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1. Introduction

We consider the mass-critical nonlinear Schrödinger equation

i∂tu(t, x) = −Δxu(x) + 2
q
k(x)|u(t, x)|q−2u(t, x), q = 2 + 4

d
(1)

with u(t, ·) ∈ H1(Rd) and a given continuous function k : Rd → R.
When k = k0 is a constant (the homogeneous case), (1) boils down to the usual nonlinear Schrödinger 

equation studied extensively in the literature of dispersive partial differential equations (see e.g. [17]). In 
particular, in d = 2 dimensions it comes from the famous Gross-Pitaevskii theory describing the Bose-
Einstein condensation in quantum Bose gases [3,15]. In the homogeneous case, it is well-known that if the 
power of nonlinearity q is replaced by any power smaller than 2 + 4/d, then the (homogeneous) equation 
(1) is globally well-posed for any initial datum in H1(Rd). On the other hand, if q = 2 + 4/d and k0 < 0, 
then the global well-posedness is only guaranteed if the mass of the initial datum is smaller than a critical 
value, namely
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‖u(0, .)‖2
L2(Rd) < m0 :=

(
q

2|k0|

) 2
q−2

‖Q‖2
L2(Rd),

where Q is the unique radial positive solution to the equation (6). For this reason, the case q = 2 + 4/d is 
called mass-critical. Moreover, if q = 2 + 4/d and

‖u(0, .)‖2
L2(Rd) = m0,

then even if u0 is very smooth, it is possible that the solution to (1) blows up in finite time, namely the 
solution exists in an interval [0, T ) and the kinetic energy is unbounded at the critical time:

lim
t↑T

‖∇u‖L2 = +∞. (2)

In fact, all possibilities of such blow-up solutions (called minimal-mass blow-up solutions) have been char-
acterized in the seminal paper of Merle [11].

The non-constant potential k (the inhomogeneous case) corresponds to a inhomogeneous interacting effect 
and it arises naturally in nonlinear optics for the propagation of laser beams. Mathematically, this case is 
interesting as it breaks the large group of symmetries of the homogeneous case. The study of the nonlinear 
Schrödinger equation with inhomogeneous nonlinearity was initiated by Merle [12] where he obtained a 
sufficient condition for the nonexistence of minimal mass blow-up solutions. On the other hand, minimal 
mass blow-up solutions exist if k is sufficiently smooth and flat around its minima; see Banica-Carles-
Duyckaerts [1] and Krieger-Schlag [5]. In d = 2 dimensions, the full classification of minimal mass blow-up 
solutions in the inhomogeneous case was solved by Raphael-Szeftel [16].

In the present paper, we are interested in the ground state solution of (1). To be precise, we will study 
the variational problem

Ek = inf

⎧⎨
⎩Ek(u) :

∫
Rd

|u|2 = 1

⎫⎬
⎭ (3)

associated to the nonlinear Schrödinger functional

Ek(u) =
∫
Rd

|∇u(x)|2dx +
∫
Rd

k(x)|u(x)|2+4/ddx, u ∈ H1(Rd).

By the standard techniques from calculus of variations, any minimizer u0 of Ek in (3) is a solution to the 
stationary nonlinear Schrödinger equation

−Δu(x) + 2
q
k(x)|u(x)|q−2u(x) = μu(x) (4)

with a constant μ ∈ R (which is the Lagrange multiplier associated to the mass constraint ‖u‖L2 = 1). 
Consequently,

u(t, x) = e−itμu0(x)

is a solitary plane-wave solution to the time-dependent problem (1).
Similarly to time-dependent problem studied in [12,1,5,16], a critical feature of the ground state problem 

(3) appears when − infx k(x) crosses the threshold a∗ which is the optimal constant in the Gagliardo-
Nirenberg interpolation inequality:



T.V. Phan / J. Math. Anal. Appl. 486 (2020) 123874 3
⎛
⎝ ∫

Rd

|∇u(x)|2dx

⎞
⎠

⎛
⎝ ∫

Rd

|u(x)|2dx

⎞
⎠

2/d

≥ a∗
∫
Rd

|u(x)|2+4/ddx, ∀u ∈ H1(Rd). (5)

This inequality has been well studied in [2,18,10,6]. It is known that (5) has a unique optimizer Q up to 
translations and dilations. In fact, Q is the unique radial positive solution to the equation

−ΔQ + Q−Q1+4/d = 0. (6)

Our first result concerns the existence and nonexistence of minimizers of the variational problem Ek in 
(3).

Theorem 1 (Existence and nonexistence of minimizers). Assume that k ∈ C(Rd).

(i) (Subcritical case: existence.) If inf k > −a∗ and

∫
Rd

1
(k(x) + a∗)d/2

dx < ∞ (7)

then Ek > 0 and it has a minimizer.
(ii) (Subcritical case: nonexistence.) If inf k > −a∗ and

lim sup
|x|→∞

k(x)
|x|2 < ∞, (8)

then Ek = 0 and it has no minimizer.
(iii) (Critical case.) If inf k = −a∗ = k(x0) for some x0 ∈ Rd and

lim
x→x0

k(x) − k(x0)
|x− x0|2

= 0, (9)

then Ek = 0 and it has no minimizer except the case k ≡ −a∗.
(iv) (Supercritical case.) If inf k < −a∗, then Ek = −∞.

Remark 2. In the subcritical case inf k > −a∗, it is remarkable that the growth of k(x) as |x| → ∞ really 
matters the existence of minimizers. Note that in the integrability condition (7) holds if

lim inf
|x|→∞

k(x)
|x|2+ε

> 0, for some ε > 0.

Thus the existence condition (7) in (i) and the nonexistence condition (8) in (ii) are mostly the complement 
to each other.

Remark 3. In the critical case inf k = −a∗, the condition (9) means that k is flat enough around its minimum 
point x0. If k ∈ C2(Rd), then (9) is equivalent to the degeneracy condition

∇2k(x0) = 0,

where ∇2k is the Hessian matrix of k.
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On the other hand, the opposite condition to (9) that

lim
x→x0

k(x) − k(x0)
|x− x0|2−ε

> 0, for some ε > 0, (10)

was assumed by Merle [12] when he proved the nonexistence of minimal mass blow-up solutions for the time-
dependent problem. In fact, (10) implies the local integrability of (k(x) +a∗)−d/2 (note that if (k(x) +a∗)−d/2

is integrable, then by following the proof of Theorem 1 (i) we can prove that Ek > 0; see Remark 5). However, 
(10) never happens if k ∈ C2. From our analysis, the case

k ∈ C2, ∇2k(x0) 
= 0 (11)

is still missing, and it is indeed related to an open question in [12, Remark after Prop. 5.4, page 76]. The 
difficult case (11) has been studied by Raphael-Szeftel [16] in the context of minimal mass blow-up solutions 
in R2, but it is not clear to us how to transfer their techniques to the ground state problem in the present 
paper.

Next, we concentrate on the existence case (i) in Theorem 1, and analyze the blow-up behavior when 
inf k tends to −a∗. To make the analysis rigorous, we need to impose some explicit behavior of k around its 
minima.

Assumption for the blow-up result. For the following blow-up theorem, we will assume that

k(x) = K(x) − a

with K : Rd → R a fixed function satisfying:

(i) inf K = 0 and K has finite minima {xj}Jj=1.
(ii) For any j, there exists pj > 0 such that

lim
x→xj

K(x)
|x− xj |pj

= λj > 0.

(iii) K−d/2 is integrable away from {xj}Jj=1, namely for any R > 0,
∫

minj |x−xj |>R

K(x)−d/2dx < ∞.

Let us denote p = max{p1, ..., pJ}, λ = min{λj : pj = p} and Z = {zj : pj = p, λj = λ} (the set of flattest 
minima of K).

Theorem 4 (Blow-up profile). We consider the variational problem (3) with k(x) = K(x) − a, where K
satisfies the above conditions with p > 2. Let Q0 = Q/‖Q‖L2 with Q be the unique positive radial solution 
to (6). Then we have

lim
a↑a∗

Ek

(a∗ − a)1−2/p = inf
ξ>0

⎡
⎣ξ2

∫
Rd

|Q0|2+4/d + ξ2−pλ

∫
Rd

|x|p|Q0|2+4/d

⎤
⎦ (12)

=

⎛
⎝λp

2

∫
|x|p|Q0|2+4/d

⎞
⎠

2/p ⎛
⎝ p

p− 2

∫
|Q0|2+4/d

⎞
⎠

1−2/p

.

Rd Rd
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Moreover, if ua is a minimizer for Ek, then for any sequence an ↑ a∗, there exist a subsequence an�
↑ a∗

and an element z ∈ Z (the set of flattest minima of k) such that up to a phase

lim
an�

↑a∗
(a∗ − an�

)d/(2p)uan�
(z + (a∗ − an�

)1/px) → bd/2Q0(bx) (13)

strongly in H1(Rd), where b is the optimizer for the right side of (12):

b =
(

(p− 2)λ
∫
Rd |x|p|Q0|2+4/d

2
∫
Rd |Q0|2+4/d

)1/p

.

Moreover, if Z has a unique element, then (13) holds true for the whole family a ↑ a∗.

As we will see from the proof of Theorem 4, when a ↑ a∗, although the ground state energy tends to 
0 as O((a∗ − a)1−2/p) by (12), the kinetic energy ‖∇ua‖2

L2 tends to infinity as O((a∗ − a)−2/p) (see (22)
below). This blow-up phenomenon is analogous to (2) in the time-dependent problem. Actually, we are able 
to provide exact details of the blow-up phenomenon by (12).

On one hand, our study can be seen as a complement of the previous works in the time-dependent 
problem [12,5,1,16]. On the other hand, the ground state problem is different and has its own difficulty. In 
the time-dependent problem, the energy functional is a constant in time, and the main interest is the blow-up 
behavior at the critical time. In this case, the a-priori information on the initial datum and the blow-up time 
is crucial for the analysis. In our problem, the energy functional has to be minimized under appropriate 
constraints, and the main interest is the blow-up behavior at the local minimum of the inhomogeneous 
function k(x). We have to work on the full functional space H1(Rd) where the minimization problem is 
formulated, and hence we are not granted any a-priori information on the ground states and the ground 
state energy. In particular, our results can not be obtained by following the techniques in the time-dependent 
problem.

In the following we will prove Theorem 1 in Section 2 and prove Theorem 4 in Section 3. The proof 
of Theorem 1 is based on the concentration-compactness method of Lions [8,9]. The proof of Theorem 4
is obtained by a concentration argument, inspired from the paper of Guo-Seiringer [4] who studied the 
blow-up profile of the Bose-Einstein condensation in 2D with the homogeneous nonlinearity (k = const) 
and a trapping potential V (x) = |x|s with s > 0 (see also [13] for a related result with attractive external 
potentials). Here our main task is to deal with the inhomogeneous nonlinearity, which makes the analysis 
both complicated and interesting in several places.

Acknowledgments

I would like to thank a referee for helpful suggestions.

2. Existence and nonexistence of minimizers

Proof of Theorem 1. (i) By the Gagliardo-Nirenberg inequality (5), for all u ∈ H1(Rd) with ‖u‖L2 = 1 we 
have

Ek(u) =
∫

|∇u(x)|2 +
∫

k(x)|u(x)|2+4/ddx

Rd Rd
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≥
∫
Rd

|∇u(x)|2 + min{inf k, 0}
∫
Rd

|u(x)|2+4/ddx

≥
(

1 + min{inf k, 0}
a∗

)∫
Rd

|∇u|2 ≥ 0.

Since inf k > −a∗, we deduce that Ek ≥ 0. Moreover, if {un} is a minimizing sequence for Ek, then {un}
is bounded in H1(Rd). By the Banach-Alaoglu theorem, up to a subsequence, we can assume that un ⇀ u

weakly in H1(Rd).
Let us prove that un → u strongly in L2(Rd). First, since un ⇀ u weakly in H1(Rd), Sobolev’s embedding 

theorem implies the local convergence

χ(|x| ≤ R)un → χ(|x| ≤ R)u strongly in L2(Rd) for every R > 0. (14)

Here χA is the characteristic function of the set A ⊂ Rd. On the other hand, by the Gagliardo-Nirenberg 
inequality (5) again we have

Ek(un) ≥
∫
Rd

|∇un|2 +
∫
Rd

k(x)|un|2+4/d ≥
∫
Rd

(k(x) + a∗)|un(x)|2+4/d.

Combining this with Holder’s inequality we find that

∫
|x|>R

|un|2 ≤

⎛
⎜⎝ ∫

|x|>R

(k(x) + a∗)|un(x)|2+4/d

⎞
⎟⎠

d/(d+2) ⎛
⎜⎝ ∫

|x|>R

1
(k(x) + a∗)d/2

⎞
⎟⎠

2/(d+2)

≤ (Ek(un))d/(d+2)

⎛
⎜⎝ ∫

|x|>R

1
(k(x) + a∗)d/2

⎞
⎟⎠

2/(d+2)

.

Since Ek(un) is bounded uniformly in n (as it converges to Ek) and (k(x) +a∗)−d/2 ∈ L1(Rd) by Assumption 
(7), we obtain the uniform convergence

sup
n

∫
|x|>R

|un|2 ≤ C

⎛
⎜⎝ ∫

|x|>R

1
(k(x) + a∗)d/2

⎞
⎟⎠

2/(d+2)

→ 0 (15)

as R → ∞ by Lebesgue Dominated Convergence Theorem. By the triangle inequality we can decompose

‖un − u‖L2(Rd) ≤ ‖χ(|x| ≤ R)(un − u)‖L2(Rd) + ‖χ(|x| > R)un‖L2(Rd) + ‖χ(|x| > R)u‖L2(Rd).

Taking n → ∞ and using (14) we get

lim sup
n→∞

‖un − u‖L2(Rd) ≤ lim sup
n→∞

‖χ(|x| ≤ R)(un − u)‖L2(Rd)

+ lim sup
n→∞

‖χ(|x| > R)un‖L2(Rd) + ‖χ(|x| > R)u‖L2(Rd)

≤ sup
n

‖χ(|x| > R)un‖L2(Rd) + ‖χ(|x| > R)u‖L2(Rd)
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for all R > 0. Since the left side is independent of R, we can take R → ∞ on the right side and conclude 
that

lim sup
n→∞

‖un − u‖L2(Rd) ≤ lim
R→∞

(
sup
n

‖χ(|x| > R)un‖L2(Rd) + ‖χ(|x| > R)u‖L2(Rd)

)
= 0.

Here we have used (15) for ‖χ(|x| > R)un‖L2 and Lebesgue Dominated Convergence Theorem for ‖χ(|x| >
R)u‖L2 . Thus un → u strongly in L2(Rd) as n → ∞.

Consequently, ‖u‖L2 = 1 since all un’s are normalized. Next, to deduce that u is a minimizer, it remains 
to prove that

lim inf
n→∞

Ek(un) ≥ Ek(u).

Since un ⇀ u weakly in H1(Rd) and un → u strongly in L2(Rd), by interpolation we deduce that un → u

strongly in Lp(Rd) for all 2 ≤ p < 2∗, where 2∗ is the critical power in Sobolev’s embedding theorem, i.e. 
2∗ = 2d/(d − 2) if d ≥ 3 and 2∗ = ∞ if d ≤ 2. In particular, we have un → u strongly in L2+4/d(Rd). Also, 
by Sobolev’s embedding theorem, up to a subsequence we can assume that un(x) → u(x) for a.e. x ∈ Rd. 
Thus by Fatou’s lemma and the fact that k(x) + a∗ ≥ 0, we have

lim inf
n→∞

∫
Rd

(k(x) + a∗)|un(x)|2+4/ddx ≥
∫
Rd

(k(x) + a∗)|u(x)|2+4/ddx.

Combining this with the strong convergence un → u in L2+4/d(Rd), we deduce that

lim inf
n→∞

∫
Rd

k(x)|un(x)|2+4/ddx ≥
∫
Rd

k(x)|u(x)|2+4/ddx.

Finally, since un ⇀ u weakly in H1(Rd), we have by Fatou’s lemma again (for the weak convergence in L2)

lim inf
n→∞

∫
Rd

|∇un(x)|2dx ≥
∫
Rd

|∇u(x)|2dx.

The latter two estimates show that

lim inf
n→∞

Ek(un) ≥ Ek(u),

which implies that u is a minimizer for Ek.

(ii) As in (i), since inf k > −a∗ we have

Ek(u) ≥
(

1 + min{inf k, 0}
a∗

)∫
Rd

|∇u|2 > 0

for all u ∈ H1(Rd) with ‖u‖L2 = 1. Thus Ek ≥ 0, and if we can prove, under Assumption (8), that Ek = 0, 
then clearly Ek has no minimizer.

Let us prove the upper bound Ek ≤ 0 using the variational principle with a suitable trial function u. 
Under Assumption (8), there exists a constant C > 0 such that

k(x) ≤ C(|x|2 + 1) for all x ∈ Rd.
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Therefore, by the variational principle

Ek ≤ Ek(u) ≤
∫
Rd

|∇u(x)|2dx + C

∫
Rd

(|x|2 + 1)|u(x)|2+4/ddx

for all u ∈ H1(Rd) with ‖u‖L2 = 1. Replacing u by u�(x) = �d/2u(�x), which satisfies the normalized 
condition ‖u�‖L2 = ‖u‖L2 = 1, we obtain by changing of variables

Ek ≤ Ek(u�) ≤
∫
Rd

|∇u�(x)|2dx + C

∫
Rd

(|x|2 + 1)|u�(x)|2+4/ddx

≤ �2
∫
Rd

|∇u(x)|2dx + C

∫
Rd

(|x|2 + �2)|u(x)|2+4/ddx

for all � > 0. Taking � → 0 we deduce that

Ek ≤ C

∫
Rd

|x|2|u(x)|2+4/ddx

for all u ∈ H1(Rd) with ‖u‖L2 = 1. Equivalently, we have

Ek ≤ C inf
ϕ∈H1(Rd),ϕ �≡0

∫
Rd |x|2|ϕ(x)|2+4/ddx(∫
Rd |ϕ(x)|2dx

)1+2/d .

Choosing

ϕ(x) = χ(|x| ≤ R)
(|x| + 1)d/2

,

we find that

|x|2|ϕ(x)|2+4/d ≤ |ϕ(x)|2

and hence

Ek ≤ C(∫
|x|≤R

(|x| + 1)−ddx
)2/d

for all R > 0. We conclude that

Ek ≤ lim
R→∞

C(∫
|x|≤R

(|x| + 1)−ddx
)2/d = 0

since (|x| + 1)−d is not integrable in Rd. Thus Ek = 0 but it has no minimizer.

(iii) Now assume that inf k = −a∗. Then by the Gagliardo-Nirenberg inequality (5) we have

Ek(u) ≥
∫
Rd

|∇u|2 − a∗
∫
Rd

|u|2+4/d ≥ 0

for all u ∈ H1(Rd) with ‖u‖L2 = 1. Thus Ek ≥ 0.
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Next, from (9), for any ε > 0 there exists r = rε > 0 such that

k(x) ≤ −a∗ + ε|x− x0|2, ∀x ∈ B(x0, r).

By the variational principle, for all u ∈ H1(Rd) supported on B(0, r) such that ‖u‖L2 = 1, we have

Ek ≤ Ek(u(.− x0)) =
∫
Rd

|∇u(x− x0)|2dx +
∫
Rd

k(x)|u(x− x0)|2+4/ddx

=
∫
Rd

|∇u(x)|2dx +
∫
Rd

k(x + x0)|u(x)|2+4/ddx

≤
∫
Rd

|∇u(x)|2dx +
∫
Rd

(ε|x|2 − a∗)|u(x)|2+4/ddx. (16)

We will use (16) with suitable trial functions u.
Let Q0 = Q/‖Q‖L2 be the (normalized) optimizer of the Gagliardo-Nirenberg inequality (5), i.e.

∫
Rd

|∇Q0|2 − a∗
∫
Rd

|Q0|2+4/d = 0. (17)

Take a smooth function w : Rd → [0, 1] such that w(x) = 1 for |x| ≤ r/2 and w(x) = 0 if |x| ≥ r. For any 
� > 0, denote

v�(x) = �d/2Q0(�x)w(x).

Then v� is supported on B(0, r) and ‖v�‖L2 ≤ ‖Q0‖L2 = 1. Moreover, since both Q0 and |∇Q0| are 
exponentially decay (see [2, Proposition 4.1]), we have

∫
Rd

|v�(x)|2dx =
∫
Rd

|Q0|2 + o(1)�→∞ = 1 + o(1)�→∞,

∫
Rd

|∇v�(x)|2dx = �2
∫
Rd

|∇Q0|2 + o(1)�→∞,

∫
Rd

|v�(x)|2+4/ddx = �2
∫
Rd

|Q0|2+4/d + o(1)�→∞

∫
Rd

|x|2|v�(x)|2+4/ddx ≤
∫
Rd

|x|2|Q0(x)|2+4/ddx.

Next, we use (16) with u = v�/‖v�‖L2 . Using ‖v�‖L2 ≤ 1 and the above computations, together with the 
important identity (17), we get

Ek ≤ 1
‖v�‖2

L2

∫
|∇v�(x)|2dx + 1

‖v�‖4
L2

∫
(ε|x|2 − a∗)|v�(x)|2+4/ddx
Rd Rd
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≤ 1
‖v�‖4

L2

⎛
⎝ ∫

Rd

|∇v�(x)|2dx +
∫
Rd

(ε|x|2 − a∗)|v�(x)|2+4/ddx

⎞
⎠

≤ (1 + o(1)�→∞)

⎛
⎝ε

∫
Rd

|x|2|Q0(x)|2+4/ddx + o(1)�→∞

⎞
⎠ .

Since Ek is independent of �, by taking � → ∞ we obtain

Ek ≤ ε

∫
Rd

|x|2|Q0(x)|2+4/ddx.

Since it holds for arbitrary ε > 0, by taking ε → 0 we conclude that Ek ≤ 0. Thus Ek = 0.
Finally, if Ek has a minimizer u0, then using inf k ≥ −a∗ and the Gagliardo-Nirenberg inequality (5) we 

have

0 = Ek(u0) ≥
∫
Rd

|∇u0|2 − a∗
∫
Rd

|u0|2+4/d ≥ 0

which implies that u0 is an optimizer of (5). This means u0 is equal to Q0 = Q/‖Q‖L2 up to translations and 
dilations, and in particular |u0(x)| > 0 for all x. On the other hand, by the Gagliardo-Nirenberg inequality 
(5) again, we have

0 = Ek(u0) ≥
∫
Rd

(k(x) + a∗)|u0|2+4/d ≥ 0.

Since k(x) + a∗ ≥ 0 and |u0(x)| > 0 for all x, we conclude that k(x) + a∗ = 0 for all x, namely k ≡ −a∗.

Remark 5. In the critical case inf k = −a∗, if (k(x) +a∗)−d/2 is integrable, then by using Hölder’s inequality 
as in the proof of (i), i.e.

∫
Rd

|u|2 ≤

⎛
⎝ ∫

Rd

(k(x) + a∗)|u(x)|2+4/d

⎞
⎠

d/(d+2) ⎛
⎝ ∫

Rd

1
(k(x) + a∗)d/2

⎞
⎠

2/(d+2)

≤ (Ek(u))d/(d+2)

⎛
⎝ ∫

Rd

1
(k(x) + a∗)d/2

⎞
⎠

2/(d+2)

,

we obtain Ek > 0. The degeneracy condition (9) basically rules out the local integrability of (k(x) +a∗)−d/2, 
and hence it is important to ensures that Ek = 0.

(iv) Now assume that inf k < −a∗. Since the function k is continuous, there exist ε > 0 and a ball 
B(x0, r) ⊂ Rd such that

k(x) ≤ −a∗ − ε, ∀x ∈ B(x0, r).

By the variational principle, we have
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Ek ≤ Ek(u(.− x0)) =
∫
Rd

|∇u(x)|2dx +
∫
Rd

k(x + x0)|u(x)|2+4/ddx

≤
∫
Rd

|∇u|2 − (a∗ + ε)
∫
Rd

|u|2+4/d (18)

for all u ∈ H1(Rd) supported on B(0, r) such that ‖u‖L2 = 1.
We will use (18) with suitable trial functions u. Let Q0 = Q/‖Q‖L2 be the (normalized) optimizer of the 

Gagliardo-Nirenberg inequality (5). Since
∫
Rd

|∇Q0|2 − a∗
∫
Rd

|Q0|2+4/d = 0

and C∞
c (Rd) is dense in H1(Rd), by approximating Q0 we can find a function ϕ ∈ C∞

c (Rd) such that 
‖ϕ‖L2 = 1 and

∫
Rd

|∇ϕ|2 − (a∗ + ε)
∫
Rd

|ϕ|2+4/d < 0. (19)

Next, for any � > 0 define

u�(x) = �d/2ϕ(�(x− x0)).

Since ϕ has compact support, if � > 0 is sufficiently large, then u� is supported on B(x0, r). Thus we can 
use (18) with the trial function u�, which gives

Ek ≤
∫
Rd

|∇u�|2 − (a∗ + ε)
∫
Rd

|u�|2+4/d

= �2

⎛
⎝ ∫

Rd

|∇ϕ|2 − (a∗ + ε)
∫
Rd

|ϕ|2+4/d

⎞
⎠

for all � > 0 sufficiently large. Taking � → ∞ and using (19) we conclude that Ek = −∞. �
3. Blow-up analysis

Proof of Theorem 4. Step 1: Energy upper bound. This is done similarly as in the proof of Theorem 1. 
Without loss of generality let us assume that x1 ∈ Z. Then for any ε > 0, there exists r = rε > 0 such that

k(x) ≤ (λ + ε)|x− x1|p − a, ∀x ∈ B(x1, r).

Then by the variational principle, for any u ∈ H1(Rd), supported on B(0, r) with ‖u‖L2 = 1 we have

Ek ≤ Ek(u(.− x1)) ≤
∫
Rd

|∇u(x)|2 +
∫
Rd

((λ + ε)|x|p − a)|u(x)|2+4/ddx. (20)

Now we choose a trial function u. Let Q0 = Q/‖Q‖L2 be the (normalized) optimizer of the Gagliardo-
Nirenberg inequality (5). Take a smooth function w : Rd → [0, 1] such that w(x) = 1 for |x| ≤ r/2 and 
w(x) = 0 if |x| ≥ r. In (20) we choose
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u = v�/‖v�‖L2 , with v�(x) = �d/2Q0(�x)w(x).

Since both Q0 and |∇Q0| are exponentially decay (see [2, Proposition 4.1]), we have

∫
Rd

|v�(x)|2dx =
∫
Rd

|Q0|2 + o(�−∞)�→∞,

∫
Rd

|∇v�(x)|2dx = �2
∫
Rd

|∇Q0|2 + o(�−∞)�→∞,

∫
Rd

|v�(x)|2+4/ddx = �2
∫
Rd

|Q0|2+4/d + o(�−∞)�→∞,

∫
Rd

|x|p|v�(x)|2+4/ddx ≤ �2−p

∫
Rd

|x|p|Q0(x)|2+4/ddx.

Here o(�−∞)�→∞ means an error smaller than any polynomial decay o(�−s) with s > 0. Combining with 
‖v�‖L2 ≤ 1 and (17), we get from (20) that

Ek ≤ 1
‖v�‖2

L2

∫
Rd

|∇v�(x)|2dx + 1
‖v�‖4

L2

∫
Rd

((λ + ε)|x|p − a)|v�(x)|2+4/ddx

≤ 1
‖v�‖4

L2

⎛
⎝ ∫

Rd

|∇v�(x)|2dx +
∫
Rd

((λ + ε)|x|p − a)|v�(x)|2+4/ddx

⎞
⎠

≤ (1 + o(�−∞)�→∞)×

×

⎛
⎝�2(a∗ − a)

∫
Rd

|Q0|2+4/d + �2−p(λ + ε)
∫
Rd

|x|p|Q0|2+4/d + o(�−∞)�→∞

⎞
⎠ .

Choosing

� = (a∗ − a)−1/pξ

with a constant ξ > 0 independent of a, we obtain

lim sup
a↑a∗

Ek

(a∗ − a)1−2/p ≤ ξ2
∫
Rd

|Q0|2+4/d + ξ2−p(λ + ε)
∫
Rd

|x|p|Q0|2+4/d.

Since ξ > 0 and ε > 0 can be chosen arbitrarily, we conclude that

lim sup
a↑a∗

Ek

(a∗ − a)1−2/p ≤ inf
ξ>0

⎡
⎣ξ2

∫
Rd

|Q0|2+4/d + ξ2−pλ

∫
Rd

|x|p|Q0|2+4/d

⎤
⎦ .

The right side is attained its minimum value at

ξ0 =
(

(p− 2)λ
∫
Rd |x|p|Q0|2+4/d

2
∫

d |Q0|2+4/d

)1/p

=
(

(p− 2)λ
∫
Rd |x|p|Q|2+4/d

2
∫

d |Q|2+4/d

)1/p

,

R R
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and hence

lim sup
a↑a∗

Ek

(a∗ − a)1−2/p ≤

⎛
⎝λp

2

∫
Rd

|x|p|Q0|2+4/d

⎞
⎠

2/p ⎛
⎝ p

p− 2

∫
Rd

|Q0|2+4/d

⎞
⎠

1−2/p

. (21)

Step 2: Kinetic energy estimates. Now take ua be a minimizer for Ek with k = K−a. When a is sufficiently 
close a∗, let us prove that

C(a∗ − a)−2/p ≥
∫
Rd

|∇ua|2 ≥ a∗
∫
Rd

|ua|2+4/d ≥ C−1(a∗ − a)−2/p (22)

for a constant C > 0 independent of a.
Using the Gagliardo-Nirenberg inequality (5) we have

Ek = Ek(ua) =
∫
Rd

|∇ua|2 − a

∫
Rd

|ua|2+4/d +
∫
Rd

K|ua|2+4/d

≥
(
1 − a

a∗

) ∫
Rd

|∇ua|2 +
∫
Rd

K|ua|2+4/d. (23)

Since K ≥ 0 we have

Ek ≥
(
1 − a

a∗

) ∫
Rd

|∇ua|2

and the first inequality in (22) follows from the energy upper bound (21). The second inequality in (22) is 
exactly the Gagliardo-Nirenberg inequality (5). The most difficult part is the third inequality in (22). Inspired 
by Guo-Seiringer [4] (see also [13]), we will prove that a substantial part of the mass of ua concentrates 
close to the minima xj of K. However, the perturbation method in [4,13] does not work in our case and we 
have to develop new ideas in the proof below.

Our key point is to use the fact that K(x)−d/2 is integrable away from the minima xj. To be precise, for 
r > 0 small let us denote

Ar = {x ∈ Rd : |x− xj | ≥ r for all j = 1, 2, ..., J}.

From the assumption on K, we know that if 0 < r < R small, then

K(x) ≤ C max
j

|x− xj |p, ∀x ∈ Ar \AR

and K(x)−d/2 is integrable on AR. We will take R small but fixed (independent of a) and choose r = ra
small. Consequently,
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∫
Ar

K(x)−d/2dx =
∫

Ar\AR

K(x)−d/2dx +
∫
AR

K(x)−d/2dx

≤ C
∑
j

∫
r≤|x−xj |≤R

|x− xj |−dp/2dx + CR

≤ Crd(1−p/2) (24)

for a constant C > 0 independent of r.
Now we estimate the mass of ua away from minima {xj} using Holder’s inequality

∫
Ar

|ua|2 ≤

⎛
⎝ ∫

Ar

K|ua|2+4/d

⎞
⎠

d/(d+2) ⎛
⎝ ∫

Ar

K−d/2

⎞
⎠

2/(d+2)

. (25)

From (23) and the upper bound on Ek in (21) we have
∫
Ar

K|ua|2+4/d ≤
∫
Rd

K|ua|2+4/d ≤ Ek ≤ C(a∗ − a)1−2/p.

Combining with (24) we obtain from (25) that
∫
Ar

|ua|2 ≤
(
C(a∗ − a)1−2/p

)d/(d+2) (
Crd(1−p/2)

)2/(d+2)

= C

[
r

(a∗ − a)1/p

] d
d+2 (2−p)

.

Since p > 2, if we choose

r = C0(a∗ − a)1/p (26)

with a big, fixed constant C0 > 0, then we conclude that∫
Ar

|ua|2 ≤ 1
2 .

Since ‖ua‖L2 = 1, the latter bound is equivalent to
∫

Rd\Ar

|ua|2 ≥ 1
2 . (27)

Finally, using Hölder’s inequality again (with the above choice (26) of r) we have

1
2 ≤

∫
Rd\Ar

|ua|2 ≤

⎛
⎜⎝ ∫

Rd\Ar

|ua|2+4/d

⎞
⎟⎠

d/(d+2) ⎛
⎜⎝ ∫

Rd\Ar

1

⎞
⎟⎠

2/(d+2)

≤

⎛
⎝ ∫

Rd

|ua|2+4/d

⎞
⎠

d/(d+2)

(Crd)2/(d+2),
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which implies the third inequality in (22)
∫
Rd

|ua|2+4/d ≥ C−1(a∗ − a)−2/p.

Step 3: Convergence of minimizers by compactness argument. We recall the following well-known compact-
ness results for the variational problem

0 = inf

⎧⎨
⎩

∫
Rd

|∇u|2 − a∗
∫
Rd

|u|2+4/d : u ∈ H1(Rd), ‖u‖L2 = 1

⎫⎬
⎭ . (28)

Lemma 6. Let {ϕn} be a minimizing sequence for the variational problem (28) such that

C−1 ≤
∫
Rd

|∇ϕn|2 ≤ C

for a constant C > 0 independent of n. Then up to a subsequence when n → ∞, there exist θ ∈ R, b > 0
and {zn} ⊂ Rd such that

ϕn(x− zn) → eiθbd/2Q0(bx)

strongly in H1(Rd).

This lemma follows from the standard concentration-compactness method [8,9] (see e.g. [14, Appendix 
A] for a detailed explanation).

To apply Lemma 6, we need to rescale ua to ensures that its kinetic energy is of order 1. Denote

va(x) = (a∗ − a)d/(2p)ua((a∗ − a)1/px),

i.e.

ua(x) = (a∗ − a)−d/(2p)va((a∗ − a)−1/px).

Using K ≥ 0 we obtain

Ek ≥
∫
Rd

|∇ua|2 − a

∫
Rd

|ua|2+4/d

= (a∗ − a)−2/p

⎡
⎣ ∫

Rd

|∇va|2 − a

∫
Rd

|va|2+4/d

⎤
⎦ .

Combining with the upper bound on Ek in (21), we find that
∫
Rd

|∇va|2 − a

∫
Rd

|va|2+4/d ≤ C(a∗ − a) → 0.

Thus {va} is a minimizing sequence for the variational problem (28) as a ↑ a∗. Moreover, from the kinetic 
estimate (22) from Step 2, we find that
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C−1 ≤
∫
Rd

|∇va|2 ≤ C

for a constant C > 0 independent of a. Thus by Lemma 6, up to a subsequence (i.e. an ↑ a∗, but we will 
write a ↑ a∗ for simplicity) and up to a phase, there exist a constant b > 0 and a sequence {za} ⊂ Rd such 
that

va(x− za) → bd/2Q0(bx) (29)

strongly in H1(Rd) as a ↑ a∗.

Step 4: Determination of {za}. Now let us give more information on the sequence {za} in (29). Recall (27)
which implies that

∑
j

∫
|x−xj |≤r

|ua|2 ≥ 1
2 .

Recalling the choice (26) of r and the definition of va, we obtain, by the change of variable y = (a∗ −
a)−1/px + za,

∑
j

∫
|y−za−(a∗−a)−1/pxj |≤C0

|va(y − za)|2 ≥ 1
2 .

From the strong convergence (29), we deduce that

∑
j

∫
|y−za−(a∗−a)−1/pxj |≤C0

bd|Q0(by)|2 ≥ 1
2 .

Thus we can find some j0 ∈ {1, 2, ..., J} such that

∫
|y−za−(a∗−a)−1/pxj0 |≤C0

bd|Q0(by)|2 ≥ 1
2J > 0

along a subsequence a ↑ a∗. Since Q0 exponentially decays, the latter bound implies that za+(a∗−a)−1/pxj0

is bounded. Thus up to a subsequence again, we can find x0 ∈ Rd such that

za + (a∗ − a)−1/pxj0 → x0.

Since the translation action is continuous in L2(Rd), we can eventually replace za by x0 − (a∗ − a)−1/pxj0

in (29) and obtain

va(x + (a∗ − a)−1/pxj0 − x0) → bd/2Q0(bx) (30)

strongly in H1(Rd) as a ↑ a∗.
In the following we will prove that xj0 ∈ Z (the set of flattest minima), x0 = 0 and determine b exactly. 

All this requires an exact asymptotic analysis of the energy Ek. The sharp upper bound has been given in 
Step 1, and now we focus on the matching lower bound.
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Step 5: Energy lower bound. Using the Gagliardo-Nirenberg inequality (5) as in (23) and putting back the 
definition of va, we have

Ek = Ek(ua) ≥ (a∗ − a)
∫
Rd

|ua|2+4/d +
∫
Rd

K|ua|2+4/d

= (a∗ − a)1−2/p
∫
Rd

|va|2+4/d

+ (a∗ − a)−2/p
∫
Rd

K(xj0 + (a∗ − a)1/px)× (31)

× |va(x + (a∗ − a)−1/pxj0)|
2+4/d

dx.

The first term on the right side of (31) can be estimated exactly using (30) and Sobolev’s embedding 
theorem, i.e. ∫

Rd

|va|2+4/d →
∫
Rd

|bd/2Q0(bx)|2+4/ddx = b2
∫
Rd

|Q0|2+4/d.

To deal with the second term on the right side of (31), let us use the local information of K around its 
minima xj0 :

lim
x→xj0

K(x)
|x− xj0 |pj0

= λj0 > 0,

or putting differently,

lim
a↑a∗

K(xj0 + (a∗ − a)1/px)
((a∗ − a)1/p|x|)pj0

= λj0 , for all x ∈ Rd.

Moreover, the convergence (30) implies that, up to a subsequence,

va(x + (a∗ − a)−1/pxj0) → bd/2Q0(b(x + x0)) for a.e. x ∈ Rd.

Thus we have the pointwise convergence

lim
a↑a∗

(a∗ − a)−pj0/pK(xj0 + (a∗ − a)1/px)|va(x + (a∗ − a)−1/pxj0)|2+4/d

= λj0 |x|pj0

(
bd/2Q0(b(x + x0))

)2+4/d
.

Therefore, we can estimate the second term on the right side of (31) using Fatou’s lemma

lim inf
a↑a∗

(a∗ − a)−pj0/p

∫
Rd

K(xj0 + (a∗ − a)1/px)|va(x + (a∗ − a)−1/pxj0)|2+4/d

≥
∫
Rd

λj0 |x|pj0

(
bd/2Q0(b(x + x0))

)2+4/d

= λj0b
2−pj0

∫
Rd

|x|pj0 |Q0(x + bx0)|2+4/ddx.
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In summary, we deduce from (31) that

Ek ≥ (a∗ − a)1−2/p

⎡
⎣b2 ∫

Rd

|Q0|2+4/d + o(1)a→a∗

⎤
⎦

+ (a∗ − a)pj0/p−2/p

⎡
⎣λj0b

2−pj0

∫
Rd

|x|pj0 |Q0(x + bx0)|2+4/ddx + o(1)a→a∗

⎤
⎦ .

Here we know by a-priori that pj0 ≤ p. However, if pj0 < p, then

(a∗ − a)pj0/p−2/p � (a∗ − a)1−2/p

in the limit a ↑ a∗, leading to a contradiction to the upper bound (21) in Step 1. Thus we must have

pj0 = p

and hence

lim inf
a↑a∗

Ek

(a∗ − a)1−2/p ≥ b2
∫
Rd

|Q0|2+4/d

+ λj0b
2−p

∫
Rd

|x|p|Q0(x + bx0)|2+4/ddx. (32)

Step 6: Conclusion. Combining the upper bound (21) and the lower bound (32) we find that

b2
∫
Rd

|Q0|2+4/d + λj0b
2−p

∫
Rd

|x|p|Q0(x + bx0)|2+4/ddx

≤ inf
ξ>0

⎡
⎣ξ2

∫
Rd

|Q0|2+4/d + λξ2−p

∫
Rd

|x|p|Q0(x)|2+4/ddx

⎤
⎦ . (33)

Since pj0 = p, by the definition of λ we have

λj0 ≥ λ

where the equality happens if and only if xj0 ∈ Z (the set of flattest minima). Moreover, since Q0 is radially 
symmetric decreasing and |x|p is radially symmetric (strictly) increasing, by the rearrangement inequality 
(see [7, Theorem 3.4 and the associated remark]) we have

∫
Rd

|x|p|Q0(x + bx0)|2+4/d ≤
∫
Rd

|x|p|Q0(x)|2+4/ddx

with the equality happens if and only if x0 = 0. From the matching identity (33) we conclude that

xj0 ∈ Z, x0 = 0
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and b is exactly the optimal value on the right side of (33)

b = ξ0 =
(

(p− 2)λ
∫
Rd |x|p|Q|2+4/d

2
∫
Rd |Q|2+4/d

)1/p

.

Thus we have proved the desired energy convergence from (21)-(32)

lim inf
a↑a∗

Ek

(a∗ − a)1−2/p = inf
ξ>0

⎡
⎣ξ2

∫
Rd

|Q0|2+4/d + λξ2−p

∫
Rd

|x|p|Q0(x)|2+4/ddx

⎤
⎦

and the ground state convergence from (30)

va(x + (a∗ − a)−1/pxj0) → bd/2Q0(bx),

strongly in H1(Rd), which is equivalent to (13):

(a∗ − a)d/(2p)ua(xj0 + (a∗ − a)1/px) → bd/2Q0(bx).

So far, we have to prove these convergences up to a subsequence an ↑ a∗. However, since the limit in 
the energy convergence is unique, the energy convergence holds for the whole family a ↑ a∗. Moreover, if Z
has a unique element, then the limit of the ground state convergence is also unique, and the ground state 
convergence holds for the whole family a ↑ a∗. This ends the proof. �
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