector-valued 
objective.

2. Preliminaries

The Minkowski sum of two non-empty sets A, B ⊆ Rd is A + B = {a + b | a ∈ A, b ∈ B}. It is extended 
to the whole power set P(Rd) by

∅ + A = A + ∅ = ∅.

We also use A ⊕B := cl (A + B), the “closed sum” of two sets.
A set C ⊆ Rd is a cone if sC ⊆ C for all s > 0, and it is a convex cone if additionally C +C ⊆ C. Thus, 

0 does not necessarily belong to a convex cone. The (positive) dual of a cone C is defined as

C+ = {ζ ∈ Rd | ζ · z ≥ 0}.

We consider the following subsets of the power set P(Rd) (see for instance [11]):
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P(Rd, C) = {A ∈ P(Rd) | A = A + C}
F(Rd, C) = {A ∈ P(Rd) | A = A⊕ C}
G(Rd, C) = {A ∈ P(Rd) | A = cl co (A + C)}

where cl and co are the closure and the convex hull, respectively.
The pairs (P(Rd, C), ⊇), (F(Rd, C), ⊇), (G(Rd, C), ⊇) are complete lattices. If A ⊆ P(Rd, C), then the 

infimum and the supremum of A are given by

inf A =
⋃
A∈A

A supA =
⋂
A∈A

A.

While the supremum in (F(Rd, C), ⊇), (G(Rd, C), ⊇) is given by the same intersection formula as in 
(P(Rd, C), ⊇), one has

inf A = cl
⋃
A∈A

A and inf A = cl co
⋃
A∈A

A,

for A ⊆ F(Rd, C) and A ⊆ G(Rd, C), respectively. The order relation ⊇ is the same in all three sets (of 
subsets of Rd). Let A be a subset of one of the three. An element A0 ∈ A is called minimal for A if

A ∈ A, A ⊇ A0 =⇒ A = A0 .

The set of all minimal elements of A is denoted by Min A, and it will be clear from the context if it is 
meant in P(Rd, C), F(Rd, C) or G(Rd, C).

A set A is said to satisfy the domination property if for any A ∈ A, there exists A0 ∈ Min A such that 
A0 ⊇ A.

Let ζ ∈ C+\{0} and let

H+(ζ) = {z ∈ Rd | ζ · z ≥ 0}

where ζ · z denotes the usual scalar product. For two sets A, B ∈ P(Rd, C), the set

A−ζ B = {z ∈ Rd | z + B ⊆ A⊕H+(ζ)}

is called the ζ-difference of A and B.

Remark 2.1. For any set A ⊆ Rd, A ⊕H+(ζ) is either ∅, Rd or a closed (shifted) half-space. Therefore, one 
has

A−ζ B = {z ∈ Z | ζ · z + inf
b∈B

ζ · b ≥ inf
a∈A

ζ · a}

where it is understood that infy∈∅ ζ · y = +∞ and r + (−∞) = −∞ as well as r + (+∞) = +∞ for r ∈ R. 
See [12,11] for more details on this set difference which is a version of the so-called geometric or Pontryagin 
difference.

The following is a technical lemma that will be used in a forthcoming section.

Lemma 2.2. Let A, B, D ∈ P(Z, C) and ζ ∈ C+\{0}.
(i) Assume A �= ∅ and either B ⊕H+(ζ) = Z or B ⊕H+(ζ) �= Z, D ⊕H+(ζ) �= Z. Then

A + B ⊇ D =⇒ A + (B −ζ D) ⊇ H+(ζ).
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(ii) Assume A = ∅, or A, D �= ∅ and B ⊕H+(ζ) �= Z. Then,

A + B ⊆ D ⊕H+(ζ) =⇒ A⊕ (B −ζ D) ⊆ H+(ζ).

Proof. (i) If B⊕H+(ζ) = Z, then B−ζ D = Z, hence A ⊕ (B−ζ D) = Z, and the claim is trivially satisfied. 
Let B ⊕H+(ζ) �= Z. If B = ∅, then the assumption implies D = ∅, and again the claim is trivial. Finally, 
assume B ⊕ H+(ζ) /∈ {Z, ∅}. Then, there is zB ∈ Z with zB + H+(ζ) = B ⊕ H+(ζ), and by assumption 
there also is zD ∈ Z with zD +H+(ζ) = D⊕H+(ζ). In this case, one has B −ζ D = zB − zD +H+(ζ) and 
hence

inf
z∈A+(B−ζD)

ζ · z = inf
a∈A

ζ · a + ζ · zB − ζ · zD.

On the other hand, the assumption implies

ζ · zD ≥ inf
a∈A

ζ · a + ζ · zB .

The last two formulas together imply infz∈A+(B−ζD) ζ · z ≤ 0 which proves the claim.
(ii) The implication is trivial for A = ∅. If A, D �= ∅ and B⊕H+(ζ) �= Z, then there are two cases. First, 

if D⊕H+(ζ) = Z, then B−ζ D = ∅ and the implication is trivial. Secondly, if D⊕H+(ζ) = zD +H+(ζ) for 
some zD ∈ Z, then the assumption implies either B = ∅ (the implication is trivial again) or B ⊕H+(ζ) =
zB +H+(ζ) for some zB ∈ Z. In the latter case, the assumption implies A ⊕H+(ζ) = zA +H+(ζ) for some 
zA ∈ Z, and one can get the conclusion by similar arguments as for (i). �

Let {An}n∈N be a sequence of sets in P(Rd, C), we denote by limn→∞ An the following set:

lim
n→∞

An =
{
z ∈ Rd | ∀n ∈ N, ∃zn ∈ An, lim

n→∞
zn = z

}
.

This definition of limit coincides with the upper limit of Painlevé-Kuratowski (Liminfn→∞An =
{z ∈ Z | limn→∞ d(z,An) = 0}, see [1]).

Let {As}s∈S with S ⊆ R be a family of sets in P(Rd, C) and s̄ ∈ R. We denote by lims→s̄ As the set 
which satisfies that for any sequence {sn}n∈N ⊆ S with sn → s̄ one has

lim
s→s̄

As = lim
n→∞

Asn .

Let f be a function f : Rn → P(Rd, C). The graph of f is

graph f = {(x, z) ∈ Rn ×Rd | z ∈ f(x)} .

The domain of f is

dom f = {x ∈ Rn | f(x) �= ∅}

The function is convex if and only if graph f is a convex subset of Rn × Rd. This is equivalent to the 
following condition: for any λ ∈ (0, 1), x1, x2 ∈ Rn

f(λx1 + (1 − λ)x2) ⊇ λf(x1) + (1 − λ)f(x2) .

Let X be a separated (Hausdorff) topological space, Z be a separated (Hausdorff) topological vector 
space and Γ : X → P(Z) a set-valued function. The domain of Γ is:
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dom Γ = {x ∈ X | Γ(x) �= ∅} .

We recall the following continuity definitions for set-valued functions (see [9]).
Let NZ denote the class of balanced neighborhoods of 0 ∈ Z. If x0 ∈ X and NX(x0) is the set of 

neighborhoods of x0,

(a) Γ is Hausdorff upper continuous at x0 if for all B ∈ NZ , there exists A ∈ NX(x0), such that for any 
x ∈ A

Γ(x) ⊂ Γ(x0) + B ;

(b) Γ is Hausdorff lower continuous at x0 if for all B ∈ NZ , there exists A ∈ NX(x0), such that for any 
x ∈ A

Γ(x0) ⊂ Γ(x) + B ;

(c) Γ is Hausdorff continuous at x0 if Γ is Hausdorff upper continuous and Hausdorff lower continuous at 
x0.

For extended vector-valued functions F : X → Z ∪ {+∞} and for C ⊂ Z convex cone, the following 
continuity concepts can be considered.

If x0 ∈ domF , then

(i) F is C-lower continuous at x0 if for any B ∈ NZ , there exists A ∈ NX(x0), such that for any x ∈ A

F (x) ∈ F (x0) + B + (C ∪ {+∞}) ;

(ii) F is C-upper continuous at x0 if for all B ∈ NZ , there exists A ∈ NX(x0), such that for any x ∈ A

F (x) ∈ F (x0) + B − C .

Associated to the extended vector-valued function F there is the set-valued function F : X → P(Z ∪
{+∞}), defined by F (x) = F (x) + C if x ∈ domF and F (x) = {+∞} if x /∈ domF .

It is possible to prove (see [9]) that F is C-lower continuous at x0 if and only if F is Hausdorff upper 
continuous at x0 and that F is C-upper continuous at x0 if and only if F is Hausdorff lower continuous at 
x0.

Let (X, A, μ) be a measure space and let f be a set-valued map from X into the closed nonempty subsets 
of Rd.

The set of the integrable selections of f is:

F = {ϕ ∈ L1(X,Rd) | ϕ(x) ∈ f(x) a.e. in X}

The integral of f on Rn is the set of integrals of the integrable selections of f :

∫
X

f dμ =

⎧⎨
⎩
∫
Rn

ϕ dμ | ϕ ∈ F

⎫⎬
⎭

In [16] the following Jensen inequality for set-valued functions has been proved:
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Let X, Z be Banach spaces and let D ⊆ X be open and convex. If Γ : D ⊆ dom Γ → F(Z, C) is convex and 
Hausdorff continuous, then for each normalized measure space and for all μ-integrable functions ϕ : Ω → D

such that cl coϕ(Ω) ⊆ D we have

∫
Ω

(Γ ◦ ϕ) dμ ⊆ Γ

⎛
⎝∫

Ω

ϕdμ

⎞
⎠ .

The integrals are meant in the Aumann sense. We also observe that, Γ being convex, more precisely Γ :
D ⊆ dom Γ → G(Z, C).

Let X be a non-empty set, f : X → F(Z, C) a function and f [X] = {f(x) | x ∈ X}.

(a) A set M ⊂ X is called an infimizer for f if

inf f [M ] = inf f [X] .

(b) An element x0 ∈ X is called a minimizer for f if f(x0) is minimal for f [X].
(c) A set M ⊂ X is called a solution of the problem minimize f(x) subject to x ∈ X if M is an infimizer for 

f and each x0 ∈ M is a minimizer for f . It is called a full solution if the set f [M ] includes all minimal 
elements of f [X].

Let η ∈ Rn and ζ ∈ C+ be given. We recall the definition of the function S(η,ζ) : Rn → G(Rd, C):

S(η,ζ)(x) = {z ∈ Rd | ζ · z ≥ η · x} .

Such a function is additive and positively homogeneous, i.e., for all x ∈ Rn, λ > 0

S(η,ζ)(λx) = λS(η,ζ)(x)

and for all x1, x2 ∈ Rn

S(η,ζ)(x1 + x2) = S(η,ζ)(x1) + S(η,ζ)(x2) .

Let ẑ ∈ Rd be such that ζ · ẑ = 1. Then for any x ∈ Rn

S(η,ζ)(x) = (η · x)ẑ + H+(ζ) (1)

(see [11]).
The Fenchel conjugate of the function f : Rn → P(Rd, C) is defined as the function

f∗ : Rn × C+\{0} → G(Rd, C)
(η, ζ) �→ supx∈Rn S(η,ζ)(x) −z∗ f(x)

3. Value function and Bellman’s optimality principle

For an introduction on the classical results, see for example [7], [14], [19] and [4].
Let us consider

0 < T < +∞, QT = [0, T ] ×Rn, (t, x) ∈ R×Rn
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and the continuous lower bounded functions

L : QT ×Rn → Rd , U0 : Rn → Rd

where L is the running cost or Lagrangian and U0 is the initial cost.
We consider also T = +∞, but in this case Q∞ is defined as [0, +∞) ×Rn.
For any (t, x) ∈ QT (respectively Q∞), define the set of admissible arcs:

Y (t, x) = {y ∈ W 1,1([0, t],Rn) | y(t) = x} .

We consider the problem of “minimizing” the cost functional Jt : W 1,1([0, t], Rn) → Rd given by

Jt[y] =
t∫

0

L(s, y(s), ẏ(s)) ds + U0(y(0))

with respect to y ∈ Y (t, x).
In order to formalize the definition of infimum in the lattice sense, we consider the functions:

L : QT ×Rn → G(Rd, C)

J t : W 1,1([0, t],Rn) → G(Rd, C)

defined by L(s, y, z) = L(s, y, z) + C and the integral in

J t[y] =
t∫

0

L(s, y(s), ẏ(s)) ds + U0(y(0))

is in the Aumann sense (see [2] or [1]).

Remark 3.1. The set J t[y] coincides with Jt[y] +C (here the integral is considered component-wise). In fact, 
for any c ∈ C, L(s, y(s), ẏ(s)) + c/t is an integrable selection of L(s, y(s), ẏ(s)) and Jt[y] + C ⊆ J t[y]. Vice 
versa, if η ∈ J t[y], then η =

∫ t

0 f(s) ds +U0(y(0)) where f is an integrable selection of L(s, y(s), ẏ(s)). This 
means that f(s) = L(s, y(s), ẏ(s)) + c(s) for a suitable c(s) ∈ L1([0, t], C) and η ∈ Jt[y] + C.

Our problem is then:

minimize J t[y] over all arcs y ∈ Y (t, x) . (2)

Since the functional Jt maps into the complete lattices G(Rd, C) ⊂ F(Rd, C), the infimum is now well 
defined.

In the classical real-valued theory, the value function was introduced as the infimum of the functional 
over all the admissible arcs. Here we give the following definition.

Definition 3.2. The functions

(i) U : QT → F(Rd, C) given by

U(t, x) = inf
y∈Y (t,x)

J t[y] = cl
⋃

y∈Y (t,x)

J t[y] (3)
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(ii) U : QT → G(Rd, C) given by

U(t, x) = inf
y∈Y (t,x)

J t[y] = cl co
⋃

y∈Y (t,x)

J t[y] (4)

are called value function of problem (2) with values in F(Rd, C), G(Rd, C), respectively.

Remark 3.3. If J t is convex (for example if L is convex), then

cl
⋃

y∈Y (t,x)

J t[y] = cl co
⋃

y∈Y (t,x)

J t[y]

and the F(Rd, C)-valued U is already G(Rd, C)-valued.

In this section, we consider the value function U with values in F(Rd, C).

Theorem 3.4 (Bellman’s optimality principle). Let (t, x) ∈ QT and y ∈ Y (t, x). Then, for all t′ ∈ [0, t],

U(t, x) ⊇
t∫

t′

L(s, y(s), ẏ(s))ds⊕ U(t′, y(t′)) . (5)

Moreover, the set M ⊆ Y (t, x) is an infimizer for problem (2) if and only if for all t′ ∈ [0, t],

U(t, x) = inf
y∈M

⎛
⎝ t∫

t′

L(s, y(s), ẏ(s))ds⊕ U(t′, y(t′))

⎞
⎠ . (6)

Proof. Given t′ ∈ [0, t] and y ∈ Y (t, x), we consider

ξ(s) =
{

η(s) , if s ∈ [0, t′] ,
y(s) , if s ∈ [t′, t] ,

where η is any arc in W 1,1([0, t′]; Rn) such that η(t′) = y(t′). Then ξ ∈ Y (t, x) and

U(t, x) ⊇ J t[ξ] =
t∫

t′

L(s, y(s), ẏ(s))ds⊕
t′∫

0

L(s, η(s), η̇(s))ds + U0(η(0)) .

Taking the infimum over all η ∈ Y (t′, y(t′)), we obtain (5).
If (6) holds for any t′ ∈ [0, t], putting t′ = 0 gives that M is an infimizer. Vice versa, if M is an infimizer 

U(t, x) = infy∈M J t[y]. By (5), we have

U(t, x) ⊇ inf
y∈M

⎛
⎝ t∫

t′

L(s, y(s), ẏ(s))ds + U(t′, y(t′))

⎞
⎠ .

Let us now suppose that u ∈ U(t, x). Then either u ∈ J t[y] for some y ∈ M or it is in the closure of ⋃
J t[y]. In the first case u is in
y∈M
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t∫
t′

L(s, y(s), ẏ(s))ds⊕
t′∫

0

L(s, y(s), ẏ(s))ds + U0(y(0))

⊆
t∫

t′

L(s, y(s), ẏ(s))ds⊕ U(t′, y(t′)) .

In the other case u will be in the closure of

⋃
y∈M

⎛
⎝ t∫

t′

L(s, y(s), ẏ(s))ds⊕ U(t′, y(t′))

⎞
⎠ ,

so u is in infy∈M

(∫ t

t′ L(s, y(s), ẏ(s))ds + U(t′, y(t′))
)
. �

4. Hopf-Lax formula

We consider now a Lagrangian function depending only on the last component L(t, x, q) = L(q) and 
T = +∞. The following classical theorem allows to pass from an infimum over the set of admissible arcs 
Y (t, x) to an infimum over Rn.

Theorem 4.1. Let L : Rn → Rd and U0 : Rn → Rd be continuous functions and L : Rn → G(Rd, C) be a 
convex function. Then the value function U with values in G(Rd, C) is given by the formula:

U(t, x) = inf
w∈Rn

[
tL

(
x− w

t

)
+ U0(w)

]
(7)

for all t > 0 and x ∈ Rn. Let Fx,t : Rn → Rd and F x,t : Rn → G(Rd, C) be defined by

Fx,t(w) = tL

(
x− w

t

)
+ U0(w) and F x,t(w) = Fx,t(w) ⊕ C ,

respectively. If the image Fx,t[Rn] satisfies the domination property, there is at least one point w0 ∈ Rn that 
is a minimizer of F x,t and a minimal point of U(x, t).

Proof. Let us denote by V (t, x) the right hand side of (7). Let (t, x) ∈ QT , w ∈ Rn be fixed. Consider

ξ(s) = w + s

t
(x− w) , 0 ≤ s ≤ t .

Then, ξ ∈ Y (t, x) and consequently

U(t, x) ⊇ J t[ξ] = tL

(
x− w

t

)
+ U0(w) .

Since this is true for all w

U(t, x) ⊇ inf
w∈Rn

[
tL

(
x− w

t

)
+ U0(w)

]
= V (t, x)

We prove now that U(t, x) ⊆ V (t, x). The vector-valued function L is C-lower and upper continuous, 
since it is continuous. Let η ∈ Y (t, x). Using Jensen inequality, one has
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L

⎛
⎝1

t

t∫
0

η̇(s) ds

⎞
⎠ ⊇ 1

t

t∫
0

L (η̇(s)) ds .

Multiplying by t, one obtains

tL

(
x− η(0)

t

)
⊇

t∫
0

L (η̇(s)) ds

and, adding U0(η(0)),

V (t, x) ⊇ tL

(
x− η(0)

t

)
+ U0(η(0)) ⊇

t∫
0

L (η̇(s)) ds + U0(η(0)) = J t[η] .

Taking the infimum over η ∈ Y (t, x) on the right hand side, we conclude that V (t, x) ⊇ U(t, x).
For any w ∈ Rn by the domination property there exists a minimizer w0 ∈ Rn such that Fx,t(w0) ⊇

F x,t(w). �
5. Scalarization

Throughout this section we suppose that C = Rd
+, that the components of L and U0 are such that

{
(i) Li is convex and lim|q|→+∞ Li(q)/|q| = +∞ , ∀i = 1, 2, . . . , d
(ii) (U0)i is Lipschitz on Rn , ∀i = 1, 2, . . . , d

(8)

and that Fx,t is convex. Here U is G(Rd, C)-valued (see Remark 3.3).

Remark 5.1. Under these hypotheses infw∈Rn F x,t(w) = F x,t[Rn], i.e.

cl co
⋃

w∈Rn

F x,t(w) =
⋃

w∈Rn

F x,t(w) .

Let ζ ∈ intC+. Then we can consider the infimum of the real-valued function

uζ(t, x) = inf
w∈Rn

ζ ·
[
tL

(
x− w

t

)
+ U0(w)

]
. (9)

Since the components of ζ are positive,

lim
|w|→+∞

ζ · L(w)
|w| = +∞

and the infimum is a minimum attained at wζ ∈ Rn and

uζ(t, x) = ζ ·
[
tL

(
x− wζ

t

)
+ U0(wζ)

]
.

As an easy result of the classic real-valued methodology (see for example [4]) we have the following 
proposition and corollary.
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Proposition 5.2. Under the hypotheses (8), for each ζ ∈ intC+, the value function in the direction ζ uζ(x, t)
is Lipschitz continuous in int QT .

Corollary 5.3. Under the hypotheses (8), for each ζ ∈ intC+, the value function in the direction ζ uζ(x, t)
is differentiable a.e. in int QT .

The value function in the direction ζ uζ(t, x), if it is differentiable at (t, x) ∈ int QT , is a solution of the 
Hamilton-Jacobi equation:

ut(t, x) + Hζ(∇u(t, x)) = 0

where

Hζ(p) = sup
w∈Rn

[p · w − ζ · L(w)]

Proposition 5.4. Let the hypotheses (8) hold, the function Fx,t be convex and the components of Fx,t(w) be 
strictly convex.

The point w0 ∈ Rn is a minimizer of (7) (in the lattice sense) if and only if there exists ζ ∈ C+\{0}
such that w0 is the minimizer of uζ(t, x), i.e., uζ(t, x) = ζ · Fx,t(w0).

Proof. If w0 = wζ for some ζ ∈ intC+, let us suppose that there exists w̃ ∈ Rn such that

F x,t(w̃) ⊃ F x,t(wζ) ,

then for every 1 ≤ i ≤ d the corresponding components satisfy the inequality
(
F x,t(w̃)

)
i
≤
(
F x,t(wζ)

)
i

and at least one inequality is strict. Multiplying each inequality by ζi > 0 and summing up with respect to 
i, we obtain

ζ · F x,t(w̃) < ζ · F x,t(wζ)

which is a contradiction.
Instead, if w0 = wζ for ζ ∈ C+\intC+, then w0 is the unique minimizer of a component (Fx,t(w))i for 

some 1 ≤ i ≤ n. If w̃ ∈ Rn is such that Fx,t(w̃) ⊃ F x,t(w0), then (Fx,t(w̃))i ≤ (Fx,t(w0))i and this means 
that w0 = w̃.

Given w0 minimizer of (7), let the point z0 ∈ Rd be the following:

z0 = F x,t(w0) .

The point w0 is a minimizer of (7) if and only if

(z0 − C) ∩ inf
w∈Rn

F x,t(w) = {z0} .

By Eidelheit’s separation theorem, there exists ζ ∈ Rd and a real number s such that

ζ · z ≥ s , for any z ∈ inf
w∈Rn

F x,t(w) ,

ζ · (z0 − c) ≤ s , for any c ∈ C ,

ζ · (z − c) < s , for any c ∈ intC .
0
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It follows that ζ �= 0. From the first two equations s = ζ ·z0. From the last one, we get that ζ ·z0 > ζ ·(z0−c)
for any c ∈ intC. This means that ζ ∈ C+\{0}. �
Proposition 5.5. Let the hypotheses (8) hold, the function Fx,t be convex and the components of Fx,t(w) be 
strictly convex. Then Fx,t[Rn] satisfies the domination property.

Proof. Let w be a point in Rn, we want to find a point w0, such that Fx,t(w0) ⊇ F x,t(w). Every component 
i of Fx,t admits a minimizer wi ∈ Rn. We consider the vector z0 ∈ Rd whose i-th component is the 
corresponding minimum value (Fx,t(wi))i. Then z0 +C ⊇ U(t, x). Considering the segment between Fx,t(w)
and z0:

λz0 + (1 − λ)Fx,t(w) (10)

for λ ∈ [0, 1], there exists

λ0 = sup{λ ∈ [0, 1] | λz0 + (1 − λ)Fx,t(w) ∈ U(x, t)} .

We consider an increasing sequence λm → λ0 and the corresponding vectors wm ∈ Rn, cm ∈ C such that

λmz0 + (1 − λm)Fx,t(w) = Fx,t(wm) + cm . (11)

Since λmz0 + (1 −λm)Fx,t(w) tends to λ0z0 + (1 −λ0)Fx,t(w), the sequences wm and cm must be bounded. 
It is possible to pass to suitable subsequences (that we still denote wm and cm respectively), that converge. 
In particular

lim
m→+∞

wm = w0 and lim
m→+∞

cm = c0 .

Taking the limit in both sides of (11), we obtain

λ0z0 + (1 − λ0)Fx,t(w) = Fx,t(w0) + c0

and this means that λ0z0 + (1 − λ0)Fx,t(w) is in set U(x, t) and that in its boundary ∂U(x, t). Since each 
component in the curve (10) is decreasing with respect to λ, we have that

F x,t(w0) ⊇ F x,t(w) .

In order to prove that also Fx,t(w0) is in the boundary of U(x, t), given any neighborhood V of Fx,t(w0), 
V + c0 is a neighborhood of Fx,t(w0) + c0. There exists v ∈ V , such that v + c0 /∈ U(t, x), but this implies 
that also v /∈ U(x, t).

Applying the supporting hyperplane theorem to the convex nonempty set U(x, t) at its boundary point 
Fx,t(w0), one gets ζ �= 0 such that

ζ · Fx,t(w0) ≤ ζ · u

for any u ∈ U(x, t). Since for any c ∈ C, we have

ζ · Fx,t(w0) ≤ ζ · (Fx,t(w0) + c) ,

ζ ∈ C+. �



A.H. Hamel, D. Visetti / J. Math. Anal. Appl. 483 (2020) 123605 13
Remark 5.6. In the hypotheses of the previous proposition, let w0 be the minimizer of the i-th component 
of Fx,t.

Using the classical results, one has that the real function

u0(t, x) = tLi

(
x− w0

t

)
+ (U0)i(w0)

is a solution of

ut(t, x) + Hi(∇u(t, x)) = 0 ,

where

Hi(p) = sup
q∈Rn

(p · q − Li(q)) .

6. Hamilton-Jacobi equation

For (t, x) ∈ Q∞, q ∈ Rn and ζ ∈ C+\{0}, we write:

Ut,ζ(t, x) = lim
s→0+

1
s

[U(t + s, x) −ζ U(t, x)] ,

Uq,ζ(t, x) = lim
s→0+

1
s

[U(t, x + sq) −ζ U(t, x)] .
(12)

Remark 6.1. From the definition, apart from the extreme cases ∅ and Rd, these derivatives are closed 
half-spaces with normal ζ.

The definition of the derivative with respect to x in the direction q is stronger than the directional 
derivative in [12]. More precisely,

Uq,ζ(t, x) ⊆ (U(t, ·))′ζ(x, q) .

It is also stronger than the definition in [17], where the lower limit of Painlevé-Kuratowski is used.

Proposition 6.2. Let (t, x) ∈ Q∞. Let ζ ∈ C+\{0} and let the hypotheses (8) hold. Let the components of L
and U0 be of class C2. Let Lζ(w), U0,ζ(w) denote the scalar products

Lζ(w) = ζ · L(w) , U0,ζ(w) = ζ · U0(w) ,

respectively. If ŵ = ŵ(t, x, ζ) ∈ Rn is such that

inf
w∈Rn

[
tLζ

(
x− w

t

)
+ U0,ζ(w)

]
=
[
tLζ

(
x− ŵ

t

)
+ U0,ζ(ŵ)

]
, (13)

let the following matrix (where H denotes the Hessian matrix) be non-singular

1
t
HLζ

(
x− ŵ

t

)
+ HU0,ζ (ŵ). (14)

Then the following equations hold:
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Ut,ζ(t, x) = S(
Lζ

(
x−ŵ

t

)
−∇Lζ

(
x−ŵ

t

)
· x−ŵ

t ,ζ
)(1) (15)

Uq,ζ(t, x) = S(∇Lζ

(
x−ŵ

t

)
,ζ
)(q) . (16)

In particular, if the hypotheses in the previous proposition are realized, the value function admits the 
derivatives defined in (12) for any (t, x) ∈ Q∞ and q ∈ Rn.

Proof. If z ∈ Ut,ζ(t, x), there exists a curve {zs}s∈R+ with zs ∈ 1
s [U(t + s, x) −ζ U(t, x)] such that 

lims→0+ zs = z. By definition and by Remark 2.1, {zs}s∈R+ is such that

ζ · zs + 1
s

inf
w∈Rn

[
tLζ

(
x− w

t

)
+ U0,ζ(w)

]

≥ 1
s

inf
w∈Rn

[
(t + s)Lζ

(
x− w

t + s

)
+ U0,ζ(w)

]
.

The minimizer of the right-hand side (it exists by (8)) is a solution of

−∇Lζ

(
x− w

t + s

)
+ ∇U0,ζ(w) = 0 .

Applying the implicit function theorem to the previous equation, we obtain a C1 curve ŵ(s), such that

−∇Lζ

(
x− ŵ(s)
t + s

)
+ ∇U0,ζ(ŵ(s)) = 0

and ŵ(0) = ŵ. Using this curve and Taylor’s formula we obtain

ζ · zs + 1
s

[
tLζ

(
x− ŵ

t

)
+ U0,ζ(ŵ)

]

≥ 1
s

[
(t + s)Lζ

(
x− ŵ(s)
t + s

)
+ U0,ζ(ŵ(s))

]

= 1
s

[
tLζ

(
x− ŵ

t

)
+ U0,ζ(ŵ)

]

+
[
Lζ

(
x− ŵ

t

)
−∇Lζ

(
x− ŵ

t

)
·
(
x− ŵ

t

)]
+ o(1) .

We conclude that

ζ · zs ≥
[
Lζ

(
x− ŵ

t

)
−∇Lζ

(
x− ŵ

t

)
· x− ŵ

t

]
+ o(1)

and

z ∈
{
z ∈ Z

∣∣∣ ζ · z ≥
[
Lζ

(
x− ŵ

t

)
−∇Lζ

(
x− ŵ

t

)
·
(
x− ŵ

t

)]}
.

Vice versa, if z is such that

ζ · z ≥
[
Lζ

(
x− ŵ

)
−∇Lζ

(
x− ŵ

)
·
(
x− ŵ

)]
= μt,x,ζ ,
t t t
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it can be written as z = μζ + z1, where μ ≥ μt,x,ζ and z1 is perpendicular to ζ. We consider the following 
curve

zs =1
s

[
inf

w∈Rn

(
(t + s)Lζ

(
x− w

t + s

)
+ U0,ζ(w)

)

− inf
w∈Rn

(
tLζ

(
x− w

t

)
+ U0,ζ(w)

)]
ζ + (μ− μt,x,ζ) ζ + z1

that converges to z ∈ Ut,ζ(t, x).
For equation (16), if z̃ ∈ Uq,ζ(t, x), there exists a curve {z̃s}s∈R+ with z̃s converging to z̃ such that 

z̃s ∈ 1
s [U(t, x + sq) −ζ U(t, x)]. We have that

ζ · z̃s + 1
s

inf
w∈Rn

[
tLζ

(
x− w

t

)
+ U0,ζ(w)

]

≥ 1
s

inf
w∈Rn

[
tLζ

(
x + sq − w

t

)
+ U0,ζ(w)

]
.

The minimizer of the right-hand side is a solution of

−∇Lζ

(
x + sq − w

t

)
+ ∇U0,ζ(w) = 0 .

Applying the implicit function theorem to the previous equation, we obtain a C1 curve w̃(s), such that 
w̃(0) = ŵ. As before, we obtain

ζ · z̃s + 1
s

[
tLζ

(
x− ŵ

t

)
+ U0,ζ(ŵ)

]

≥ 1
s

[
tLζ

(
x + sq − w̃(s)

t

)
+ U0,ζ(w̃(s))

]

= 1
s

[
tLζ

(
x− ŵ

t

)
+ U0,ζ(ŵ)

]
+ ∇Lζ

(
x− ŵ

t

)
· q + o(1) .

We may conclude that

ζ · z̃s ≥ ∇Lζ

(
x− ŵ

t

)
· q + o(1)

and

z̃ ∈
{
z ∈ Z

∣∣∣ ζ · z ≥ ∇Lζ

(
x− ŵ

t

)
· q
}
.

The other inclusion is similar to the previous case. �
Remark 6.3.

(i) We have that

lim
s→0+

1
s

[U(t + s, x + sq) −ζ U(t + s, x)] = Uq,ζ(t, x) .
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(ii) It is easy to see that

(U(t + s, x + sq) −ζ U(t + s, x)) + (U(t + s, x) −ζ U(t, x))

= U(t + s, x + sq) −ζ U(t, x) .

From (16) and (1) we deduce that

Uq,ζ(t, x) =
(
∇Lζ

(
x− ŵ

t

)
· q
)
ẑ + H+(ζ) ,

for ẑ ∈ Rd such that ζ · ẑ = 1, that is the set Uq,ζ(t, x) is described by a vector: then we write

Uq,ζ(t, x) = (∇Uζ(x, t) · q) ẑ + H+(ζ) ,

where

∇Uζ(x, t) = ∇Lζ

(
x− ŵ

t

)
.

Theorem 6.4. Let (t, x) ∈ Q∞. Let ζ ∈ C+\{0} and let the hypotheses (8) hold. Let the components of L
and U0 be of class C2. If ŵ ∈ Rn is as in (13), let the matrix (14) be non-singular.

Then U(t, x) is a solution of

Ut,ζ(t, x) + H (∇Uζ(t, x), ζ) = H+(ζ) (17)

where

H(p, ζ) = L
∗(p, ζ)

for any p ∈ Rn, ζ ∈ C+\{0}. Moreover, U(t, x) is a solution of

sup
ζ∈C+\{0}

[Ut,ζ(t, x) + H (∇Uζ(t, x), ζ)] = C . (18)

Equations (17) and (18) are the Hamilton-Jacobi equations of the given problem.

Proof. Given q ∈ Rn, s > 0, we set y(τ) = x + (τ − t)q. From (5), we obtain

U(t + s, x + sq) ⊇
t+s∫
t

L(ẏ(τ))dτ + U(t, x) ,

and consequently

1
s

(U(t + s, x + sq) −ζ U(t, x)) ⊇ L(q) + H+(ζ) .

In the limit, we conclude that for any q ∈ Rn

Ut,ζ(t, x) + Uq,ζ ⊇ L(q) + H+(ζ) . (19)
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From (19) and Lemma 2.2 we can deduce that for any q ∈ Rn

Ut,ζ(t, x) +
(
Uq,ζ −ζ L(q)

)
⊇ H+(ζ) .

To prove that

Ut,ζ(t, x) +
⋂

q∈Rn

(
Uq,ζ −ζ L(q)

)
⊇ H+(ζ) , (20)

let us consider h ∈ H+(ζ) such that, for any z ∈ Ut,ζ(t, x), there holds h − z /∈
⋂

q∈Rn

(
Uq,ζ −ζ L(q)

)
. In 

particular, for z that minimizes inf ζ · Ut,ζ(t, x), there exists q0 ∈ Rn and h − z /∈ Uq0,ζ −ζ L(q0). Then 
ζ · (h − z) + Lζ(q0) < inf ζ · Uq0,ζ and

ζ · h < inf ζ · Ut,ζ(t, x) + inf ζ · Uq0,ζ − Lζ(q0)

= Lζ

(
x− ŵ

t

)
+ ∇Lζ

(
x− ŵ

t

)
·
(
q0 −

x− ŵ

t

)
− Lζ(q0) ≤ 0 .

This is a contradiction to h being in H+(ζ) and proves (20).
From (15) and (16) we can see that

Ut,ζ(t, x) + Ux−ŵ
t ,ζ = L

(
x− ŵ

t

)
+ H+(ζ) . (21)

In order to prove the opposite inclusion in (20), we consider that

Ut,ζ(t, x) +
⋂

q∈Rn

(
Uq,ζ −ζ L(q)

)
⊆ Ut,ζ(t, x) +

(
Ux−ŵ

t ,ζ −ζ L

(
x− ŵ

t

))
.

Now, by the second implication in Lemma 2.2 and (21), we conclude that

Ut,ζ(t, x) +
(
Ux−ŵ

t ,ζ −ζ L

(
x− ŵ

t

))
⊆ H+(ζ) .

We have proved that

Ut,ζ(t, x) +
⋂

q∈Rn

(
Uq,ζ −ζ L(q)

)
= H+(ζ) . �

Example 6.5. Let us consider L, U0 : R → R2 defined by

L(w) =
( 1

2w
2

3
2w

2

)
and U0 =

(
1 − w

1 + w

)

and C = R2
+. Some images of the value function are in Fig. 1.

Given ζ = (ζ1, ζ2) ∈ C+\{0}, then ŵ = ŵ(t, x, ζ) defined in (13) is

ŵ = x + t
ζ1 − ζ2
ζ1 + 3ζ2

.

Hypothesis (14) is fulfilled, in fact:

1
HLζ

(
x− ŵ

)
+ HU0,ζ (ŵ) = 1(ζ1 + 3ζ2) > 0 .
t t t
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Fig. 1. The four sets are respectively U(1, 0), U(2, 0), U(1, 2) and U(2, 2).

Then it is possible to compute (15) and (16):

Ut,ζ(t, x) =
{
z ∈ Z

∣∣∣ ζ · z ≥ −1
2

(ζ1 − ζ2)2

ζ1 + 3ζ2

}

Uq,ζ(t, x) =
{
z ∈ Z

∣∣∣ ζ · z ≥ −(ζ1 − ζ2)q
}
.

For example for (t, x) = (1, 0) and some values of ζ we obtain the following sets:

ζ = (1, 0) Ut,ζ(1, 0) =
{
(z1, z2) | z1 ≥ −1

2
}

Uq,ζ(1, 0) = {(z1, z2) | z1 ≥ −q}

ζ = (1, 1) Ut,ζ(1, 0) = {(z1, z2) | z1 + z2 ≥ 0}
Uq,ζ(1, 0) = {(z1, z2) | z1 + z2 ≥ 0}

ζ = (0, 1) Ut,ζ(1, 0) =
{
(z1, z2) | z2 ≥ −1

6
}

Uq,ζ(1, 0) = {(z1, z2) | z2 ≥ q}

The Hamiltonian function is:
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Hζ(p) =
⋂
q∈R

(
S(p,ζ)(q) −ζ L(q)

)

=
{
z ∈ Z | ζ · z ≥ sup

q∈R
[pq − Lζ(q)]

}

=
{
z ∈ Z | ζ · z ≥ p2

2(ζ1 + 3ζ2)

}
.

7. Real-valued case

In the particular case d = 1, so when the objective function is real-valued, the value function can be 
written as

U(t, x) = u(t, x) + R+ ,

where u(t, x) is the classical value function. If the hypotheses hold and u(t, x) is differentiable, it is easy to 
see that

Ut,1(t, x) = ut(t, x) + R+ ,

Uq,1(t, x) = ∇u(t, x) · q + R+ .
(22)

Hypothesis (14) becomes

1
t
L′′
(
x− ŵ

t

)
+ U ′′

0 (ŵ) > 0 ,

since ŵ is a minimizer.
Since

S(p,1)(q) = p · q + R+ ,

the Hamiltonian function is

H1(p) = sup
q∈Rn

(p · q − L(q)) + R+

and equations (17) and (18) both become

ut(t, x) + H1

(
∇L

(
x− ŵ

t

))
= R+ .

Using (16) and the second equation in (22), the previous equation can be written

ut(t, x) + H1(∇u(t, x)) = R+

and the real-valued case is recovered.
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