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We derive lower bounds for the Lp(μ) norms of monic extremal polynomials with 
respect to compactly supported probability measures μ. We obtain a sharp universal 
lower bound for all 0 < p < ∞ and all measures in the Szegő class and an improved 
lower bound on L2(μ) norm for several classes of orthogonal polynomials including 
Jacobi polynomials, isospectral torus of a finite gap set, and orthogonal polynomials 
with respect to the equilibrium measure of an arbitrary non-polar compact subset 
of R.
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1. Introduction

Let K be a non-polar compact subset of C and μ a probability Borel measure with supp(μ) = K. In 
this work we investigate lower bounds on the Lp(μ) norms of monic polynomials. A well known inequality 
that goes back to Szegő [41] (for a textbook presentation see [30, Theorem 5.5.4] or [34, Theorem 5.7.8]) 
provides such a lower bound for L∞(K) norm,

‖Pn‖∞ = sup
z∈K

|Pn(z)| ≥ C(K)n, Pn ∈ Pn, n ∈ N, (1.1)

where Pn is the set of monic polynomials of degree n and C(K) denotes the logarithmic capacity of K. The 
inequality (1.1) is sharp in the class of subsets of C, however for compact sets K ⊂ R, Schiefermayr [32]
showed that the inequality can be improved to

‖Pn‖∞ ≥ 2C(K)n, Pn ∈ Pn, n ∈ N, (1.2)

which is optimal in the class of subsets of R.
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We are interested in finding sharp analogs of the above inequalities for Lp(μ) norms. To simplify the 
notation we introduce the Widom factors,

W p
n(μ) = infPn∈Pn

‖Pn‖p
C(K)n , n ∈ N, 0 < p ≤ ∞, (1.3)

where as usual ‖Pn‖p = (
∫
|Pn(z)|pdμ(z))1/p, 0 < p < ∞. The infimum in (1.3) is attained for some 

polynomial in Pn and a minimizer is unique when p ∈ (1, ∞] but not necessarily when p ∈ (0, 1]. We note 
that in the case p = ∞ the Widom factors are defined in terms of the (unweighted) supremum norm over K
and so do not depend on a particular choice of the measure μ and hence will be denoted by W∞

n (K). Despite 
this difference in the definition of the Widom factors for p = ∞ and p < ∞ it follows from Hölder’s inequality 
and continuity of ‖Pn‖p with respect to p ∈ (0, ∞] that for each fixed n ∈ N and probability measure μ with 
supp(μ) = K the Widom factors are nondecreasing and continuous with respect to p ∈ (0, ∞], in particular, 
W∞

n (K) = supp>0 W
p
n(μ).

From the application point of view there are two important cases p = ∞ and p = 2. The monic polyno-
mials that have the smallest L∞(K) norm are known as the Chebyshev polynomials and those that have 
the smallest L2(μ) norm are the orthogonal polynomials with respect to μ. We use the term Widom factors
to commemorate the fundamental paper [48] where H. Widom studied asymptotics of the Chebyshev and 
orthogonal polynomials on sets K consisting of a finite number of smooth Jordan curves and arcs. More 
recently, asymptotics and upper bounds on W∞

n (K) have been studied in [5,6,11,14–16,18,20,42–47]. Due 
to monotonicity of the Widom factors, an upper bound on W∞

n (K) is automatically an upper bound for all 
W p

n(μ). The main contribution of the present work is complementary sharp lower bounds for the Widom 
factors W p

n(μ).
For absolutely continuous measures μ on the unit circle a lower bound and asymptotics of W 2

n(μ) date 
back to the work of Szegő [38,39] (for a textbook presentation see [33, Sections 2.2 and 2.3]). Asymptotics 
of W 2

n(μ) for more general measures and on other sets have been actively studied ever since [3,4,7–10,13,
17,19,23,26,28,29,33–35,40,48]. In these works the central role is played by measures μ from the Szegő class 
which in the most general setting is defined as follows. Given a probability measure μ with K = supp(μ) a 
non-polar compact subset of C, denote by μK the equilibrium measure of K (see [30] or [34, Section 5.5] for 
basic notions of logarithmic potential theory) and consider the Lebesgue decomposition of μ with respect to 
μK , that is, dμ = fdμK + dμs. The Szegő class consists of such measures μ that have finite relative entropy 
with respect to μK , that is, ∫

log f(z)dμK(z) > −∞. (1.4)

The relative entropy enters the asymptotics and lower bounds via the exponential relative entropy function

S(μ) = exp
[∫

log f(z)dμK(z)
]
. (1.5)

As with the lower bound in the case p = ∞ (cf., (1.1) vs (1.2)) there is a difference in the asymptotics of 
W 2

n(μ) depending on whether the measure μ is supported on R or on C, for example,

lim
n→∞

[
W 2

n(μ)
]2 = S(μ) (1.6)

for measures μ with supp(μ) = ∂D (see for example [33, Theorem 2.3.1]) and

lim
n→∞

[
W 2

n(μ)
]2 = 2S(μ) (1.7)

for measures μ with supp(μ) = [−2, 2] (see for example [28], [33, Theorem 13.8.8]).
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Recently a lower bound for the Widom factors W 2
n(μ) was obtained in [1] for the equilibrium measure 

μ = μK of a general non-polar compact set K ⊂ R and in [2] for a general Szegő class measure μ on C,

[
W 2

n(μ)
]2 ≥ S(μ). (1.8)

The goal of the present work is to extend (1.8) to all Widom factors W p
n(μ) and investigate to what extent 

such a lower bound is sharp and whether it can be improved for measures supported on R with a special 
emphasis on the case p = 2. It turns out that the lower bound (1.8) as well as its extension to 0 < p < ∞
(2.1) are sharp in the Szegő class even for measures with supp(μ) = [−2, 2]. Nevertheless, we will show that 
for several special classes of measures on R the lower bound (1.8) can be improved. In particular, for the 
equilibrium measures μ = μK of compact non-polar sets K ⊂ R the lower bound (1.8) improves by a factor 
of 2,

[
W 2

n(μ)
]2 ≥ 2S(μ). (1.9)

In light of the asymptotics (1.7), the lower bound (1.9) is the best possible. We also obtain similar im-
provements on the lower bounds of Widom factors W p

n(μK) for p > 1. Besides the equilibrium measure we 
prove the optimal lower bound (1.9) for measures from the finite gap isospectral torus of half-line Jacobi 
matrices and for Jacobi weights dμα,β(x) = cα,β(1 − x)α(1 + x)βχ[−1,1](x)dx on [−1, 1] for a certain range 
of parameters α, β.

We want to emphasize that much less is known on the asymptotics of Lp(μ) extremal polynomials for 
a general p (0 < p < ∞ with p �= 2). We refer the reader to [22,24,27] for some of the previous attempts 
on this problem. Peherstorfer and Steinbauer suggested this as an open problem in Problem 3, p. 314, 
[27]. Theorems 2.1 and 2.2 below can be seen as a partial answer to this open problem for a large class of 
measures. Besides, we hope that our conjecture (6.2) will generate further research in this direction.

The plan of the paper is as follows. In Section 2, we extend the lower bound of (1.8) to the case of general 
Widom factors W p

n(μ) and show that the bound is optimal not only in the class of measures on the complex 
plane but also on the real line. In particular, for measures on R the Szegő condition alone is insufficient 
for (1.9). In Section 3 we obtain increased lower bounds on W p

n(μK) for the equilibrium measures μK on 
compact non-polar subsets of R. In Section 4 we consider lower bounds on W 2

n(μα,β) for the Jacobi weights 
over the full range of parameters. In Section 5, we prove (1.9) for measures μ associated with half-line Jacobi 
matrices from finite gap isospectral tori. Finally, in Section 6, we discuss some open problems.

2. A sharp lower bound for the Widom factors

In this section we extend the lower bound (1.8) to the general Widom factors and show that our lower 
bound is optimal in the class of Szegő measures even if the support of the measure is an interval on the real 
line.

Theorem 2.1. Let 0 < p < ∞ and μ be a Borel probability measure with K = supp(μ) a non-polar compact 
subset of C. Then

W p
n(μ) ≥ S(μ)1/p, n ∈ N. (2.1)

Proof. If S(μ) = 0 there is nothing to prove. Let us assume that S(μ) > 0. We modify the argument used 
in the proof of Theorem 1.2 in [2]. Let dμ = fμK + dμs and write Pn ∈ Pn as Pn(z) =

∏n
j=1(z − zj). Then

‖Pn‖pp =
(∫

|Pn|pf dμK +
∫

|Pn|pdμs

)
≥

∫
|Pn|pf dμK (2.2)
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= exp
[
log

(∫
|Pn|pf dμK

)]
(2.3)

≥ exp
[∫

log (|Pn|pf) dμK

]
(2.4)

= exp
[∫

log f dμK

]
exp

⎡
⎣p ∫ n∑

j=1
log |z − zj |dμK(z)

⎤
⎦ (2.5)

≥ S(μ)C(K)np. (2.6)

Note that, (2.4) follows from Jensen’s inequality and (2.6) follows from Frostman’s theorem, see Theorem 
3.3.4 (a) in [30]. The inequality (2.1) follows by taking p-th root and dividing by C(K)n. �

It is easy to see that (2.1) is sharp in the class of probability measures on the complex plane since for 
the equilibrium measure on the unit circle μ∂D we have 1 = S(μ∂D)1/p ≤ W p

n(μ) ≤ ‖zn‖p = 1 for all n ∈ N

and 0 < p < ∞.
The next result shows that for 0 < p < ∞, S(μ) is the best possible lower bound for W p

n(μ) in the Szegő 
class of probability measures on the real line, in fact, even on an interval.

Theorem 2.2. For each 0 < p < ∞ and n ∈ N fixed,

inf
μ

[
W p

n(μ)
]p
/S(μ) = 1, (2.7)

where the infimum is taken over probability measures on K = [−2, 2] with S(μ) > 0.

Proof. First, assume that np ≥ 1. Let N be the integer satisfying np − 1 < N ≤ np and consider the 
measures

dμε(x) = cε|x|N−np
N∏
j=1

|x2 − j2ε2|−1/2dμK(x), ε > 0,

where cε > 0 is the normalization constant chosen such that με(K) = 1. The equilibrium measure is given by 
dμK(x) = 1

π
χK(x)√
4−x2 dx. Since K is a regular set for potential theory, by Frostman’s theorem, the logarithmic 

potential UK(z) =
∫

log |x − z|dμK(x) equals logC(K) = 0 for all z ∈ K, so for each 0 < ε < 1/N we get

S(με) = exp
[ ∫

log
(
cε|x|N−np

N∏
j=1

|x2 − j2ε2|−1/2
)
dμK(x)

]

= cε exp
[
(N − np)UK(0) − 1

2

N∑
j=1

(
UK(jε) + UK(−jε)

)]
= cε. (2.8)

On the other hand, we have

W p
n(με)p ≤

∫
|xn|pdμε(x) = cε

∫ |x|N∏N
j=1 |x2 − j2ε2|1/2

dμK(x) → cε (2.9)

as ε → 0 since

|x|N∏N
j=1 |x2 − j2ε2|1/2

= 1∏N
j=1 |1 − (jε/x)2|1/2

≤ 1
|1 − N2

(N+1)2 |N/2
for |x| ≥ (N + 1)ε
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so by the dominated convergence theorem,
∫

|x|≥(N+1)ε

|x|N∏N
j=1 |x2 − j2ε2|1/2

dμK(x) →
∫

dμK = 1 as ε → 0

and

∫
|x|<(N+1)ε

|x|N∏N
j=1 |x2 − j2ε2|1/2

dμK(x) =
1∫

−1

|t|N∏N
j=1 |t2 −

j2

(N+1)2 |1/2
dμK((N + 1)εt)

≤ 1
π

1∫
−1

|t|N∏N
j=1 |t2 −

j2

(N+1)2 |1/2
(N + 1)εdt√

4 − (N + 1)2ε2t2
→ 0 as ε → 0.

Thus, by (2.8) and (2.9), lim supε→0 W
p
n(με)p/S(με) ≤ 1. This combined with (2.1) yields (2.7).

Next, assume that np < 1. Consider the measure dν(x) = c|x|−npdμK(x) where c > 0 is chosen so that 
ν(K) = 1. Then

S(ν) = exp
[ ∫

log
(
c|x|−np

)
dμK(x)

]
= c exp[(−np)UK(0)] = c.

We also have

W p
n(ν)p ≤

∫
|xn|pdν(x) = c

∫
dμK(x) = c

Thus, W p
n(ν)p/S(ν) ≤ 1. This combined with (2.1) yields (2.7) in the case np < 1. �

3. Lower bounds for the equilibrium measures on subsets of R

In this section we improve the lower bound (2.1) for equilibrium measures on general compact non-polar 
subsets of R.

Theorem 3.1. Let K ⊂ R be a compact non-polar set. Then for each p > 1,

W p
n(μK) ≥ 2

(
(m!)2

(2m)!

) 1
2m

> S(μK)1/p = 1, n ∈ N, (3.1)

where m =
⌈

p
2(p−1)

⌉
. In particular, for p ≥ 2,

W p
n(μK) ≥

√
2, n ∈ N, (3.2)

and the case p = 2 is the improved lower bound (1.9) which is sharp in the class of equilibrium measures of 
non-polar compact subsets of R.

Proof. First, note that (3.2) is a special case of (3.1) and m ≥ p/[2(p −1)] is equivalent to p ≥ 2m/(2m −1). 
Since W p

n(μK) is nondecreasing with respect to p it suffices to prove (3.1) for p = 2m/(2m − 1), m ∈ N.
Next, we prove (3.1) in the special case of a finite gap compact set K ⊂ R. In this setting we recall the 

uniformization map for finite gap sets as discussed in [12] or Sections 9.5–9.7 in [34]. The uniformization 
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map is a unique conformal map x : D → C\K normalized by x(0) = ∞ and limz→0 zx(z) > 0. It is known 
that x is symmetric under complex conjugation, x(z̄) = x(z), has an analytic extension to C\Λ, where 
Λ ⊂ ∂D is a certain null set, and x : ∂D\Λ → K preserves the equilibrium measure (cf., Corollary 4.6 in 
[12] or Theorem 9.7.6 in [34]),

∫
K

f(x)dμK(x) =
2π∫
0

f(x(eiθ)) dθ2π , f ∈ L1(dμK). (3.3)

In the following we will also need the associated Blaschke product B(z) which is the unique bounded analytic 
function on D with |B(eiθ)| = 1 a.e. on ∂D, zeros at x−1(∞), and normalized by limz→0 z

−1B(z) > 0. By 
Theorem 4.4 in [12] or Theorem 9.7.5 in [34] the Blaschke product B(z) has a connection to the Green 
function GK(z) of the domain C\K via |B(z)| = exp[−GK(x(z))] and it satisfies (cf. (9.7.35) and (9.7.37) 
in [34])

lim
z→0

x(z)B(z) = C(K). (3.4)

Now consider an arbitrary monic polynomial Pn(x) of degree n, and let Qn(x) = Re(Pn(x)), x ∈ R. 
Then Qn(x) is a monic polynomial with coefficients given by the real parts of the coefficients of Pn(x), 
Qn(x) is real-valued on K, and satisfies ‖Pn‖p ≥ ‖Re(Pn)‖p = ‖Qn‖p. In addition, B(z)nQn(x(z)) has 
only removable singularities on D and hence can be identified with a bounded analytic function with 
limz→0 B(z)nQn(x(z)) = C(K)n by (3.4). Thus,

C(K)n =
2π∫
0

Qn(x(eiθ))B(eiθ)n dθ2π .

Since the complex conjugation does not change the LHS and Qn(x(eiθ)) we have

2C(K)n =
2π∫
0

Qn(x(eiθ))
(
B(eiθ)n + B(eiθ)n

) dθ
2π .

Applying Hölder’s inequality, (3.3), and noting that B(eiθ)−1 = B(eiθ) we obtain

2C(K)n ≤

⎡
⎣ 2π∫

0

|Qn(x(eiθ))|p dθ2π

⎤
⎦

1
p
⎡
⎣ 2π∫

0

(
B(eiθ)n + B(eiθ)−n

)2m dθ

2π

⎤
⎦

1
2m

=

⎡
⎣∫
K

|Qn(x)|pdμK(x)

⎤
⎦

1
p
⎡
⎣ 2π∫

0

2m∑
j=0

(
2m
j

)
B(eiθ)2n(m−j) dθ

2π

⎤
⎦

1
2m

= ‖Qn‖p

⎡
⎣(2m

m

)
+ 2Re

m−1∑
j=0

(
2m
j

) 2π∫
0

B(eiθ)2n(m−j) dθ

2π

⎤
⎦

1
2m

. (3.5)

Since 
∫ 2π
0 B(eiθ)k dθ

2π = Bk(0) = 0 for all k ∈ N and ‖Qn‖p ≤ ‖Pn‖p we get

2C(K)n ≤ ‖Pn‖p
(

2m
m

) 1
2m

= ‖Pn‖p
(

(2m)!
(m!)2

) 1
2m

(3.6)

which after rearranging yields (3.1) for finite gap sets K ⊂ R.
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Finally, we extend (3.1) to general non-polar compact sets K ⊂ R via an approximation argument of [1]. 
By Theorem 5.8.4 in [34] there exist finite gap sets {Kj}∞j=1 such that K ⊂ · · · ⊂ Kj+1 ⊂ Kj ⊂ · · · ⊂ K1 ⊂
R, K = ∩∞

j=1Kj , C(Kj) → C(K), and dμKj
→ dμK in the weak star sense as j → ∞. Then for every monic 

polynomial Pn(x) of degree n we have by the finite gap lower bound that

‖Pn‖p,μK
= lim inf

j→∞
‖Pn‖p,μKj

≥ lim inf
j→∞

W p
n(μKj

)C(Kj)n

≥ 2
(

(m!)2

(2m)!

) 1
2m

lim inf
j→∞

C(Kj)n = 2
(

(m!)2

(2m)!

) 1
2m

C(K)n. (3.7)

Dividing by C(K)n yields (3.1) for arbitrary non-polar compact set K ⊂ R.
In the case K = [−2, 2] the orthogonal polynomials with respect to the equilibrium measure μK are the 

Chebyshev polynomials of the first kind and a straightforward computation shows that equality in (3.2) is 
attained for all n ∈ N proving that the lower bound (3.2) is sharp. �
4. Lower bounds for the Jacobi weights

In this section we obtain sharp lower bounds for the norms of monic Jacobi polynomials. Let K = [−1, 1]
and consider the normalized Jacobi weights,

dμα,β(x) = cα,β(1 − x)α(1 + x)βχK(x)dx, (4.1)

where α, β > −1 are parameters and cα,β is a normalization constant such that μα,β(K) = 1. We denote 
the corresponding monic orthogonal polynomials by Pα,β

n . By [37, Section VII.1, Equation (25)],

‖Pα,β
n ‖2

2 = cα,β
2α+β+2n+1n!
α + β + 2n + 1

Γ(α + n + 1)Γ(β + n + 1)Γ(α + β + n + 1)
Γ(α + β + 2n + 1)2 . (4.2)

The equilibrium measure on K = [−1, 1] is given by dμK(x) = 1
π

χK(x)√
1−x2 dx hence we have dμα,β(x) =

cα,βπ(1 − x)α+ 1
2 (1 + x)β+ 1

2 dμK(x). Using Frostman’s theorem and noting that C(K) = 1
2 we get

S(μα,β) = cα,βπC(K)α+β+1 = cα,βπ

2α+β+1 . (4.3)

Now, consider the ratios Rn =
[
W 2

n(μα,β)
]2

/S(μα,β). By (4.2) and (4.3) we have

Rn = 22α+2β+4n+2n!
π(α + β + 2n + 1)

Γ(α + n + 1)Γ(β + n + 1)Γ(α + β + n + 1)
Γ(α + β + 2n + 1)2 . (4.4)

The optimal constant in the lower bound for 
[
W 2

n(μα,β)
]2 is given by infn Rn. We are interested in finding 

the parameters for which infn Rn is maximal. While estimating infn Rn directly is difficult, we can find 
values of the parameters α, β so that the sequence Rn is decreasing. In this case the improved lower bound 
(1.9) follows from the Szegő asymptotics (1.7). In the other extreme, if Rn is strictly increasing then, by 
(1.7), the optimal constant in the lower bound is strictly less than 2 and is given by R1.

Define the quantities

Dn = Rn+1

Rn
− 1, n ∈ N, (4.5)

so that the sign of Dn determines whether Rn is increasing, constant, or decreasing. Using the identity 
Γ(x + 1) = xΓ(x) and introducing sn = α + β + 2(n + 1) we obtain
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Dn = 16(n + 1)(α + n + 1)(β + n + 1)(α + β + n + 1)
(α + β + 2n + 1)(α + β + 2n + 2)2(α + β + 2n + 3) − 1

= [s2
n − (α + β)2][s2

n − (α− β)2]
s2
n(s2

n − 1) − 1 (4.6)

= (α2 − β2)2 + s2
n[1 − 2(α2 + β2)]

s2
n(s2

n − 1) . (4.7)

Then the sequence Rn is decreasing if and only if Dn ≤ 0 for all n ∈ N which by (4.6) holds if |α| + |β| ≥ 1. 
The sequence Rn is constant if and only if Dn = 0 for all n ∈ N which by (4.7) holds if and only if 
|α| = |β| = 1

2 . Similarly, the sequence Rn is strictly increasing if and only if Dn > 0 for all n ∈ N which by 
(4.7) holds if α2 + β2 ≤ 1

2 except |α| = |β| = 1
2 . When α2 + β2 > 1

2 we can use sn > 2 to estimate Dn by

Dn ≤ (α2 + β2)2 + 4[1 − 2(α2 + β2)]
s2
n(s2

n − 1) (4.8)

which implies that Dn < 0 for all n ∈ N if 4 − 2
√

3 < α2 + β2 < 4 + 2
√

3, so the sequence Rn is decreasing 
in this case. More generally, in the case α2 + β2 > 1

2 it follows from sn ↑ ∞ and (4.7) that there exists n0
such that Dn < 0 for all n ≥ n0 and Dn ≥ 0 for n < n0. Thus, for any α, β > −1 the sequence Rn is either 
increasing or decreasing or increases for n < n0 and decreases for n ≥ n0. Since limn→∞ Rn = 2 by (1.7), 
it follows that in any case the infimum of Rn is equal to min{2, R1}. Combining these special cases we get 
the following result:

Theorem 4.1. Let α, β > −1. Then the Widom factors for the normalized Jacobi weight μα,β satisfy

[
W 2

n(μα,β)
]2 ≥ Lα,β S(μα,β), n ∈ N, (4.9)

with the optimal constant Lα,β given by

Lα,β = min
{

2, 22α+2β+6

π(α + β + 2)B(α + 2, β + 2)
}
, (4.10)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) denotes the beta function.
In addition, we have: (a) W 2

n(μα,β) = 2 for all n ∈ N if and only if |α| = |β| = 1
2 ; (b) Lα,β = 2, that 

is, (1.9) holds if either |α| + |β| ≥ 1 or α2 + β2 > 4 − 2
√

3 ≈ 0.536; and (c) Lα,β < 2 if α2 + β2 ≤ 1
2

except |α| = |β| = 1
2 . In particular, in the symmetric case |α| = |β| the lower bound (1.9) holds if and only 

if |α| ≥ 1
2 .

5. Lower bounds for measures from the isospectral tori

In this section we discuss spectral measures of one-sided Jacobi matrices from finite gap isospectral tori 
and give another improvement (5.8) of the lower bound (1.8). While the material of this section is known 
to experts [13,34,36], the explicit form of the main lower bound (5.8) has not previously appeared in the 
literature.

For a finite gap set

K = [α1, β1] ∪ · · · ∪ [α	+1, β	+1] (5.1)

with α1 < β1 < α2 < · · · < α	+1 < β	+1, the isospectral torus TK consists of two sided Jacobi matrices 
J = {ak, bk}∞k=−∞ with the spectrum σ(J) = K which are reflectionless on K, that is, the diagonal Green 
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functions Gn,n(z) = 〈δn, (J−z)−1δn〉, n ∈ Z, of J have purely imaginary boundary values a.e. on K, see for 
example Sections 5.13 and 7.5 in [34]. By Craig’s formula (cf., Theorem 5.4.19 in [34]), the diagonal Green 
functions Gn,n(z) of reflectionless Jacobi matrices are of the form

Gn,n(z) = −
	∏

j=1
(z − γn,j)

⎡
⎣	+1∏
j=1

(z − αj)(z − βj)

⎤
⎦
−1/2

, n ∈ Z, (5.2)

where γn,j ∈ [βj , αj+1], j = 1, . . . , 
, n ∈ Z.
In this section we investigate the Widom factors for the spectral measure μn of the one-sided truncation 

Jn = {an+k, bn+k}∞k=1 of J ∈ TK . Alternatively, such one-sided Jacobi matrices Jn are characterized by the 
property of the associated m-function mn(z) = 〈δ1, (Jn−z)−1, δ1〉 being a minimal Herglotz function on the 
two sheeted Riemann surface with branch cuts along K (cf., Theorems 5.13.10, 5.13.12, and 7.5.1 in [34]). 
The minimal Herglotz functions are characterized by Theorem 5.13.2 in [34] which implies that the spectral 
measures μn consist of an absolutely continuous component on K and a finite number of mass points at the 
discrete eigenvalues of Jn, σd(Jn) ⊂ R\K (cf., (5.13.19), (5.13.24), (5.13.25) in [34]),

dμn(x) = 1
π

Im[mn(x + i0)]χK(x)dx +
∑

λ∈σd(J)

resz=λ[mn(z)]dδλ(x). (5.3)

There is a connection between Gn,n and mn obtained in the proof of Theorem 5.13.12 in [34],

Im[a2
nmn(x + i0)] = 1

2Im[−Gn,n(x + i0)−1] for a.e. x ∈ K, (5.4)

and the zeros of Gn,n(z) correspond to the poles of mn on either the first or the second sheet of the Riemann 
surface, hence σd(Jn) is a subset of {γn,j}	j=1, the zero set of Gn,n. Thus, using (5.2), (5.4), and (5.13.24), 
(5.13.25) in [34] we get an explicit form of μn,

dμn(x) = 1
2a2

nπ

√∏	+1
j=1 |x− αj ||x− βj |∏	

j=1 |x− γn,j |
χK(x)dx

+
∑

k:γn,k∈σd(Jn)

1
a2
n

√∏	+1
j=1 |x− αj ||x− βj |∏	

j=1,j �=k |γn,k − γn,j |
dδγn,k

(x). (5.5)

By Theorem 5.5.22 and (5.4.96) in [34]), the equilibrium measure μK of a finite gap set K is given by

dμK(x) = 1
π

∏	
j=1 |x− cj |√∏	+1

j=1 |x− αj ||x− βj |
χK(x)dx, (5.6)

where cj ∈ (βj , αj+1), j = 1, . . . , 
, are the critical points of the Green function GK(z) for the domain C\K
with a logarithmic pole at infinity. Combining (5.5) and (5.6) then gives the Lebesgue decomposition of μn

with respect to μK ,

dμn(x) = 1
2a2

n

∏	+1
j=1 |x− αj ||x− βj |∏	
j=1 |x− cj ||x− γn,j |

dμK(x)

+
	∑

k=1

sn,k
a2
n

√∏	+1
j=1 |x− αj ||x− βj |∏	

j=1,j �=k |γn,k − γn,j |
dδγn,k

(x), (5.7)
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where sn,k = 1 if γn,k ∈ σd(Jn) and sn,k = 0 otherwise. The factor a−2
n plays a role of the normalization 

constant and hence is uniquely determined by {γn,j, sn,k}	j=1. By Theorems 5.13.5 and 7.5.1 in [34], the 
class of such measures μ0 as J runs through TK consists of all possible choices of γ0,j ∈ [βj , αj+1] and 
s0,j ∈ {0, 1} with s0,k = 0 if γ0,j is at an edge βj or αj+1, j = 1, . . . , 
.

Theorem 5.1. Let K ⊂ R be a finite gap set and μ0 be the spectral measure of a half-line truncation J0 of 
J ∈ TK , that is, μ0 is of the form (5.7). Then

[
W 2

n(μ0)
]2 ≥ 2E(μ0)2S(μ0), n ∈ N, (5.8)

where E(μ0) is the eigenvalue function given by

E(μ0) = exp
[ ∑

x∈supp(μ0)\K
GK(x)

]
. (5.9)

In particular, since E(μ0) ≥ 1, the improved lower bound (1.9) holds.

Proof. The proof will be based on the step-by-step sum rule of [13]. Let μn denote the spectral measure of 
the one-sided truncation Jn of J , n ≥ 1. Then, by Theorem 4.2 in [13] or Proposition 9.10.5 in [34], we have

W 2
n(μ0) = a1 · · · an

C(K)n = E(μ0)S(μ0)1/2

E(μn)S(μn)1/2
. (5.10)

Since in each gap of K the Green function GK(x) is positive and attains its maximal value at the critical 
points we have the estimate

1 ≤ E(μn) ≤ exp

⎡
⎣ 	∑
j=1

GK(γn,j)

⎤
⎦ . (5.11)

Recalling that GK(z) = − logC(K) +
∫

log |z − x|dμK(x), we get from (5.7),

S(μn) = 1
2a2

n

exp
[∫

log
( ∏	+1

j=1 |x− αj ||x− βj |∏	
j=1 |x− cj ||x− γn,j |

)
dμK(x)

]

= C(K)2

2a2
n

exp

⎡
⎣− 	∑

j=1
GK(cj) −

	∑
j=1

GK(γn,j)

⎤
⎦ , (5.12)

and hence,

E(μn)2S(μn) ≤ C(K)2

2a2
n

exp

⎡
⎣ 	∑
j=1

[
GK(γn,j) −GK(cj)

]⎤⎦ ≤ C(K)2

2a2
n

. (5.13)

Squaring (5.10) and using (5.13) give

a2
1 · · · a2

n

C(K)2n = W 2
n(μ0)2 = E(μ0)2S(μ0)

E(μn)2S(μn) ≥ 2a2
n

C(K)2E(μ0)2S(μ0). (5.14)

Cancelling a2
n/C(K)2 term and utilizing (5.11) we obtain



G. Alpan, M. Zinchenko / J. Math. Anal. Appl. 484 (2020) 123729 11
a2
1 · · · a2

n−1
C(K)2(n−1) = W 2

n−1(μ0)2 ≥ 2E(μ0)2S(μ0), n ∈ N. �
6. Open problems

Problem 1. In Theorem 3.1, the sharp lower bound for W p
n(μK)p is obtained for p = 2. The sharp lower 

bound for W p
n(μK)p when p �= 2 and K ⊂ R is an open problem. At least, we have a natural candidate for 

this lower bound: It is known that on an interval K = [−1, 1] the monic Chebyshev polynomials of the first 
kind minimize Lp(μK) norms for all 1 ≤ p ≤ ∞ (see for example p. 96 in [31]), hence the corresponding 
Widom factors can be evaluated explicitly in this case,

[
W p

n(μK)
]p = 2p

π

π∫
0

| cos θ|p dθ = 2p√
π

Γ(p+1
2 )

Γ(p2 + 1) , n ∈ N. (6.1)

Note that the right hand side of (6.1) is independent of n. When p = 2 (6.1) gives the sharp lower bound 
(1.9) and the limit as p → ∞ of the p-th root of (6.1) gives the sharp lower bound (1.2). We conjecture that

[
W p

n(μK)
]p ≥ 2p√

π

Γ(p+1
2 )

Γ(p2 + 1) , n ∈ N, (6.2)

when K is a non-polar compact subset of R and 1 ≤ p < ∞.
Problem 2. Let K be a finite gap set. Besides the equilibrium measure μK and measures from the 

isospectral torus of K, an important class of measures is the class of reflectionless measures. These are 
the measures appearing in the Herglotz representation of Gn,n from (5.2), that is, given by dμn,n(x) =
1
π Im[Gn,n(x + i0)]χK(x)dx. The equilibrium measure μK is a member of this class. We conjecture that (1.9)
holds for all reflectionless measures on a finite gap set.

Problem 3. Is there a simple characterization of Szegő class measures on a finite gap set or even an 
interval for which (1.9) holds?

Problem 4. If K is a finite gap set and μ is a Borel probability measure which is purely singular continuous 
with respect to μK and supp(μ) = K, then W 2

n(μ) → 0 since S(μ) = 0 by Theorem 4.5 in [13].
If K1 = D and μ1 is the normalized area measure on K1, then Pn(z) = zn is the n-th monic orthogonal 

polynomial with respect to μ1 and a straightforward calculation shows that [W 2
n(μ1)]2 = 1

n+1 . Since μK1 is 
the normalized arc-measure on the unit circle, μ1 is purely singular continuous with respect to μK1 and we 
have W 2

n(μ1) → 0. It is also true that Widom factors for the normalized area measure on Jordan domains 
with analytic boundary go to 0, see Theorem 4.1 in [21].

If K2 is the Cantor ternary set and μ2 is the Cantor measure, then μ2 is purely singular continuous with 
respect to μK2 by [25]. However, in this case it was conjectured in [23, Conjecture 3.2] that lim inf W 2

n(μ2) > 0
based on numerical evidence.

It would be interesting to develop the theory of Widom factors for purely singular continuous mea-
sures (w.r.t. the equilibrium measure of the support). Proving or disproving existence of such a measure μ
satisfying the condition lim inf W 2

n(μ) > 0 would be a good start.
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