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In this paper we study the existence and multiplicity of positive solutions for the 
Schrödinger-Poisson system with critical growth:

⎧⎪⎨⎪⎩
−ε2Δu + V (x)u = f(u) + |u|3uφ, x ∈ R3,

−ε2Δφ = |u|5, x ∈ R3,

u ∈ H1(R3), u(x) > 0, x ∈ R3,

where ε > 0 is a parameter, V : R3 → R is a continuous function and f : R → R
is a C1 function. Under a global condition for V we prove that the above problem 
has a ground state solution and relate the number of positive solutions with the 
topology of the set where V attains its minimum, by using variational methods.

© 2020 Published by Elsevier Inc.

1. Introduction

In this paper we are concerned with the following Schrödinger-Poisson system involving critical growth⎧⎪⎪⎨⎪⎪⎩
−ε2Δu + V (x)u = f(u) + |u|3uφ, x ∈ R3,

−ε2Δφ = |u|5, x ∈ R3,

u ∈ H1(R3), u(x) > 0, x ∈ R3,

(1.1)

where ε > 0 is a parameter, V and f are satisfied some suitable conditions which will be stated below.
The investigation of equation (1.1) is motivated by recent studies of Schrödinger-Poisson system{

−Δu + bu + λφg(u) = f(u), x ∈ R3,

−Δφ = 2G(u), x ∈ R3,
(1.2)
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where the functions g(u) and G(u) satisfy |g(u)| ≤ C(|u| + |u|q) for some q ∈ [1, 4), G(u) =
∫ u
0 g(t)dt, and 

f(u) satisfies |f(u)| ≤ C(|u| + |u|p) for some p ∈ (1, 5]. Eq. (1.2) arises in many interesting mathematical 
physics contexts, such as in quantum electro-dynamics, to describe the interaction between a charge particle 
interacting with electromagnetic field, and also in semi-conductor theory, in nonlinear optics and in plasma 
physics. We refer to [7,4,12,34] for more details on physical aspects.

For subcritical nonlinearity f with p ∈ (1, 5) and subcritical nonlocal term g with q ∈ [1, 4), problem 
(1.2) was studied by several authors, see for instance, [8,28]. In [8], system (1.2) on bounded domain Ω ⊂ R3

was considered for positive and negative value of λ. In [28] system (1.2) was studied and it was showed that 
there exists a positive solution for small λ ≥ 0. When g(u) = u4, Li, Li and Shi [26] proved the existence of 
positive solutions to (1.2) by using variational method which does not require usual compactness condition. 
Later, in [27] they studied the existence, nonexistence and multiplicity of positive solutions to (1.2) are 
influenced on the parameter ranges of λ.

Recently, Azzollini, d’Avenia and Vaira [10] considered the following Schrödinger-Newton type system 
which is equivalent to a nonlocal version of the well known Brezis Nirenberg problem⎧⎪⎪⎨⎪⎪⎩

−Δu = λu + |u|2∗−3uφ, in Ω,

−Δφ = |u|2∗−1, in Ω,

u = φ = 0 on ∂Ω
(1.3)

where Ω ⊂ RN , N ≥ 3 is a smooth bounded domain. They studied the existence and nonexistence results of 
positive solutions when N = 3 and existence of solutions in both resonance and the non-resonance case for 
higher dimensions. In [31], Liu studied the following asymptotically periodic Schrödinger-Poisson system 
with critical exponent {

−Δu + V (x)u−K(x)φ|u|3u = f(x, u) in R3,

−Δφ = K(x)|u|5, in R3,
(1.4)

where V, K, f are asymptotically periodic functions of x. The author proved the existence of positive solutions 
to (1.4) by the mountain pass theorem and the concentration-compactness principle.

In the special case g(u) = u, system (1.2) reduces to the following well known Schrödinger-Poisson system{
−Δu + V (x)u + λφ(x)u = f(x, u) in R3,

−Δφ = u2, in R3,
(1.5)

which has been studied by many authors, see for example, [7,4,6,18,16,25,34,36–38,43,44,47,48] and the 
references therein. In [5,7,36], the existence and multiplicity of positive solutions were considered for various 
λ and p; when V depends on x and is not radial, and f is asymptotically linear at infinity, the existence of 
positive solution for small λ and the nonexistence of nontrivial solution for large λ were obtained in [43]; 
when V depends on x, the existence of a sign-changing solution was proved in [44]; when V depends on 
x and is sign-changing, the existence and multiplicity were investigated in [47]; existence of a nontrivial 
solution and concentration results were showed in [23,42,48]. Moreover, the ground state solutions for (1.5)
were considered in [9]; the ground and bound state solutions for system (1.5) were studied in [24,38].

We notice that, in all the papers aforementioned, only few papers like [26,27,31] deal with problem (1.4)
which is involved with the critical growth for the nonlocal term. The purpose of this paper is to prove that 
system (1.1) has a ground state solution and relate the number of positive solutions with the topology of the 
set where V attains its minimum. By using variational method and the Ljusternik-Schnirelmann category 
theory we shall establish the multiplicity of positive solutions to system (1.1) concentrating at the minimum 
points set of the potential V , when parameter ε is small enough. To the best of our knowledge, there is 
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not any results for system (1.1) on the existence, multiplicity and concentration of positive solutions in the 
literature.

We remark that the lack of compactness caused by the unboundedness of the whole space R3 and the 
critical growth in the nonlocal term φu|u|3u (see Section 2), makes the situation more complicated to handle 
with system (1.1). To overcome these obstacles, we shall transform system (1.1) into a nonlinear Schrödinger 
equation with a non-local term and apply the variational methods. The compactness involving Palais-Smale 
sequences are recovered by adopting some more delicate analysis and tricks.

In order to state the main result, we introduce some basics assumptions on the functions V and f . For 
the potential V , we assume that V : R3 → R is a continuous function satisfying

(V ) 0 < V0 = infx∈R3 V (x) < lim inf |x|→∞ V (x) := V∞.

This kind of hypothesis was first introduced by Rabinowitz [35] in the study of a nonlinear Schrödinger 
equation, and in this paper we shall consider the case V∞ < ∞ or V∞ = ∞. Since we are only concerned 
with positive solutions of (1.1), we may assume that f : R → R is a function of C1 class and satisfies the 
following conditions:

(f1) f(s) = 0 for all s < 0;
(f2) lims→0+

f(s)
s = 0;

(f3) there exists q ∈ (3, 5) verifying lims→∞
f(s)
sq = 0;

(f4) ∃θ > 4 such that 0 < θF (s) := θ
∫ s
0 f(τ)dτ ≤ sf(s) for all s > 0;

(f5) the function s → f(s)
s3 is increasing in (0, ∞).

The assumptions on V and f are quite natural in this context. Assumption (V ) was first employed in 
[35] to take into account potentials which are possibly not coercive. Hypothesis (f1) is not restrictive since 
we are concerned with positive solutions, and (f2) − (f5) are indispensable to use variational techniques 
which involve in the Palais-Smale condition, the Mountain Pass Theorem and the Nehari manifold. For this 
aim, we recall that {un} is a Palais-Smale sequence for a C1 functional I at level c ∈ R, if I(un) → c and 
I ′(un) → 0. We shall abbreviate this by saying that {un} is a (PS)c sequence. Furthermore, the functional 
I is said to satisfy the Palais-Smale condition at level c, if every (PS)c sequence has a strongly convergent 
subsequence.

In order to relate the number of solutions of (1.1) with the topology of the set of minima of the potential 
V , we introduce the set of global minima of V given by

M = {x ∈ R3 : V (x) = V0 = inf
x∈R3

V (x)}.

In view of (V ), the set M is compact. For any δ > 0, we denote by Mδ = {x ∈ R3 : dist(x, M) ≤ δ} the 
closed δ-neighborhood of M .

Theorem 1.1. Suppose that f satisfies (f1) −(f5) and V verifies (V ). Then, for any δ > 0, there exists εδ > 0
such that, for any ε ∈ (0, εδ), problem (1.1) has at least catMδ

(M) positive solutions, for any ε ∈ (0, εδ). 
Moreover, if uε denotes one of these positive solutions and ηε ∈ R3 its global maximum point, then

lim
ε→0

V (ηε) = V0.

We recall that if Y is a closed subset of a topological space X, the Ljusternik-Schnirelmann category 
catX(Y ) (if X = Y we just write cat(X)) is the least number of closed and contractible sets in X which 
cover Y .
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In order to obtain multiple solutions for (1.1), we use some techniques introduced by some papers of 
Benci, Cerami [11], and Cingolani, Lazzo [17]. The main idea is to make precisely comparisons between 
the category of some sublevel sets of the energy functional of (1.1) and the category of the set M . For 
more applications of the Ljusternik-Schnirelmann theory on the study of Schrödinger equations, p-Laplace 
equations, quasilinear equations, we refer the reader to [1,2,20,21] and references therein.

The paper is organized as follows. In Section 2 we present the abstract framework of the system as well 
as some preliminary results and present some compactness properties of the functional of the autonomous 
problem. In Section 3 we prove system (1.1) has a positive ground state solution. Section 4 is devoted to 
the proof of Theorem 1.1. A technical lemma is given in the Appendix.

As a matter of notation, we denote with Br(y), respectively Br, the ball in RN with radius r > 0 centered 
in y, respectively in 0. The Lp-norm in RN is simply denoted with | · |p. If we need to specify the domain, 
let us say A ⊂ RN , we write | · |Lp(A). From now on, the letter C, C1, i = 1, 2, · · · , will be repeatedly used 
to denote various positive constants whose exact values are irrelevant.

2. The variational framework and preliminary results

2.1. Variational framework and notations

Throughout the paper we suppose that the functions V and f satisfy conditions (V ) and (f1) − (f5), 
respectively. To fix some notations, we denote the standard norm of H1(R3) by

||u||2 =
∫
R3

(|∇u|2 + u2)dx,

and the norm of D1,2(R3) by

||u||2D1,2(R3) =
∫
R3

|∇u|2dx.

For every u ∈ H1(R3), and any fixed ε > 0, the Lax-Milgram theorem implies that there exists a unique 
φu ∈ D1,2(R3) such that (e.g. [31])

−ε2Δφu = |u|5. (2.1)

Moreover,

φu(x) = 1
4πε2

∫
R3

|u(y)|5
|x− y|dy. (2.2)

We next summarize some properties about the solution φu of the Poisson equation in (1.1) which will be 
useful in the following.

Lemma 2.1. For any u ∈ H1(R3)\{0}, there exists a unique φu ∈ D1,2(R3) which is the solution of

−Δφ = |u|5 in R3, (2.3)

and φu can be expressed as the form
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φu(x) = 1
4π

∫
R3

|u(y)|5
|x− y|dy. (2.4)

Moreover,

(i) φu(x) > 0 for x ∈ R3;
(ii) |∇φu|22 =

∫
R3 φu|u|5dx;

(iii) for any t > 0, φtu = t5φu;
(iv) |∇φu|2 ≤ S−3|∇u|52, where S = infv∈H1(R3)\{0} |∇v|22/|v|26;
(v) |∇φu|22 ≥ 2δ|u|66 − δ2|∇u|22 for any δ > 0;
(vi) for any u, v ∈ D1,2(R3),

∫
R3

φu|v|5dx =
∫
R3

φv|u|5dx;

(vii) for every u, u1, u2, ·, uk ∈ H1(R3),

∣∣∣∣∣φu −
k∑

i=1
φui

∣∣∣∣∣
6

≤ 1
S

∣∣∣∣∣|u|5 −
k∑

i=1
|ui|5
∣∣∣∣∣
6
5

;

(viii) if {un} ⊂ H1(R3) and u ∈ H1(R3) are such that un ⇀ u in H1(R3) and un → u a.e. in R3 as 
n → ∞, then φun

⇀ φu in D1,2(R3). Moreover,

∫
R3

φun
|un|5dx−

∫
R3

φun−u|un − u|5dx =
∫
R3

φu|u|5dx + on(1).

Proof. The existence and uniqueness of φu follows from the Lax-Milgram theorem. The conclusions (i), (ii) 
and (iii) are clear from the definition of φu and (2.3)-(2.4).

(iv) Multiplying (2.3) by φu, integrating and using Hölder inequality, we have

|∇φu|22 =
∫
R3

φu|u|5dx ≤ |φu|6|u|56 ≤ S−3|∇u|52|∇φu|2

and then (iv) holds.
(v) Multiplying (2.3) by |u| and integrating, we have

|u|66 =
∫
R3

∇φu∇|u|dx ≤ 1
2δ |∇φu|22 + δ

2 |∇u|22 for any δ > 0

and so (v).
(vi) We observe that for any u, v ∈ D1,2(R3), one has

∫
R3

φv|u|5dx =
∫
R3

∇φu∇φvdx =
∫
R3

φu|v|5dx,

and then (vi) follows.
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(vii) By the definition of S, properties (ii) and (vi), and the Hölder inequality, we get∣∣∣∣∣φu −
k∑

i=1
φui

∣∣∣∣∣
2

6

≤ 1
S

∣∣∣∣∣∇(φu −
k∑

i=1
φui

)

∣∣∣∣∣
2

2

= 1
S

∫
R3

(φu −
k∑

i=1
φui

)(|u|5 −
k∑

i=1
|ui|5)dx

≤ 1
S

∣∣∣∣∣φu −
k∑

i=1
φui

∣∣∣∣∣
6

∣∣∣∣∣|u|5 −
k∑

i=1
|ui|5
∣∣∣∣∣
6
5

and (vii) follows.
(viii) For any v ∈ H1(R3) ↪→ D1,2(R3), using un ⇀ u in L6(R3) and un → u a.e. in R3, we have 

|un|5 ⇀ |u|5 in L
6
5 (R3). Thus

(φun
, v)D1,2(R3) =

∫
R3

|un|5vdx →
∫
R3

|u|5vdx = (φu, v)D1,2(R3).

Therefore, φun
⇀ φu in D1,2(R3). Furthermore, by applying (vi) we get∫

R3

φun
|un|5dx−

∫
R3

φun−u|un − u|5dx

=
∫
R3

(φun
− φun−u)(|un|5 − |un − u|5)dx

+ 2
∫
R3

(φun
− φun−u)|un − u|5dx

(2.5)

An easy variant of the classical Brezis-Lieb Lemma (e.g. Lemma 2.5 [32]) yields that

|un|5 − |un − u|5 → |u|5 in L
6
5 (R3) as n → ∞

and applying (vii) we get

φun
− φun−u → φu in L6(R3) as n → ∞. (2.6)

Therefore, ∫
R3

(φun
− φun−u)(|un|5 − |un − u|5)dx →

∫
R3

φu|u|5dx as n → ∞. (2.7)

Moreover, applying Proposition 5.4.7 [46], we have |un − u| ⇀ 0 in L
6
5 (R3). Hence, since φu ∈ L6(R3) and 

using also (2.6), ∫
R3

(φun
− φun−u)|un − u|5dx

=
∫

(φun
− φun−u − φu)|un − u|5dx +

∫
φu|un − u|5dx → 0

(2.8)
R3 R3
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as n → ∞. Combining (2.5)-(2.8) we get (viii). �
Making the change of variable εz = x, we can rewrite (1.1) as the following equivalent equation⎧⎨⎩−Δu + V (εx)u = f(u) + |u|3uφu, x ∈ R3,

u ∈ H1(R3), u(x) > 0, x ∈ R3.
(2.9)

For any ε > 0, let Hε = {u ∈ H1(R3) :
∫
R3 V (εx)u2 < ∞} be the Sobolev space endowed with the norm

||u||2ε =
∫
R3

(|∇u|2 + V (εx)u2)dx.

At this step, we see that (2.9) is variational and its solutions are the critical points of the functional 
Iε : H1(R3) → R given by

Iε(u) = 1
2

∫
R3

(|∇u|2 + V (εx)u2)dx−
∫
R3

F (u)dx− 1
10

∫
R3

φu+ |u+|5dx. (2.10)

Moreover, Iε belongs to C1(Hε, R).
Next, we define the Nehari manifold [45] associated to Iε by

Nε =

⎧⎨⎩u ∈ Hε\{0} :
∫
R3

(|∇u|2 + V (εx)u2dx =
∫
R3

f(u)udx +
∫
R3

φu+ |u+|5dx

⎫⎬⎭ ,

and consider the following minimization problem

cε = inf
u∈Nε

Iε(u).

As we shall see in the sequel, it is important to compare the minimax value cε with the mountain pass level 
of the autonomous system ⎧⎪⎪⎨⎪⎪⎩

− Δu + μu = f(u) + φ|u|3u in R3,

− Δφ = |u|5 in R3,

u ∈ H1(R3), u(x) > 0, ∀x ∈ R3,

(2.11)

where μ ∈ R+. The solutions of (2.11) are precisely critical points of the functional defined by

Eμ(u) = 1
2

∫
R3

(|∇u|2 + μu2)dx−
∫
R3

F (u)dx− 1
10

∫
R3

φu+ |u+|5dx.

Let Mμ be the Nehari manifold of Eμ given by

Mμ =

⎧⎨⎩u ∈ Hμ\{0} :
∫
R3

(|∇u|2 + μu2)dx =
∫
R3

f(u)udx +
∫
R3

φu+ |u+|5dx

⎫⎬⎭ ,

where Hμ = H1(R3) is endowed with the norm ||u||2μ =
∫

3(|∇u|2 + μu2)dx. We define mμ by setting
R
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mμ = inf
u∈Mμ

Eμ(u).

The number mμ and the manifold Mμ have properties similar to those of cε and Nε.

2.2. Technical results

In this subsection we will show some lemmas concerned to the functional Iε. Firstly, we have the following 
properties of the Nehari manifold Nε.

Lemma 2.2. The following properties for the manifold Nε hold true:

(i) For any u ∈ Hε\{0}, there exists a unique tu > 0 such that Iε(tuu) = maxt≥0 Iε(tu) and tuu ∈ Nε.
(ii) There exists r∗ > 0 such that ‖u‖ε ≥ r∗ for ∀u ∈ Nε.

Proof. (i) Denote by the function g(t) � Iε(tu) for t ≥ 0. It is easy to verify, using (f1) − (f3) that g(0) = 0
and g(t) < 0 for t > 0 large. Therefore maxt≥0 g(t) attains its maximum at some tu > 0 such that g′(tu) = 0
and tuu ∈ Nε. Suppose there exist t1u > t2u > 0 such that tiuu ∈ Nε, i = 1, 2. Then(

1
(t1u)2 − 1

(t2u)2

)
‖u‖2

ε

=
∫
R3

[
f(t1uu)
(t1uu)3 − f(t2uu)

(t2uu)3

]
u4dx + [(t1u)6 − (t2u)6]

∫
R3

φu+ |u+|5dx,

which is a contradiction by virtue of (f6), and so t1u = t2u > 0. Moreover, the function u → tu is continuous 
from Hε\{0} to (0, ∞) (e.g. [35]).

(ii) It follows from (f1) − (f3) that, for any ε > 0, there exists Cε > 0 such that

|f(t)| ≤ ε|t| + Cε|t|q, ∀t ∈ R. (2.12)

Thus, for any u ∈ Nε, by the Hölder inequality, Sobolev inequality and (iv) of Lemma 2.1, one has

0 = ||u||2ε −
∫
R3

f(u)udx−
∫
R3

φu+ |u+|5dx

≥ ||u||2ε − ε

∫
R3

u2dx− Cε

∫
R3

|u|q+1dx−

⎛⎝∫
R3

|φu+ |6dx

⎞⎠
1
6
⎛⎝∫

R3

|u+|6dx

⎞⎠
5
6

≥ ||u||2ε − εC||u||2ε − CCε||u||q+1
ε − C‖u‖10

ε

from which

||u||ε ≥ r∗ > 0 for ∀u ∈ Nε. � (2.13)

The functional Iε satisfies the mountain pass geometry.

Lemma 2.3. The functional Iε satisfies the following properties.

(i) There exist α, ρ > 0 such that Iε(u) ≥ α with ||u||ε = ρ.
(ii) There exists e ∈ Bc

ρ(0) with Iε(e) < 0.
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Proof. (i) For any u ∈ Hε\{0} and ε > 0 small, it follows from (f1) − (f3) that there exists Cε > 0 such 
that

|F (t)| ≤ ε

2 t
2 + Cε

q + 1 |t|
q+1, ∀t ∈ R.

Now by the Sobolev embedding Hε ↪→ Lp(R3) for 2 < p < 2∗ and by the Hölder inequality and (iv) of 
Lemma 2.1, we have

Iε(u) = 1
2

∫
R3

(|∇u|2 + V (εx)u2)dx−
∫
R3

F (u)dx− 1
10

∫
R3

φu+ |u+|5dx

≥ 1
2‖u‖

2
ε −

ε

2

∫
R3

u2dx− Cε

q + 1

∫
R3

|u|q+1dx− 1
10 |φu|6|u|56

≥
(

1
2 − ε

2

)
||u||2ε − CCε||u||q+1

ε − C‖u‖10
ε .

Hence we can choose ε = 1
2 and some α, ρ > 0 such that

Iε(u) ≥ α with ||u||ε = ρ.

(ii) By (f1), (f4), we have F (t) ≥ 0 for all t ∈ R. Take a 0 ≤ ϕ ∈ C∞
0 (R3), then

Iε(tϕ) = t2

2

∫
R3

(|∇ϕ|2 + V (εx)ϕ2)dx−
∫
R3

F (tϕ)dx− t10

10

∫
R3

φϕ|ϕ|5dx

≤ t2

2

∫
R3

(|∇ϕ|2 + V (εx)ϕ2)dx− t10

10

∫
R3

φϕ|ϕ|5dx

< 0

for t > 0 large enough. Hence, we can take e = t∗ϕ with some t∗ > 0 large and (ii) follows. �
It follows from Lemma 2.3 and the mountain pass theorem without (PS) condition [45], there exists a 

(PS)c sequence {un} ⊂ Hε such that Iε(un) → cε and I ′ε(un) → 0 in H−1
ε with the minimax level

cε = inf
g∈Γ

sup
t∈[0,1]

Iε(g(t)) > 0, (2.14)

where Γ = {g ∈ C1([0, 1], Hε) : g(0) = 0, Iε(g(1)) < 0}. Moreover, we have the following assertion.

Lemma 2.4. The sequence {un} is bounded in Hε.

Proof. Let {un} be a (PS)cε sequence for Iε. From (f5), it follows that:

the function t ∈ [0,∞) �→ f(t)t− 4F (t) ∈ R is strictly increasing. (2.15)

By (f1), (f4) and (2.15) we get

f(t)t− 4F (t) ≥ 0, ∀t ∈ R. (2.16)

Therefore,
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on(1)‖un‖ε + 4cε = 4Iε(un) − I ′ε(un)un

= ‖un‖2
ε +
∫
R3

[f(un) − 4F (un)]dx + 3
5

∫
R3

φu+
n
|u+

n |5dx

≥ ‖un‖2
ε.

Hence, {un} is bounded in Hε. �
Remark 2.5. If we denote u±

n = max{±un, 0} as the positive (negative) part of un, then one has 
I ′ε(un)(−u−

n ) = ‖u−
n ‖2

ε = on(1). Note that ‖u+
n ‖2

ε ≥ C > 0 for n large. Otherwise, we would have 
‖un‖2

ε = on(1) and Iε(un) → 0 as n → ∞, which contradicts to (2.13). So, in the sequel, for any (PS) 
sequence {un} of Iε, we may assume that it is a nonnegative sequence.

From Lemma 2.4, there exists a u ∈ Hε such that un ⇀ u in Hε and un → u a.e. in R3. Adopting similar 
arguments as in Proposition 3.11 [35], we have the following equivalent characterization of cε, which is more 
adequate to our purpose.

cε = inf
u∈Hε\{0}

sup
t≥0

Iε(tu) = inf
u∈Nε

Iε(u) > 0. (2.17)

In the rest of this subsection, we shall show that mμ can be compared with a suitable number which 
involves the best constant S.

Lemma 2.6. For any μ > 0, there exists uε ∈ Hμ\{0} such that

max
t≥0

Eμ(tuε) <
2
5S

3
2 .

In particular mμ < 2
5S

3
2 .

Proof. For each ε > 0, consider the function

Uε(x) = (3ε2) 1
4

(ε2 + |x|2) 1
2
.

We recall that Uε solves

−Δu = u5, in R3.

By a result due to Talenti [39] we have∫
R3

|∇Uε|2dx =
∫
R3

|Uε|6dx = S
3
2 .

Let η ∈ C∞
0 (R3, [0, 1]) be such that 0 ≤ η ≤ 1, η(x) = 1 if |x| < 1 and η(x) = 0 if |x| ≥ 2. Setting 

uε = ηUε|ηUε|−1
6 , and computing as in [23], [15], we have

|∇uε|22 = S + O(ε) (2.18)

and
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|uε|rr =

⎧⎪⎨⎪⎩
O(ε r

2 ), if r ∈ [2, 3);
O(ε 3

2 | log ε|), if r = 3;
O(ε 6−r

2 ), if r ∈ (3, 6).
(2.19)

By Lemma 2.2-(i), there exists tuε
> 0 such that tuε

uε ∈ Mμ and Eμ(tuε
uε) = maxt≥0 Eμ(tuε). We claim 

that there exist constants k1, k2 > 0 such that

0 < k1 < tuε
< k2 < ∞. (2.20)

In fact, using tuε
uε ∈ Mμ and Lemma 2.1-(ii), (v) with δ = |∇uε|−2

2 , we have

t2uε
‖uε‖2

μ =
∫
R3

f(tuε
uε)tuε

uεdx + t10uε

∫
R3

φuε
|uε|5dx

≥ t10uε

∫
R3

φuε
|uε|5dx

≥ t10uε

⎡⎣2δ ∫
R3

|uε|6dx− δ2
∫
R3

|∇uε|2dx

⎤⎦
= t10uε

|∇uε|−2
2

(2.21)

which implies that tuε
is bounded from above by some constant k2 > 0 by virtue of (2.18). On the other 

hand, by the first equality of (2.21) and (f2) we see that tuε
is bounded from below by some constant k1 > 0. 

Thus (2.20) holds true.
Again, by using Lemma 2.1-(ii) and Lemma 2.1-(v) with δ = 1, we infer that

Eμ(u) = 1
2

∫
R3

(|∇u|2 + μu2)dx−
∫
R3

F (u)dx− 1
10

∫
R3

φu|u|5dx

= 1
2

∫
R3

(|∇u|2 + μu2)dx−
∫
R3

F (u)dx− 1
10

∫
R3

|∇φu|2dx

≤ 3
5

∫
R3

|∇u|2dx + μ

2

∫
R3

u2dx− 1
5

∫
R3

u6dx−
∫
R3

F (u)dx.

Therefore, we have

Eμ(tuε) ≤
3t2

5

∫
R3

|∇uε|2dx + μt2

2

∫
R3

u2
εdx− t6

5 −
∫
R3

F (tuε)dx

� g(t).

(2.22)

By (f1) − (f3) we see that limt→∞ g(t) = −∞ and g(t) > 0 as t is closed to 0. So, supt≥0 g(t) is attained at 
some tε > 0.

From

0 = g′(tε) = tε

⎛⎝6
5

∫
R3

|∇uε|2dx + μ

∫
R3

u2
εdx− 6t4ε

5 −
∫
R3

f(tεuε)uεt
−1
ε dx

⎞⎠ ,

we have
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6
5

∫
R3

|∇uε|2dx + μ

∫
R3

u2
εdx = 6t4ε

5 +
∫
R3

f(tεuε)uεt
−1
ε dx

≥ 6t4ε
5 ,

which implies that tε is bounded from above by some t2 > 0. On the other hand, by (f1) − (f3), for any 
fixed τ > 0, there exist Cτ > 0 such that f(t) ≤ τ(t + tq) + Cτ t

2, ∀t ≥ 0, and so

6
5

∫
R3

|∇uε|2dx ≤ 6t4ε
5 +
∫
R3

f(tεuε)uεt
−1
ε dx

≤ 6t4ε
5 +
∫
R3

[τu2
ε + τtq−1

2 uq+1
ε + Cτ t2u

3
ε ]dx.

Choosing ε small enough, by (2.18), (2.19), we obtain

(tε)4 >
S

2 .

That is, we get a lower bound t1 > 0 for tε independent of ε. Thus, 0 < t1 < tε < t2.
Now we estimate g(t). Set ḡ(t) = 3t2

5
∫
R3 |∇uε|2dx − t6

5 . Then ḡ(t) attains its maximum at

tmax =

⎛⎝∫
R3

|∇uε|2dx

⎞⎠
1
4

and

ḡ(tmax) = 2
5

⎛⎝∫
R3

|∇uε|2dx

⎞⎠
3
2

= 2
5(S + O(ε)) 3

2 = 2
5S

3
2 + O(ε). (2.23)

Consequently, by (2.18), (2.19) and (2.23) we get

g(tε) = ḡ(tε) + μt2ε
2

∫
R3

u2
εdx−
∫
R3

F (tεuε)dx

≤ ḡ(tmax) + C1

∫
R3

|uε|2dx−
∫
R3

F (tεuε)dx

≤ 2
5S

3
2 + O(ε) −

∫
R3

F (tεuε)dx.

(2.24)

By the definition of uε, one has

tεuε ≥ Ct1ε
− 1

2 if |x| ≤ ε ≤ 1.

By virtue of (f4), we see that F (s) ≥ C1s
θ − C2, ∀s ∈ R+, for some C1, C2 > 0. Then for any K > 0, we 

have F (tεuε) ≥ K(tεuε)4 ≥ K(Ct1ε
− 1

2 ) if |x| ≤ ε << 1. Therefore,∫
3

F (tεuε)dx ≥
∫

F (tεuε)dx ≥ K(Ct1ε
− 1

2 )4
∫

dx = KC1ε. (2.25)

R Bε(0) Bε(0)



N. Li, X. He / J. Math. Anal. Appl. 488 (2020) 124071 13
Combining (2.24) and (2.25) we obtain

O(ε) −
∫
R3

F (tεuε)dx < 0

for sufficiently small ε and sufficiently large K. Therefore, maxt≥0 Eμ(tuε) < 2
5S

3
2 , as desired. �

Remark 2.7. Note that by lemma above, in case V∞ < ∞, we have mV∞ < 2
5S

3
2 .

The following result presents an interesting property of the Palais-Smale sequences of Eμ.

Lemma 2.8. Let {un} ⊂ Hε be a (PS)c sequence for Iε with c < 2
5S

3
2 and un ⇀ 0 in Hε. Then one of the 

following conclusions holds.

(a) un → 0 in Hε, or
(b) there exist a sequence {yn} ⊂ R3 and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
ndx ≥ β > 0.

Proof. Suppose that (b) does not occur. Then we have

sup
y∈R3

∫
BR(y)

un(x)2dx → 0 as n → ∞.

By Lemma 1.1 in [30], we get

un → 0 in Lt(R3) for t ∈ (2, 6).

Given ε > 0, from (f1) − (f3), one has

0 ≤
∫
R3

f(un)undx ≤ ε

∫
R3

u2
ndx + Cε

∫
R3

|un|q+1dx. (2.26)

Using the fact that {un} is bounded in Hε, un → 0 in Lq+1(R3) and that ε can be small arbitrarily, we can 
conclude that ∫

R3

f(un)undx → 0.

Recalling that I ′ε(un)un → 0, we get

‖un‖2
ε =
∫
R3

φun
|un|5dx + on(1).

Since {un} ⊂ Hε is bounded, up to a subsequence, we have

‖un‖2
ε → l ≥ 0 and

∫
φun

|un|5dx → l ≥ 0.

R3
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Suppose, by contradiction, that l > 0. Since

Iε(un) = 1
2‖un‖2

ε −
1
10

∫
R3

φun
|un|5dx + on(1)

= 1
2 l −

1
10 l + on(1)

= c + on(1),

it follows that 2
5 l = c. On the other hand, from (ii), (iv) of Lemma 2.1, we get∫

R3

φun
|un|5dx =

∫
R3

|∇φun
|2 ≤ S−6‖un‖10

ε ,

which implies that l ≥ S
3
2 or c ≥ 2

5S
3
2 , which is a contradiction with our assumption. Thus l = 0, and so 

un → 0 in Hε. �
Lemma 2.9. Assume that V∞ < ∞ and let {un} be a (PS)d sequence for the functional Iε with d < 2

5S
3
2

and un ⇀ 0 in Hε. If un � 0 in Hε, then d ≥ mV∞ .

Proof. Let tn > 0, ∀n ∈ N such that {tnun} ⊂ MV∞ . We claim that supn→∞ tn ≤ 1.
Assume by contradiction, there exist δ > 0 and a subsequence still denoted by {tn} such that

tn > 1 + δ for all n ∈ N.

By Lemma 2.4, the sequence {un} is bounded and from E′
ε(un)un = on(1), we get∫

RN

(|∇un|2 + V (εx)u2
n)dx =

∫
RN

f(un)undx +
∫
R3

φun
|un|5dx + on(1). (2.27)

Recalling that tnun ∈ MV∞ , we have

t2n

∫
R3

(|∇un|2 + V∞u2
n)dx =

∫
RN

f(tnun)tnundx + t10n

∫
R3

φun
|un|5dx. (2.28)

Combining (2.27), (2.28) and tn > 1 + δ, we get(
1
t2n

− 1
)∫
R3

|∇un|2dx +
∫
R3

(
V∞
t2n

− V (εx
)
u2
ndx

=
∫
R3

(
f(tnun)
t3nu

3
n

− f(un)
u3
n

)
u4
ndx +
∫
R3

(t6n − 1)φun
|un|5dx + on(1)

≥
∫
R3

(
f(tnun)
t3nu

3
n

− f(un)
u3
n

)
u4
ndx + on(1).

(2.29)

From (V ) and tn > 1 there exists R = R(ε) > 0 such that

V (εx) ≥ V∞ − ε >
V∞

2 − ε for all |x| ≥ R. (2.30)

tn
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Since ‖un‖ε ≤ C and un → 0 in L2
loc(R3), we deduce from Lemma 2.8 that there exist {yn} ⊂ R3 and 

R1, β > 0 such that ∫
BR1 (yn)

u2
ndx ≥ β. (2.31)

If we set ũn(x) = un(x + yn), then there exists a nonnegative function ũ small that, up to a subsequence, 
ũn ⇀ ũ in Hε, ũn → ũ in L2

BR1 (0) and ũn → ũ a.e. in R3. Moreover, by (2.31), there exists a subset 
Λ ⊂ BR1(0) with positive measure such that ũ > 0 a.e. in Λ. It follows from (f5), (2.29)-(2.31) and tn ≥ 1 +δ

that

0 <

∫
Λ

(
f((1 + δ)ũn)
((1 + δ)ũn)3 − f(ũn)

ũ3
n

)
ũ4
n ≤ εC + on(1),

for any ε > 0. Taking limit in the above inequality as n → ∞ and applying Fatou’s lemma, we get

0 <

∫
Λ

(
f((1 + δ)ũ)
((1 + δ)ũ)3 − f(ũ)

ũ3

)
ũ4 ≤ εC

for any ε > 0, which yields a contradiction.
We next distinguish the following two cases:

Case 1. lim supn→∞ tn = 1. In this case, there exists a subsequence, still denoted by {tn} such that tn → 1
as n → ∞. Hence

d + on(1) = Iε(un) ≥ Iε(un) + mV∞ − EV∞(tnun). (2.32)

Note that

Iε(un) −EV∞(tnun) = 1
2

∫
R3

(1 − t2n)|∇un|2dx + 1
2

∫
R3

V (εx)u2
ndx− t2n

2

∫
R3

V∞u2
ndx

+ 1
10

∫
R3

(t10n − 1)φun
|un|5 +

∫
R3

(F (tnun) − F (un))dx.
(2.33)

Now, from condition (V ), given ξ > 0, there exists R = R(ξ) > 0 such that V (εx) ≥ V∞− ξ for any |x| ≥ R. 
Let C > 0 such that ‖un‖2

ε ≤ C, for any n ∈ N. By (2.33) we have

Iε(un) −EV∞(tnun) ≥ on(1) − ξC +
∫
R3

(F (tnun) − F (un))dx.

Moreover, by virtue of the Mean Value Theorem,∫
R3

(F (tnun) − F (un))dx = on(1),

therefore,

d + on(1) ≥ mV∞ − ξC + on(1),

and taking limits, we obtain d ≥ mV∞ .
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Case 2. lim supn→∞ tn = t0 < 1. In this case, we may suppose that there exists a subsequence, still denoted 
by {tn}, satisfying

tn → t0 and tn < 1 ∀n ∈ N.

From (2.30), un → 0 in L2
loc(R3) and ‖un‖ε ≤ C, we see that∫

R3

(V∞ − V (εx)u2
ndx ≤ εC + on(1)

for any given ε > 0. Since 1
4f(s)s − F (s) is increasing, we deduce that

mV∞ ≤ EV∞(tnun) − 1
4 〈E

′
V∞(tnun), tnun〉

= t2n
4

∫
R3

(|∇(un)|2 + V∞u2
n)dx +

∫
R3

(
1
4f(tnun)tnun − F (tnun)

)
dx

+ 3
20 t

10
n

∫
R3

φun
|un|5dx

≤ 1
4

∫
R3

(|∇un|2 + V (εx)u2
n)dx +

∫
R3

(
1
4f(un)un − F (un)

)

+ 3
20

∫
R3

φun
|un|5dx + εC + o(1)

= Iε(un) − 1
4I

′
ε(un)un + εC + on(1).

(2.34)

Hence, taking the limit as n → ∞, ε → 0 at last inequality we have d ≥ mV∞ . �
2.3. Compactness properties for Iε and Eμ

In order to apply the Ljusternik-Schnirelmann category theory, we need to check that Iε satisfies the 
Palais-Smale condition on Nε. As the Sobolev embedding H1(R3) ↪→ Ls(R3), 2 ≤ s < 2∗, is continuous but 
is not compact, it is well known that, in general, such a condition is not fulfilled. Nevertheless, we shall 
prove that Palais-Smale condition holds in a suitable sublevel, related to the ground energy “at infinity”.

Proposition 2.10. The functional Iε satisfies the (PS)c condition at any level c < mV∞ if V∞ < ∞ and at 
any level c < 2

5S
3
2 if V∞ = ∞.

Proof. Let {un} ⊂ Hε be such that Iε(un) → c and I ′ε(un) → 0 in (Hε)−1. Since {un} is bounded, up to a 
subsequence, un ⇀ u weakly in Hε, un → u in Lr

loc(R3) for 1 ≤ r < 2∗ and un → u a.e. in R3. Moreover, u
is a critical point of Iε. To see this, one only needs to prove

I ′ε(u)ϕ = 0 for any ϕ ∈ C∞
0 (R3).

It follows from (f1) − (f3) that, for any ε > 0, there exists Cε > 0 such that

|f(t)| ≤ Cε + ε|t|5 for all t ∈ R.
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Denote the support set of ϕ by Ωϕ, then for any subset O ⊂ Ωϕ with |O| < δ = δ(ε) = ε2

C2
ε |ϕ|22

> 0, we have

∣∣∣∣∣∣
∫
O

f(un)ϕdx

∣∣∣∣∣∣ ≤ Cε

∫
O

|ϕ|dx + ε

∫
O

|un|5|ϕ|dx

≤ Cε|O| 12 |ϕ|2 + ε|un|56|ϕ|6
< ε + C1ε = (1 + C1)ε.

By Vitali convergence theorem, we obtain

lim
n→∞

∫
R3

f(un)ϕdx =
∫
R3

f(u)ϕdx. (2.35)

By Lemma 2.1-(viii) we have φun
⇀ φu in D1,2(R3) and so, φun

⇀ φu in L6(R3). Then∫
R3

(φun
− φu)|u|3uϕdx → 0 as n → ∞. (2.36)

Using un → u a.e. in R3 and∫
R3

|φun
(|un|3un − |u|3u)| 65 dx ≤ 2 6

5

∫
R3

|φun
| 65 [|un|

24
5 + |u| 245 ]dx

≤ C|φun
|
6
5
6 (|un|

24
5

6 + |u|
24
5

6 )

≤ C1,

we have φun
(|un|3un − |u|3u) ⇀ 0 in L

6
5 (R3) and thus∫

R3

φun
(|un|3un − |u|3u)ϕ → 0 as n → ∞, (2.37)

which together with (2.36) implies that∫
R3

φun
|un|3unϕdx →

∫
R3

φu|u|3uϕdx as n → ∞. (2.38)

Combining (2.37) with the weak convergence un ⇀ u in Hε, we have

I ′ε(u)ϕ = lim
n→∞

I ′ε(un)ϕ = 0, ∀ ϕ ∈ C∞(R3),

which means that I ′ε(u) = 0. Thus u is a critical point of Iε because C∞
0 (R3) is dense in H1(R3). Furthermore,

Iε(u) = Iε(u) − 1
4I

′
ε(u)u = 1

4‖u‖
2
ε + 1

4

∫
R3

[f(u)u− 4F (u)]dx + 3
20

∫
R3

φu|u|5dx ≥ 0. (2.39)

Setting vn = un − u, from a result due to Brezis-Lieb (e.g. [45]), we get

‖vn‖2
ε = ‖un‖2

ε − ‖u‖2
ε + on(1),
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and ∫
R3

F (vn)dx =
∫
R3

F (un)dx−
∫
R3

F (u)dx + on(1).

Thus, using Lemma 2.1-(viii) we infer that

Iε(vn) = Iε(un) − Iε(u) + on(1). (2.40)

Now, we are going to show that

‖I ′ε(vn) − I ′ε(un) + I ′ε(u)‖H−1
ε

= on(1). (2.41)

In fact, for all ψ ∈ Hε with ‖ψ‖ε ≤ 1, we have

|[I ′ε(vn) − I ′ε(un) + I ′ε(u)]ψ|

=
∣∣∣∣ ∫
R3

[∇vn∇ψ + V (εx)vnψ − f(vn)ψ − φv+
n
|v+

n |4ψ]dx

−
∫
R3

[∇un∇ψ + V (εx)unψ − f(un)ψ − φu+
n
|u+

n |4ψ]dx

+
∫
R3

[∇u∇ψ + V (εx)uψ − f(u)ψ − φu+ |u+|4ψ]dx
∣∣∣∣

=
∣∣∣∣ ∫
R3

(∇vn −∇un + ∇u)∇ψdx +
∫
R3

V (εx)[vn − un + u]ψdx

−
∫
R3

[f(vn) − f(un) + f(u)]ψdx−
∫
R3

[φv+
n
|v+

n |4 − φu+
n
|u+

n |4 + φu+ |u+|4]ψdx
∣∣∣∣

≤
∫
R3

|∇vn −∇un + ∇u||∇ψ|dx +
∫
R3

V (εx)|vn − un + u||ψ|dx

+
∫
R3

|f(vn) − f(un) + f(u)||ψ|dx +
∫
R3

∣∣φv+
n
|v+

n |4 − φu+
n
|u+

n |4 + φu+ |u+|4dx
∣∣ |ψ|dx.

(2.42)

Moreover, using Lemma 3.1 [3], it is possible to check that

⎛⎝∫
R3

|∇vn −∇un + ∇u|2dx

⎞⎠
1
2

= on(1),

⎛⎝∫
R3

V (εx)|vn − un + u|2dx

⎞⎠
1
2

= on(1), (2.43)

and

⎛⎝∫
R3

|f(vn) − f(un) + f(u)|rdx

⎞⎠
1
r

= on(1) (2.44)

with 1 ≤ r ≤ 6 . From Lemma A, we get
q
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⎛⎝∫
R3

∣∣φv+
n
|v+

n |4 − φu+
n
|u+

n |4 + φu+ |u+|4
∣∣ 65 dx
⎞⎠

5
6

= on(1). (2.45)

Combining (2.42)-(2.45), we derive (2.41), and so,

I ′ε(vn) → 0 in H−1
ε .

While, from (2.40) we obtain

Iε(vn) = c− Iε(u) + on(1) := d + on(1)

and consequently, if V∞ < ∞, we have by (2.39), that

d ≤ c < mV∞ .

It follows from Lemma 2.9 that vn → 0 in Hε, and so un → u in Hε.
If V∞ = ∞, then V is coercive and by [19], the continuous embedding Hε ↪→ Lr(R3) is compact for 

2 < r < 2∗. Hence, up to a subsequence, vn → 0 in Lr(R3) and by (f1) − (f3),

‖vn‖2
ε =
∫
R3

φv+
n
|v+

n |5dx + on(1).

Since {vn} ⊂ Hε is bounded, we may assume that

‖vn‖2
ε → L ≥ 0 and

∫
R3

φv+
n
|v+

n |5dx → L ≥ 0,

perhaps for a subsequence. Suppose, by contradiction, that L > 0. Since Iε(vn) = d + on(1), it follows that 
2
5L = d. But from (ii), (iv) of Lemma 2.1, we get∫

R3

φv+
n
|v+

n |5dx ≤
∫
R3

φvn |vn|5dx =
∫
R3

|∇φvn |2 ≤ S−6‖vn‖10
ε ,

which implies that L ≥ S
3
2 or d ≥ 2

5S
3
2 , which is a contradiction with our assumption. Thus L = 0, and so 

vn → 0 in Hε, and so un → u in Hε. �
Proposition 2.11. The functional Iε restricted to Nε satisfies the (PS)c condition at any level c < mV∞ if 
V∞ < ∞ and at any level c < 2

5S
3
2 if V∞ = ∞.

Proof. Let {un} ⊂ Nε be such that Iε(un) → c and I ′ε(un) → 0 in H−1
ε . Then there exists {λn} ⊂ R such 

that

I ′ε(un) = λnJ
′
ε(un) + on(1), (2.46)

where Jε : Hε → R is given by

Jε(u) =
∫

[|∇u|2 + V (εx)u2]dx−
∫

f(u)udx−
∫

φu+ |u+|5dx.

R3 R3 R3
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Notice that

J ′
ε(un)un = 2

∫
R3

[|∇un|2 + V (εx)u2
n]dx−

∫
R3

f(un)undx−
∫
R3

f ′(un)u2
ndx

− 10
∫
R3

φun
|un|5dx,

and by un ∈ Nε and (f5) we get

J ′
ε(un)un =

∫
R3

f(un)undx−
∫
R3

f ′(un)u2
ndx− 8

∫
R3

φun
|un|5dx

≤ −8
∫
R3

φun
|un|5dx ≤ 0.

We may assume that J ′
ε(un)un → γ ≤ 0. If γ = 0, then by Lemma 2.1-(ii), we get∫

R3

|∇φun
|2dx =

∫
R3

φun
|un|5dx → 0. (2.47)

Choosing δ = δn = (
∫
R3 |∇φun

|2dx)1/2, using Lemma 2.1-(v) and the boundedness of {un} in H1(R3), we 
have, ∫

R3

|un|6dx ≤ δn
2

∫
R3

|∇un|2dx + 1
2δn

∫
R3

|∇φun
|2dx

≤ δn
2 C + 1

2δn → 0

(2.48)

as n → ∞. From (f1) − (f3), we have by interpolation

0 ≤
∫
R3

f(un)undx ≤ ε

∫
R3

[u2
n + u6

n]dx + Cε

∫
R3

|un|q+1dx → 0 (2.49)

as n → ∞, ε → 0. Consequently, from (2.47)-(2.49) we have

‖un‖2
ε =
∫
R3

f(un)undx +
∫
R3

φun
|un|5dx → 0 as n → ∞.

But this contradicts (2.13), therefore, γ �= 0. Using 〈I ′ε(un), un〉 = 0, we get

λn〈J ′
ε(un), un〉 = on(1),

consequently, λn = on(1), which yields that

Iε(un) → c and I ′ε(un) → 0.

Thus, {un} is a (PS)c sequence for Iε in Hε and the result follows from Proposition 2.10. �
Corollary 2.12. The critical points of functional Iε on Nε are critical points of functional Iε in Hε.
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Proof. The proof follows by using similar arguments employed in the last proposition. �
Now we pass to the functional related to the autonomous problem (2.11).

Lemma 2.13. (Ground state for the autonomous problem) Let {un} ⊂ Mμ be a sequence satisfying Eμ(un) →
mμ. Then, up to subsequences the following alternative holds:

(a) {un} strongly converges in H1(R3);
(b) there exists a sequence {ỹn} ⊂ R3 such that un(· + ỹn) strongly converges in H1(R3).

In particular, there exists a minimizer wμ ≥ 0 for mμ.

Proof. By using the Ekeland Variational Principle as in the proof of Proposition 2.11, we may suppose 
that {un} is a (PS)mμ

sequence for Eμ and {un} is bounded in H1(R3). Thus going to a subsequence if 
necessary, un ⇀ u in H1(R3) and un(x) → u(x) a.e. in R3. Moreover, u is a critical point of Eμ. Hence, 
u ∈ Hμ is a weak solution of (2.11). If u �= 0, it remains to show that Eμ(u) = mμ. By the fact E′

μ(u)u = 0
and Fatou’s lemma, we get

mμ ≤ Eμ(u) = Eμ(u) − 1
4 〈I

′
μ(u), u〉

= 1
4

∫
R3

(|∇u|2 + μu2)dx +
∫
R3

(
1
4f(u)u− F (u)

)
dx + 3

20

∫
R3

φu+ |u+|5dx

≤ lim inf
n→∞

⎧⎨⎩1
4

∫
R3

(|∇un|2 + μu2
n)dx +

∫
R3

(
1
4f(un)un − F (un)

)
dx + 3

20

∫
R3

φu+
n
|u+

n |5dx

⎫⎬⎭
= lim inf

n→∞

(
Eμ(un) − 1

4E
′
μ(un)un

)
≤ mμ.

Therefore, we have that un → u in H1(R3) and Eμ(u) = mμ.
Now, we consider the case u ≡ 0. In this case, since {un} ⊂ Mμ, and Eμ(un) → mμ ∈ (0, 25S

3
2 ), we 

conclude that ‖un‖μ � 0. Therefore, arguing as in the proof of by Lemma 2.8, we deduce that there exist 
R, η > 0 and ỹn ∈ R3 such that

lim inf
n→∞

∫
BR(ỹn)

u2
ndx ≥ η.

Let vn(x) = un(x + ỹn), then we can use the invariance of R3 by translations to conclude that Eμ(vn) → mμ

and I ′μ(vn) → 0. Moreover, up to a subsequence, vn ⇀ v in H1(R3), and vn → v in L2(BR(0)), with v being 
a critical point of Eμ. Since

∫
BR(0)

|v|2dx = lim inf
n→∞

∫
BR(0)

|vn|2dx = lim inf
n→∞

∫
BR(ỹn)

|un|2dx ≥ η > 0,

we conclude that v �= 0, and the conclusion follows as in the first case of the proof.
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Denote by u± = max{±u, 0} the positive (negative) part of u, we get

0 = E′
μ(u)u− = −‖u−‖2

μ −
∫
R3

f(u)u−dx−
∫
R3

φu+ |u+|4u−dx = −‖u−‖2
μ

and therefore u ≥ 0 in R3. �
3. Existence of a ground state solution

In this section, we show there exists a ground state solution to (2.9), that is, a positive solution uε of 
(2.9) with Iε(uε) = cε. To study the regularization of the ground state solution, we recall the following two 
propositions in our case N = 3. The first one is an adequate version, for our aim, from a result due to Brezis 
and Kato [14].

Proposition 3.1. Let u ∈ H1(R3) satisfying

−Δu + (b(x) − q(x))u = f(x, u) in R3,

where q ∈ L
3
2 (R3) and b : R3 → R+ is a L∞

loc(R3) function; f : R3 × R → R+ is a Caratheodory function 
such that

0 ≤ f(x, s) ≤ Cf (sr + s) for all s > 0, x ∈ R3

and r ∈ (1, 5). Then u ∈ Lt(R3) for all t ∈ [2, ∞). Moreover, there is a positive constant Ct depending on 
t, Cf and q such that

|u|t ≤ Ct‖u‖.

The dependence on q of the constant Ct can be given uniformly on a Cauchy sequence qk(x) in L
3
2 (R3).

The next proposition is a very particular version of Theorem 8.17 in [22], due to Trudinger.

Proposition 3.2. Suppose that t > 3, g ∈ L
t
2 (Ω) and u ∈ H(Ω) satisfies in the weak sense

−Δu ≤ g(x) in Ω,

where Ω is an open subset of R3. Then for any R > 0 and any ball B2R(y) ⊂ Ω,

sup
x∈BR(y)

u(x) ≤ C(|u+|L2(B2R(y)) + |g|
L

t
2 (B2R(y))

)

where C depends on t and R.

In the end of this section we show that the existence of a ground state solution to (2.9), that is, a positive 
solution uε of (2.9) satisfying Iε(uε) = cε.

Theorem 3.3. Suppose that f satisfies (f1) − (f5) and V verifies (V ). Then there exists some ε∗ > 0, such 
that for every ε ∈ (0, ε∗), system (2.9) possesses a positive ground state solution uε ∈ C1,α(R3).
loc
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Proof. By Lemma 2.3, the functional Iε satisfies the geometry of the Mountain Pass Theorem in Hε. Then, 
by a version of Mountain Pass Theorem due to Ambrosetti and Rabinowitz without (PS) condition (e.g. 
[5]), there exists a sequence {un} ⊂ Hε satisfying Iε(un) → cε and I ′ε(un) → 0 in (Hε)−1.

If V∞ < ∞, we may assume, without loss of generality, that

V (0) = V0 = inf
x∈R3

V (x).

Let μ > 0 such that V0 < μ < V∞. Then

mV0 < mμ < mV∞ . (3.1)

By Lemma 2.13, there exists a nonnegative function wμ ∈ H1(R3) such that

Eμ(wμ) = max
t≥0

Eμ(twμ) = mμ.

For r > 0, let ηr a smooth cut-off function in R3 which equals to 1 on Br(0) and with support in B2r(0). 
Let ωr := ηrwμ and tr > 0 such that trωr ∈ Mμ. If it were, Eμ(trωr) ≥ mV∞ , ∀r > 0, in view of ωr → wμ

in H1(R3) as r → ∞, we would have tr → 1 and then

mV∞ ≤ lim inf
r→∞

Eμ(trωr) = Eμ(wμ) = mμ

which contradicts (3.1). Therefore, there exists some r∗ > 0 such that ϕ := tr∗ωr∗ satisfies Eμ(ϕ) < mV∞ . 
Consequently, the condition (V ) implies that for some ε∗ > 0

V (εx) ≤ μ, for all x ∈ suppϕ and ε ∈ (0, ε∗), (3.2)

and so ∫
R3

V (εx)ϕ2dx ≤
∫
R3

μϕ2dx for all ε ∈ (0, ε∗). (3.3)

Consequently

Iε(tϕ) ≤ Eμ(tϕ) ≤ Eμ(ϕ) for all ε ∈ (0, ε∗), t ≥ 0.

Hence

max
t≥0

Iε(tϕ) ≤ Eμ(ϕ) < mV∞ , for any ε ∈ (0, ε∗)

and so cε < mV∞ .
If V∞ = ∞, for any μ > V0, from Lemma 2.6, we can choose some tε > 0 such that

max
t≥0

Eμ(tuε) = Eμ(tεuε) <
2
5S

3
2 ,

where uε is given in Lemma 2.6 with support in B2(0). By a similar argument as in (3.2), (3.3), we have

Iε(tuε) ≤ Eμ(tuε) ≤ max
t≥0

Eμ(tuε) <
2
5S

3
2 for all t ≥ 0,

which implies cε < 2S
3
2 .
5
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In virtue of Proposition 2.10, we see that there exists some uε ∈ Hε such that un → uε in Hε with 
Iε(uε) = cε. Denote by u±

ε = max{±uε, 0} the positive (negative) part of uε, we get

0 = E′
μ(uε)u−

ε = −‖u−
ε ‖2

μ −
∫
R3

f(uε)u−
ε dx−

∫
R3

φu+
ε
|u+

ε |4u−
ε dx = −‖u−

ε ‖2
μ

and therefore uε ≥ 0 in R3. Since uε ∈ H1(R3), we see that

lim
R→∞

∫
|x|≥R

(u2
ε + u5

ε)dx → 0.

Using Proposition 3.1 with q(x) = φuε
u3
ε ∈ L

3
2 (R3), b(x) = μ and h(x, uε) = f(uε) ≤ C1uε +C2u

r
ε for some 

r ∈ (3, 5), we can infer that

|uε|t ≤ Ct‖uε‖.

Applying Proposition 3.2 in the following inequality

−Δuε ≤ −Δuε + μuε = φuε
|uε|3u + f(uε) := g(x),

there exists a t > 3 such that |g| 3
2
≤ C, and all y ∈ R3

sup
x∈B1(y)

uε ≤ C(|uε|L2(B2(y)) + |g|
L

t
2 (B2(y))

)

which implies that |u|∞ ≤ C. Moreover, combining with the last limit we reach

lim
|x|→∞

uε(x) = 0.

Then, by the regularity theory [29,40,13,33], there exists α ∈ (0, 1) such that uε ∈ C1,α
loc (R3). Now applying 

Harnack’s inequality [41] we have that uε(x) > 0 in R3. �
4. Multiplicity of solutions to (2.9)

In this section we are going to prove the multiplicity of solutions and study the behavior of their maximum 
points in relation to the set M . The main result in this section has the following statement.

Theorem 4.1. Suppose that f satisfies (f1) −(f5) and V verifies (V ). Then, for any δ > 0, there exists εδ > 0
such that, for any ε ∈ (0, εδ), problem (2.9) has at least catMδ

(M) positive solutions, for any ε ∈ (0, εδ). 
Moreover, if uε denotes one of these positive solutions and zε ∈ R3 its global maximum point, then

lim
ε→0

V (εzε) = V0.

In order to prove the above theorem, in the next subsection we fix some notation and show some prelim-
inary lemmas.
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4.1. Preliminary results

Let w be a ground state solution of problem (2.11) with μ = V0 and ψ be a smooth nonincreasing function 
defined in [0, ∞) such that ψ(s) = 1 if 0 ≤ s ≤ δ/2 and ψ(s) = 0 if s ≥ δ.

For any y ∈ M , we define

πε,y(x) = ψ(|εx− y|)w
(
εx− y

ε

)
and tε > 0 satisfying

max
t≥0

Iε(tπε,y) = Iε(tεπε,y)

and define Φε : M → Nε by

Φε(y) = tεπε,y.

By construction, Φε(y) has compact support for any y ∈ M .

Lemma 4.2. The function Φε has the following property:

lim
ε→0

Iε(Φε(y)) = mV0 uniformly in y ∈ M.

Proof. Suppose by contradiction that, there exist some δ0 > 0, {yn} ⊂ M and εn → 0 such that

|Iεn(Φεn(yn)) −mV0 | ≥ δ0. (4.1)

Now we claim that limn→∞ tεn = 1. In fact, by the definition of tεn and (2.13) we have

r∗ ≤
∫
R3

[
|∇(tεnπεn,yn

)|2 + V (εnx)(tεnπεn,yn
)2
]
dx

=
∫
R3

f(tεnπεn,yn
)tεnπεn,yn

dx + |tεn |10
∫
R3

φπεn,yn
|πεn,yn

|5dx.
(4.2)

Clearly, tεn can not go zero, therefore, tεn ≥ t0 > 0 for some t0 > 0. Note that∫
R3

(|∇πεn,yn
|2 + V (εnx)|πεn,yn

|2)dx

=
∫
R3

f(tεnπεn,yn
)

tεnπεn,yn

π2
εn,yn

+ |tεn |8
∫
R3

φπεn,yn
|πεn,yn

|5dx

≥ |tεn |8
∫
R3

φπεn,yn
|πεn,yn

|5dx.

(4.3)

By using the Lebesgue’s theorem, we can verify that

lim
n→∞

||πεn,yn
||2εn = ||w||2V0

, lim
n→∞

∫
φπεn,yn

|πεn,yn
|5dx =

∫
φw|w|5dx,
R3 R3
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and

lim
n→∞

∫
R3

f(πεn,yn
)πεn,yn

=
∫
R3

f(w)wdx.

If tεn → ∞, then the right side of (4.3) tends to ∞, which yields a contradiction. Hence, 0 < t0 ≤ tεn ≤ t1. 
Assuming that tεn → T > 0, then we get

1
T 2

∫
R3

(|∇w|2 + V0w
2)dx =

∫
R3

f(Tw)
T 3w3 w4dx + T 6

∫
R3

φw|w|5. (4.4)

Since w is a ground state solution of (2.11) with μ = V0, one has∫
R3

(|∇w|2 + V0w
2)dx =

∫
R3

f(w)wdx +
∫
R3

φw|w|5. (4.5)

Combining (4.4), (4.5), we have(
1
T 2 − 1

)∫
R3

(|∇w|2 + V0w
2) =
∫
R3

(
f(Tw)
(Tw)3 dx− f(w)

w3

)
w4dx + (T 6 − 1)

∫
R3

φw|w|5. (4.6)

By (f5), we conclude that T = 1.
On the other hand,

Iεn(Φεn(yn)) =
t2εn
2

∫
R3

[|∇(ψ(|εnx|)w)|2 + V (εnx + yn)|ψ(|εnx|)w|2]dx

−
∫
R3

F (tεnψ(|εnx|)w)dx−
t10εn
10

∫
R3

φψ(|εnx|)w|ψ(|εnx|)w|5dx.

Let n → ∞, we get limn→∞ Iεn(Φεn(yn)) = IV0(w) = mV0 , which contradicts to (4.1). This completes the 
proof. �

For any δ > 0, let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Define χ : R3 → R3 as χ(x) = x for |x| ≤ ρ

and χ(x) = ρx/|x| for |x| ≥ ρ. Finally, let us consider the map βε : Nε → R3 given by

βε(u) =
∫
R3 χ(εx)u2dx∫

R3 u2dx
.

Since M ⊂ Bρ(0), by the definition of χ and the Lebesgue’s theorem, we conclude that

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈ M.

To continue our argument, we need the following compactness result.

Proposition 4.3. Let εn → 0 and {un} ⊂ Nεn be such that Iεn(un) → mV0 . Then there exists a sequence 
{ỹn} ⊂ R3 such that vn(x) = un(x + ỹn) has a convergent subsequence in H1(R3). Moreover, up to a 
subsequence, yn := εnỹn → y ∈ M .
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Proof. By Lemma 2.8, we can obtain a sequence {ỹn} ⊂ R3 and constants R, β > 0 such that

lim inf
n→∞

∫
BR(ỹn)

u2
ndx ≥ β > 0.

If we define vn(x) = un(x + ỹn), along a subsequence, we have vn ⇀ v �= 0 in H1(R3). Let tn > 0 be such 
that ṽn := tnvn ∈ MV0 . Set yn = εnỹn. Using un ∈ Nεn , we have

mV0 ≤ EV0(ṽn)

≤ 1
2

∫
R3

(
|∇ṽn|2 + V (εn(x + ỹn))ṽ2

n

)
dx− 1

10

∫
R3

φṽ+
n
|ṽ+

n |5dx−
∫
R3

F (ṽn)dx

= t2n
2

∫
R3

(|∇un|2 + V (εnx)u2
ndx− t10n

10

∫
R3

φu+
n
|u+

n |5dx−
∫
R3

F (tnun)dx

= Iεn(tnun)

≤ Iεn(un) = mV0 + on(1).

Hence limn→∞ IV0(ṽn) = mV0 .
We claim that, up to subsequence, tn → t∗ > 0. Indeed, since vn � 0 in H1(R3), there exists γ > 0 such 

that 0 < γ ≤ ||vn||. Hence, 0 < γ∗ ≤ ||vn||V0 with γ∗ = γ min{1, V0}. It follows that,

0 ≤ tnγ
∗ ≤ ||tnvn||V0 = ||ṽn||V0 ≤ C

for some C > 0. Thus {tn} is bounded and we can suppose that tn → t∗ ≥ 0. If t∗ = 0, then, since {vn} is 
bounded, we infer that ṽn = tnvn → 0. Hence IV0(ṽn) → 0, which contradicts mV0 > 0. So, t∗ > 0 and the 
weak limit of {ṽn} is different from zero. Let ṽ be the weak limit of {ṽn} in H1(R3). Since tn → t∗ > 0 and 
vn ⇀ v �≡ 0, we have from the uniqueness of the weak limit that ṽ = t∗v �≡ 0. From Lemma 2.13, ṽn → ṽ in 
H1(R3), and so, vn → v in H1(R3). This proves the first part of the lemma.

We next show that {yn} has a bounded subsequence. Suppose by contradiction that |yn| → ∞. Consid-
ering first the case V∞ = ∞, the following inequality

∫
R3

V (εnx + yn)v2
ndx ≤

∫
R3

(|∇vn|2 + V (εnx + yn)v2
n)dx

=
∫
R3

f(vn)vndx +
∫
R3

φv+
n
|v+

n |5dx

together with Fatou’s lemma imply

∞ = lim inf
n→∞

⎡⎣∫
R3

f(vn)vndx +
∫
R3

φv+
n
|v+

n |5dx

⎤⎦
which leads to a contradiction, since the sequence {f(vn)vn + φv+ |v+

n |5} is bounded in L1(R3).

n
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Now, we consider that case V∞ < ∞. By virtue of ṽn → ṽ in H1(R3) and V0 < V∞, we have

mV0 = IV0(ṽ) < IV∞(ṽ)

≤ lim inf
n→∞

⎧⎨⎩1
2

∫
R3

(|∇ṽn|2 + V (εnx + yn)ṽ2
n)dx− 1

10

∫
R3

φṽ+
n
|ṽ+

n |5dx−
∫
R3

F (ṽn)dx

⎫⎬⎭
= lim inf

n→∞

⎧⎨⎩ t2n
2

∫
R3

(
|∇un|2 + V (εnx)u2

n

)
dx− t10n

10

∫
R3

φu+
n
|u+

n |5dx−
∫
R3

F (tnun)dx

⎫⎬⎭
= lim inf

n→∞
Iεn(tnun)

≤ lim inf
n→∞

Iεn(un) = mV0 ,

which does not make sense. Therefore, {yn} is bounded and up to a subsequence, yn → y in R3. If y /∈ M , 
then V (y) > V0 and we obtain a contradiction arguing as above. Thus, y ∈ M and the lemma is proved. �

Let h : R+ → R+ be any positive function satisfying h(ε) → 0+ as ε → 0+. Define the set

Ñε = {u ∈ Nε : Iε(u) ≤ mV0 + h(ε)}.

Given y ∈ M , by Lemma 4.2 we see that h(ε) = |Iε(Φε(y)) − mV0 | satisfies h(ε) → 0 as ε → 0+. Thus, 
Φε(y) ∈ Ñε and Ñε �= ∅ for any ε > 0.

Lemma 4.4. For any δ > 0, there holds that

lim
ε→0

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let {εn} ⊂ R+ be such that εn → 0. By definition, there exists {un} ⊂ Ñεn such that

dist(βεn(un),Mδ) = sup
u∈Ñεn

dist(βεn(u),Mδ) + on(1).

Thus, it suffices to find a sequence {yn} ⊂ Mδ such that

|βεn(un) − yn| = on(1). (4.7)

By virtue of IV0(tun) ≤ Iε(tun) for t ≥ 0 and {un} ⊂ Ñεn ⊂ Nεn , we obtain

mV0 ≤ cεn ≤ Iεn(un) ≤ mV0 + h(εn).

This leads to Iε(un) → mV0 . Thus we can invoke Proposition 4.3 to obtain a sequence {ỹn} ⊂ R3 such that 
yn = εnỹn ∈ Mδ for n sufficiently large. Hence

βεn(un) = yn +
∫
R3(χ(εnx + yn) − yn)u2

n(x + ỹn)dx∫
R3 u2

n(x + ỹn)dx
.

Since εnx + yn → y ∈ M , we have that βεn(un) = yn + on(1) and the sequence {yn} verifies (4.7). �
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The next two lemmas play a fundamental role in the study of the behavior of the maximum points of 
the solutions.

Lemma 4.5. Let vn be s solution of the following problem⎧⎨⎩−Δvn + Vn(x)vn = f(vn) + φvn |vn|3vn, x ∈ R3,

vn ∈ H1(R3), vn(x) > 0, x ∈ R3,
(4.8)

where Vn(x) = V (εnx + εnỹn). Assume that the conditions (V ) and (f1) − (f5) hold and that vn → v in 
H1(R3) with v �= 0, then vn ∈ L∞(R3) and there exists C > 0 such that ‖vn‖L∞(R3) ≤ C for all n ∈ N. 
Furthermore

lim
|x|→∞

vn(x) = 0 uniformly in n.

Proof. From Proposition 4.3 we have εnỹn → y ∈ M . Since vn → v in H1(R3) with v �= 0, we infer that v
satisfies the equation

−Δv + V0v = f(v) + |v|3vφv, x ∈ R3. (4.9)

Moreover,

lim
R→∞

∫
|x|≥R

(v2
n + v6

n)dx = 0 uniformly for n ∈ N. (4.10)

Using Proposition 3.1 with q(x) = φvnv
3
n ∈ L

3
2 (R3), b(x) = Vn(x) and h(x, vn) = f(vn) ≤ C1vn + C2v

r
n

for some r ∈ (3, 5), we can infer that

|vn|t ≤ Ct‖vn‖

where Ct is independent of n. Applying Proposition 3.2 in the following inequality

−Δvn ≤ −Δvn + Vn(x)vn = φvn |vn|3vn + f(vn) := gn(x),

there exists a t > 3 such that |gn| 32 ≤ C, and all y ∈ R3

sup
x∈B1(y)

uε ≤ C(|vn|L2(B2(y)) + |gn|L t
2 (B2(y))

)

which implies that ‖vn‖L∞(R3) ≤ C uniformly for n ∈ N. Moreover, combining with the last limit we reach

lim
|x|→∞

vn(x) = 0 uniformly for n ∈ N. �
Lemma 4.6. There exists δ > 0 such that ‖vn‖L∞(R3) ≥ δ.

Proof. Suppose by contradiction that, ‖vn‖L∞(R3) → 0. Taking ε0 = V0
2 , it follows from (f2) that there 

exists n0 ∈ N such that for n ≥ n0,
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f(‖vn‖L∞(R3))
‖vn‖L∞(R3)

< ε0.

Therefore, by Lemma 2.1-(iv), Hölder inequality, Sobolev inequality and boundedness of {vn} in H1(R3), 
we get ∫

R3

|∇vn|2dx +
∫
R3

V0v
2
ndx ≤

∫
R3

|∇vn|2dx +
∫
R3

Vn(x)v2
ndx

=
∫
R3

f(vn)vndx +
∫
R3

φvn |vn|5dx

≤
∫
R3

f(‖vn‖L∞(R3))
‖vn‖L∞(R3)

v2
ndx +

⎛⎝∫
R3

|φvn |6dx

⎞⎠
1
6
⎛⎝∫

R3

|vn|6dx

⎞⎠
5
6

≤ ε0

∫
R3

v2
ndx + S− 1

2

⎛⎝∫
R3

|∇φvn |2dx

⎞⎠
1
2
⎛⎝∫

R3

|vn|6dx

⎞⎠
5
6

≤ ε0

∫
R3

v2
ndx + S− 1

2S−3

⎛⎝∫
R3

|∇vn|2dx

⎞⎠
5
2
⎛⎝∫

R3

|vn|6dx

⎞⎠
5
6

≤ ε0

∫
R3

v2
ndx + C‖vn‖

10
3
L∞(R3)

⎛⎝∫
R3

|vn|2dx

⎞⎠
5
6

,

which leads to ‖vn‖ → 0 as n → ∞, contradicting to vn → v in H1(R3) with v �≡ 0. Then there exists δ > 0
such that ‖vn‖L∞(R3) ≥ δ, ∀n ∈ N. �
4.2. Proof of Theorem 4.1

We can finish the proof of Theorem 4.1 in two parts.

Part 1: Multiplicity of solutions. We fix a small ε > 0. Then, by Lemmas 4.2, 4.4 we concluded that βε ◦Φε

is homotopically equivalent to the inclusion map Id : M → Mδ. This fact and Lemma 4.3 [11] imply that

catÑε
(Ñε) ≥ catMδ

(M).

Since Iε satisfies the (PS)c condition for all c ∈ (mV0 , mV0 + h(ε)) by the Ljusternil-Schnirelmann theory 
of critical points [45], Iε restricted to Nε possesses at least catMδ

(M) critical points. Consequently by 
Corollary 2.12, we see that Iε has at least catMδ

(M) critical points in Hε.

Part 2: The behavior of maximum points. If uεn is a solution of problem

{
−Δvn + Vn(x)vn = f(vn) + |vn|3vnφvn , x ∈ R3,

vn ∈ H1(R3), vn(x) > 0, x ∈ R3,

where Vn(x) = V (εnx + εnỹn) and {ỹn} is given in Proposition 4.3. Moreover, up to a subsequence, vn → v

in H1(R3) and yn = εnỹn → y in M . Denoting pn the global maximum point of vn, by Lemmas 4.5, 4.6, 
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we have that pn ∈ BR(0) for some R > 0. Thus, the global maximum point of uεn is zεn = pn + ỹn and 
therefore

εnzεn = εnpn + εnỹn = εnpn + yn.

Since {pn} is bounded, we have

lim
n→∞

V (εnzεn) = V0. �
4.3. Final comments

If uε is a positive solution of (2.9), the function wε = uε(x/ε) is a positive solution of (1.1). Thus, the 
maximum points ηε and zε of wε and uε, respectively, satisfy the identity

ηε = εzε,

consequently,

lim
ε→0

V (ηε) = V0.

Theorem 1.1 follows from Theorem 4.1 and the last limit.
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Appendix A

As we point out in the introduction, the nonlocal term is involved with critical growth, and we shall 
encounter the problem of the convergence of integral with nonlocal term. To this end, we present a technical 
lemma which is useful in proving that the functional Iε satisfies the (PS)c condition, see Proposition 2.10. 
For notational convenience, we denote by Iα(x) = 1

4π
1

|x|α , α ∈ (0, 3) and then

φu(x) =
∫
R3

|u(y)|5
|x− y|dy = (I1 ∗ |u|5)(x).

Lemma A. Let (ξn) be a bounded sequence in D1,2(R3) such that ξn → 0 a.e. in R3. Denote by A(u) =
φu|u|3u. Then for each w ∈ D1,2(R3), we have the following estimates:

∫
R3

|A(ξn + w) −A(ξn) −A(w)| 65 dx = on(1).

Proof. By assumption, we can rewrite A(u) = φu|u|3u as (I1 ∗ |u|5)|u|3u. Then by the mean value theorem 
and Young inequality, we derive that
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|A(ξn + w) −A(ξn)|

=

∣∣∣∣∣∣
1∫

0

d

dt

{
(I1 ∗ |ξn + tw|5)|ξn + tw|3[ξn + tw]

}
dt

∣∣∣∣∣∣
=
∣∣∣∣

1∫
0

(Iα ∗ (5|ξn + tw|3[ξn + tw]w))|ξn + tw|3[ξn + tw]dt

+ 4
1∫

0

(I1 ∗ |ξn + tw|5)|ξn + tw|3wdt
∣∣∣∣

≤ 5
1∫

0

(I1 ∗ (|ξn + tw|4|w|))|ξn + tw|4dt + 4
1∫

0

(I1 ∗ |ξn + tw|5)|ξn + tw|3|w|dt

≤ C1(I1 ∗ ((|ξn|4 + |w|4)|w|))[|ξn|4 + |w|4] + C2(I1 ∗ (|ξn|5 + |w|5)(|ξn|3 + |w|3)|w|
≤ C1(I1 ∗ (ε|ξn|5 + Cε|w|5))[|ξn|4 + |w|4] + C2(I1 ∗ (|ξn|5 + |w|5)(ε|ξn|4 + Cε|w|4)
≤ εC3
[
(I1 ∗ |ξn|5)|ξn|4 + (I1 ∗ |w|5)|ξn|4 + (I1 ∗ |ξn|5)|w|4

]

(A.1)

+ CεC4
[
(I1 ∗ |ξn|5)|w|4 + (I1 ∗ |w|5)|ξn|4

]
+ CεC5(I1 ∗ |w|5)|w|4

� Qε,n(x) + CεC5(I1 ∗ |w|5)|w|4.

Recall the Hardy-Littlewood-Sobolev inequality Theorem 4.3 [32]: if θ ∈
(
1, N

N−α

)
then for every v ∈

Lθ(RN ), I1 ∗ v ∈ L
Nθ

N−(N−α)θ (RN ) and

∫
RN

|I1 ∗ v|
Nθ

N−(N−α)θ ≤ C

⎛⎝ ∫
RN

|v|θdx

⎞⎠
N

N−(N−α)θ

. (A.2)

For each ε > 0, let us consider the function Gε,n given by

Gε,n(x) = max{|A(ξn + w) −A(ξn) −A(w)| − Qε,n(x), 0},

which satisfies

Gε,n(x) → 0 a.e. in R3

and using Hölder inequality and (A.2) we see that

0 ≤ Gε,n(x) ≤ C6(I1 ∗ |w|5)|w|4 ∈ L
6
5 (R3).

Therefore, by the Lebesgue Dominated Convergence Theorem we have∫
R3

|Gε,n(x)| 65 dx → 0 as n → ∞. (A.3)

From the definition of Gε,n(x), we get

|A(ξn + w) −A(ξn) −A(w)| ≤ Qε,n(x) + C7Gε,n(x),
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which yields that

|A(ξn + w) −A(ξn) −A(w)| 65 ≤ |Qε,n(x)| 65 + C8|Gε,n(x)| 65 .

By (A.3), we obtain the following estimates∫
R3

|A(ξn + w) −A(ξn) −A(w)| 65 dx

≤
∫
R3

|Qε,n(x)| 65 dx + C8

∫
R3

|Gε,n(x)| 65 dx

=
∫
R3

|Qε,n(x)| 65 dx + on(1).

(A.4)

Now we estimate the last integral of (A.4). Since (ξn) is bounded in D1,2(R3), ξn → 0 a.e. in R3, then 
ξn ⇀ 0 in L6(R3). By the definition of Qε,n(x), we have

∫
R3

|Qε,n(x)| 65 dx

≤ εC

∫
R3

[
(I1 ∗ |ξn|5)|ξn|4

] 6
5 dx

+ εC

∫
R3

[
(I1 ∗ |w|5)|ξn|4

] 6
5 dx + εC

∫
R3

[
(I1 ∗ |ξn|5)|w|4

] 6
5 dx

+ CεC

∫
R3

[
(I1 ∗ |w|5)|ξn|4

] 6
5 dx + CεC

∫
R3

[
(I1 ∗ |ξn|5)|w|4

] 6
5 dx

(A.5)

= εC

∫
R3

[
(I1 ∗ |ξn|5)|ξn|4

] 6
5 dx

+ Dε

∫
R3

[
(I1 ∗ |w|5)|ξn|4

] 6
5 dx + Dε

∫
R3

[
(I1 ∗ |ξn|5)|w|4

] 6
5 dx

= Γ1 + Γ2 + Γ3,

where Dε = C(ε + Cε). Next we estimate the three integrals in the right-side of (A.5).
For Γ1, by Hölder inequality, (A.2) and (ξn) is bounded in D1,2(R3), we have

Γ1 = εC

∫
R3

(I1 ∗ |ξn|5)
6
5 |ξn|

24
5 dx

≤ εC

⎡⎣∫
R3

(I1 ∗ |ξn|5)6dx

⎤⎦
1
5
⎡⎣∫
R3

|ξn|6dx

⎤⎦
4
5

≤ εC1

∫
|ξn|6dx

⎡⎣∫ |ξn|6dx

⎤⎦
4
5

(A.6)

R3 R3
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≤ εC2

⎛⎝∫
R3

|∇ξn|2dx

⎞⎠
27
5

≤ εC3.

For Γ2, we have

Γ2 = Dε

∫
R3

(I1 ∗ |w|5)
6
5 |ξn|

24
5 dx

= on(1),

(A.7)

by virtue of (I1 ∗ |w|5)
6
5 ∈ L5(R3) and |ξn|

24
5 ⇀ 0 in L

5
4 (R3).

For Γ3, we have

Γ3 = Dε

∫
R3

(I1 ∗ |ξn|5)
6
5 |w| 245 dx

= on(1),

(A.8)

by virtue of (I1 ∗ |ξn|5)
6
5 ⇀ 0 in L5(R3) and |w| 245 ∈ L

5
4 (R3). From (A.4) − (A.8), we obtain∫

R3

|A(ξn + w) −A(ξn) −A(w)| 65 dx → 0 as n → ∞,

which completes the proof. �
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