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In this paper, we study the initial value problem for focusing nonlinear Schrédinger
(fNLS) equation with non-generic weighted Sobolev initial data that allows for
the presence of high-order discrete spectrum. More precisely, we show how to
characterize the properties of the eigenfunctions and scattering coefficients in the
presence of high-order poles; Further the initial value problem is formulated into
an appropriate enlarged RH problem, which is transformed into a solvable model
after a series of deformations. Finally, we obtain the asymptotic expansion of the
solution of the fNLS equation in any fixed space-time cone:

S(x1, 2, v1,v2) := {(z,1) € R?: 2 =xo+vt, xo € [x1,22],v € [v1,v2]} .

Our result is a verification of the soliton resolution conjecture for the fNLS equation
in the solitonic region with the presence of high-order discrete spectrum. The leading
order term of this solution includes a high-order pole-soliton whose parameters
are affected by soliton-soliton interactions through the cone and soliton-radiation
interactions on continuous spectrum. The error term is up to O(¢t~3/4) which comes
from the corresponding 0 equation.
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1. Introduction

In this paper, we study the long time asymptotic behavior of the Cauchy problem for the focusing
nonlinear Schrédinger (fNLS) equation in the solitonic region with high-order discrete spectrum

. 1
i + 5 da + lq*q =0, (1.1)
q(z,0) = qo(x) € Hl’l(]R), (1.2)

where H11(R) is a weighted Sobolev space
HY'(R) = {f(z) € L*(R) : f'(x),2f(z) € L*(R)}. (1.3)

The NLS equation is an important model in applied mathematics and theoretical physics due to both its
surprisingly rich mathematical structure and its physical significance and broad applicability to a number
of different areas [2,16,26]. The NLS equation is also a completely integrable system. Its Lax pair was first
derived by Zakharov and Shabat in 1972 [34]. For sufficient smoothness of the initial data, Zakharov and
Shabat developed the inverse scattering transform (IST) for the initial value problem of the NLS on the
line for initial conditions with sufficiently rapid decay at infinity [34]. Later, the IST for the defocusing
NLS equation on the line with nonzero boundary conditions (NZBC) at infinity was developed [35]. The
periodic problem for NLS was studied by Its and Kotlyarov in 1976 [18]. Biondini and Kovacic established
asymptotic expressions for the multiple pole solutions of the fNLS equation via the IST method [27]. The
N-soliton solutions for the fNLS equation with NZBC at infinity and double zeros of the analytic scattering
coefficients has been studied by Pichler and Biondini [25]. Recently, Weng and Yan found a kind of new
tri-pole solutions of the focusing NLS hierarchy with NZBCs via the RH approach [30]. In addition, the
well-posedness of the NLS equation on the line with initial data in L? and in Sobolev spaces H®, s > 0 was
proved by Tsutsumi and Bourgain respectively [8,29].

The long time asymptotic behavior of the defocusing NLS equation with Schwartz initial data was first
studied by Zakharov and Manakov by the IST method [36]. The focusing NLS equation with nonzero bound-
ary conditions by the IST method were presented by Kawata, Inoue and Ma in [21,22]. Using monodromy
theory, Its was able to reduce the RH problem formulation for the NLS equation to a model case, which can
then be solved explicitly, giving the desired asymptotics [17]. A perturbation theory for the NLS equation
with non-vanishing boundary conditions was put forward in [15], where particular attention was paid to
the stability of the Ma soliton. Whitham theory results for the focusing NLS with step-like data can be
found by Bikbaev in [4]. In particular, a nonlinear steepest descent method for oscillatory RH problem was
developed by Deift and Zhou in 1993 [38], which is a new great achievement in the further development of
the IST method. After that, a numerous new significant results on long-time asymptotics for NLS equation
also other integrable nonlinear equations have been obtained in a rigorous and transparent form with this
new method [14,31,32]. Kamvissis obtained the long time behavior for the focusing NLS equation with real
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spectral singularities [20]. Boutet de Monvel et al. studied long time asymptotic behavior of the fNLS equa-
tion with time-periodic boundary condition on the half-line [11], with step-like initial data [12], and more
general step-like initial data recently [13]. By using a variant of IST and by employing Deift-Zhou nonlinear
steepest descent method, Biondini studied the long time asymptotic behavior of the focusing NLS equation
on the line with symmetric, nonzero boundary conditions at infinity [5], and recently with nonzero boundary
conditions in the presence of a discrete spectrum [6]. Chen and Yan obtained long-time asymptotic behavior
of the third-order NLS equation with NZBCs by employing Deift-Zhou nonlinear steepest descent method
[9].

Most recently, for weighted Sobolev initial data go(x) € H>*(R), Borghese et al. applied the d steepest
descent method to obtain asymptotic expansion in any fixed space-time cone for the focusing NLS equation in
solitonic region [7]; the  steepest descent method was first applied to analyze the asymptotics of orthogonal
polynomials on the unit circle and on real line by McLaughlin and Miller in 2006 [23,24]. Later, this method
was further generalized to widely study the long time asymptotics of integrable systems. For example,
Cuccagna and Jenkins studied the large-time leading order approximation and the asymptotic stability of
N-soliton solutions of the defocusing NLS equation in 2016 [10]. Jenkins et al. obtained the soliton resolution
property of the derivative NLS equation. As ¢ approaches infinity, the solutions can be described by a finite
sum of localized solitons and a dispersive component [19]. We recently obtained long time asymptotics of
short pulse equation in solitonic region [33]. The advantages of this method are not only avoiding delicate
estimates of Cauchy projection operators but also improving error estimates without additional restrictions
on the initial data.

For the defocusing NLS equation, its ZS-AKNS operator is self adjoint, no soliton solutions appear due
to empty discrete spectrum for finite mass initial data go(z) € H!(R). Soliton solutions have no effect
on the long-time asymptotic behavior. However, for the focusing case, the ZS-AKNS operator is non-self
adjoint that allow for presence of solitons anywhere in C \ R. It is necessary to consider effects of soliton
solutions when we study long time asymptotic behavior. Therefore, the long-time behavior of solutions
of fNLS are necessarily more detailed than in the defocusing case due to the presence of solitons which
correspond to discrete spectrum of the non self-adjoint ZS-AKNS scattering operator. The corresponding
reflection coefficient 7(z) is a mapping defined on the real axis r(z) : R — C. It is possible for r(z) to possess
singularities along the real line and we call these points spectral singularities. The initial data qg, which has
no spectral singularities and produces only simple discrete spectrum, is generic. If spectral singularities or
high-order discrete spectrum exist, the initial data qq is called the non-generic.

For the focusing NLS equation with zero boundary conditions (ZBC), it has been known that more
general solutions corresponding to double order poles exist since the original work of Zakharov and Shabat
[34]. More general high-order pole solutions of the focusing NLS equation with ZBC were also studied by
Aktosun et al. [3,28]. Such solutions also exist in the focusing case with NZBC and describe the interaction
of two solitons with same amplitude and velocity parameters, which diverge from each other logarithmically
as in the case of zero boundary conditions [25]. Indeed for focusing NLS equation, it can be shown that high
order discrete spectrum may appear see in the following Lemma 1. As is common, long time asymptotic
expressions of the focusing NLS equation in the solitonic region are limited to the case in which all discrete
spectrum are simple [5-7,13]. In this work, we apply the  steepest descent techniques to obtain the long-time
asymptotic behavior of solutions for the Cauchy problem (1.1)-(1.2) of the fNLS equation with non-generic
initial data which allows for the presence of high-order discrete spectrum. More precisely, we show how
to characterize the properties of the eigenfunctions and scattering coeflicients in the presence of high-
order poles; Further the initial value problem is formulated into an appropriate enlarged RH problem,
which is transformed into a solvable model after a series of deformations. We then obtain the long time
asymptotic expression of the focusing NLS equation in solitonic region with the presence of high-order
discrete spectrum.
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The structure of this work is the following: In Section 2, we simply recall the basic scattering theory
about the fNLS equation, such as the Lax pair, the analyticity and the symmetry of the corresponding
eigenfunctions, for the details, see [7]. In Section 3, we consider the high-order discrete spectrum and
compute the residue condition and the coefficients of negative power terms. In Section 4, we formulate an
RH problem m(z) to characterize the Cauchy problem (1.1)-(1.2) with high-order poles. In Section 5, in
order to regularize the RH problem m(z), we first study the property of the jump matrices and introduce a
transformation 7'(z) to get m™)(z). We then make continuous extension of these jump matrices to obtain
a mixed 9-RH problem m(?(z). In Section 6, we decompose m ?(z) into a pure RH problem mgl)qp(z)
and a pure 0-problem m(®(z), while the RH problems about mgl)qp(z) and m®)(z) can be shown solved
respectively. Finally, we give an explicit formula for the solution of the fNLS equation in Section 7. Moreover,

the property of soliton resolution can be obtained after analyzing the form of solution.
2. The Lax pair and spectral analysis
The fNLS equation (1.1) admits the Lax pair [7]

D, +izo3d = Q1P, D, +iz2203D = QP (2.1)

(1 0 [0 ¢ 1 i|q\2 19z + 22q
0—3,_<0 _1>’ Ql_(—q 0)’ QQ‘Q(in%q —ild® )

Given the initial condition (1.2), the Lax pair (2.1) has a solution of the following asymptotic form

where

D(z) ~ emiEttos gy 4o, (2.2)
By making a transformation
p(z) = B(a)e 07, (2:3)
we find the matrix function p has the following asymptotic behavior
w(z)~1, x— too
and satisfies the following Lax pair

Mo + 22[037/‘1’] = Qlﬁh (24)
pie + 12203, 1] = Qap- (2.5)

This Lax pair (2.4)-(2.5) can be written by fully differential form
d (e“z“z%)&s #) = /035 [(Q da + Qadt) ). (2.6)
We expand p into a Taylor series at infinity and prove that

wz)~1,  z— o0, (2.7)
q(z,t) = 20 lim (2p)12. (2.8)
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By integrating the equation in two directions parallel to the real axis, two eigenvalue functions can be
obtained

x

W) =1+ [ IRy i, (29)
+oo
pt(zmt) =1~ / e 2@V, (zyy, )t (z;y, t)dy. (2.10)

T

From the relation (2.3), we know that
@i(z) _ Mi(z)e—i(za:—i-zzt)ag (2.11)

are two linear correlation matrix solutions of the Lax pair (2.1), which means there is a matrix S(z) =
(sik(z))ikzl satisfying the condition

O (2) = d1(2)S(2). (2.12)
Therefore, we obtain
BT (2) = pt(2)e T 0T 5 (), (2.13)

where the matrix function S(z) is called the spectral matrix and s;x(z),4,k = 1,2 is called the scattering
data. Direct calculation shows that [7]

s11(2) = det (uy,p3 ) =1+ / )iy (y)dy =1+ /q(y)uil(y)dy, (2.14)
s21(2) = det (uf, 7 ) = — / q(y)e” >y (y)dy = — / q(y)e™ Y oy (y) dy, (2.15)

where we denote

+ +

+ +  + H11 M2
pr=(spue) =5 T

bz (#21 K22

When ¢(z) € L'(R), by constructing iterative sequence and Neumann series, we can prove that p, u2+7 S11
are analytic in the upper half complex plane; p, , u1+7 S99 are analytic in the lower half complex plane; s
and so1 are not analytic in the upper and lower half complex plane but are continuous on the real axis.

In addition, we can find symmetries of u* and S(z)

p5(2) = —opE(2)o = oap(Z)o2, (2.16)

S(z) = —0S(2)0 = 025(2)02, (2.17)

where
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Here we give the definitions of several important concepts: the reflection coefficient r(z) = s21(2)/s11(2)

and the transmission coefficient 7(z) = 1/s11(z). In particular, for z € R, we have s11(z) = s22(2), s12(2) =
—s21(2), and 1+ |r(2)[* = [7(2)[".

For simplicity, we assume that the initial data go € H!(R) and the corresponding scattering data satisfy
the following conditions: s11(2) has no zeros on R; s11(z) only has finite double roots; s11(2), 7(z) € HVH(R).
The following lemma will illustrate the rationality of the above assumption.

Lemma 1. The zeros of s11(z) in CT are finite but not necessarily simple in the case qo € H>(R).
Proof. For ®*(2) = ((I){E(z),q);(z)), applying (2.11) to (2.14) gives
s11(z) = det (@7 (2), @3 (2)) . (2.18)

Suppose that 2z € CT(k=1,...,N) are the zeros of s11(z). From (2.18), we know the pair ®] (z;) and
®F (z1,) are linearly related, which is there exists a constant 7 € C such that

D1 (2k) = 1Py (21)- (2.19)
Then, we consider the partial derivative of s11(z)

3811(2)

5 = det (0,97, ®3) + det (®7,0.97) . (2.20)
2=, 2=z,
Using (2.1), we find that
%det (0.97,9F) = —i det (037, P75 ), (2.21)
%det (®1,0.®3) = —i det (®],03P3) . (2.22)

The equations (2.9), (2.9) and (2.11) tell us that

1 40/( 2
Dy (z;) ~ <0> e 20(=T) gy oo, (2.23)
dF (2 0 2it0(z;x)
5 (z2) ~ NE = oo, (2.24)
—1 2 40( 2
0,97 (z;x) ~ (0 iz+ Zt)) e 2GR gy o, (2.25)
Then, we obtain
det (0,97, ®5) = —i / det (03®3 (215 8), @3 (215 8)) ds, (2.26)
o0
det (97,0.93) = —i%/det (0393 (213 5), PF (215 8)) ds. (2.27)
x

Putting the above two terms together, we have
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85;;2(2) = —2ivg / @Tz(zk; s)@;é(zk; s)ds. (2.28)

Therefore, we can find: When the condition [*_ ®1,(z5; s)®3, (2k; s)ds = 0 is satisfied, the zero z, is not
simple. That means z; might be a multiple zero of s11(2).

To prove that the number of zeros of s;; is finite, we first suppose that s11(z) has no zeros on R. Using
the asymptotic behavior of s11(z) (s11(2) = 1 as z — 00), we can give the finiteness of the number of zeros
of s11. O

3. Discrete spectrum with high-order poles

Now we suppose that s11(z) has N double zeros, which is s11(z;) = s (z) = 0 and s{;(2x) # 0, in the
upper half complex plane CT and denote them by z;(k = 1,..., N). By the symmetry of the eigenfunction,
we know that z, € C~ (k =1, ..., N) are the double zeros of sg2(z). Denote

Z = {zkls1(zk) = s11(2) = 0,871 (2x) # 0},
Z = {Zx|s22(%k) = shp(2k) = 0, 555(2x) # 0},
which are the sets of the zeros of s11(2z) and s22(2) respectively.

From the relation (2.13) and s11(z;) = s} (zx) = 0, we deduce that there are norming constants by and
di that are independent of z and t such that

py (zx) = bre® R i (2), (3.1)
(u7) (z) = €210 ((Qite’(zk)bk + i) 3 () + b, (13’ (zk)> . (3.2)
where (z) = 22 + xz/t. Similarly,
py (Zr) = brB(Zk)e 210t () (3.3)
(7)) () = 72195 ((dy = 2010’ Gi)bi ) wif (31) + e (1) (30)) (3.4)
where Ek = —b;, and c?k = —dj, according to the symmetry of S(z).

Notice that 7 is analytic in the upper half plane CT and zj is the double zero of s11(z), then let uy
and s11(z) do Taylor expansion at point zj

pr(2)  pg Ca) + (07) () (2 = 20) + (1) () (2 = 2)2/2 + .o

s11(2) B sty (zi)(z — 21)? /2 + 81 (zk) (2 — 21)3 /6 + ... (3.5)
C2(m) o (200) ) 2m s ),
= e G +< A R TN >< v B0

The above equations (3.1), (3.2) and (3.5) yield the residue condition and the coefficient of (z — 2;)~2 in

B (2)
811(2)

the Laurent expansion of

i ()] _ 2(e0) () 2up ()t ()
iy [311(3)} sz 35", (z1)? (3.7)

= e 0 () (2) + 113 (20) (B + 200 (1)) ) (3.8)

Z=ZL
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Nl_(z)] 2p1 (2x) 2it0(zx) ,,+
P_ = = Aie k ), 3.9
iy [511(2) s11(2k) g pa (2) (39)
where
Qbk dk SY{(Zk)
A, = B,=—— ——~. 1
CTG T T s (3.10)

Likewise, as z = Zj, is the double zero of sq3(2), by equations (3.3), (3.4) and (3.5), we obtain

o (2] _20m) () 25 (255 (2)
2 L?Q(ZJ  sh(%) 3550 (2k)? (3.11)
= Ape2 ) () () + it (30) (Bi — 200/ (20)) ) (3.12)
po (2) _ 2u5 (21) — A, e 20t0(Zk) 3
zP:_zi [522(2)]  shy(%k) = i (). (3.13)

where

Ap = ;o Br== - = (3.14)
s (2k) b 3s5(zk)
Moreover, it is easy to find that
Ay = —Ay, By =By. (3.15)

4. The RH problem with high-order poles

In our situation, we introduce the meromorphic matrices

(”;(z) ,u+(z)) , as Imz >0,

s11(2) 7 F2
m(z) =m(z;x,t) = ) (4.1)
(,uf(z), ‘:222—8> , as Imz <0,
which satisfies the following RH problem.

RHP1. Find a matrix-valued function m(z) which satisfies

(a) m(z) is meromorphic in C \ R and has double poles;
(b) m(z) satisfies the jump condition m4 (z) = m_(z)v(z), z € R, where

r(z e 2it0(z) ()
U(z)_<1+<>2 : <>>; 42)

eQitO(z)r(Z) 1
(¢) The asymptotic behavior of m(z) at infinity is
m(z) =1+ 0(z"1), z — 00;

(d) m(z) satisfies the residue and the coefficient of negative second power term in the Laurent expansion
conditions at double zeros z € Z and z, € Z:
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Zk

° °_
Zk

Fig. 1. The jump contour and poles for m(z).

0 0 0 0
() = i / ‘ ) 4.
ZR:ezi m™(2) et [m (2) (Akewa(zk) 0> +m(2) (Ak (Bg + 2it0 (z,)) et0(zr) 0)] » (43)

A ,—2ith(Zk) (B 940/ (5 —2it6(Z)
Res m™(z) = lim [m/(z) <0 Are ' > + m(2) (0 A (Bk 2it6 (Zk)> ¢ )1 ,
0

2=Zk Z2—Zg 0 0 0
(4.4)
P_om™(2) = lim m(z) 0 0 (4.5)
Z:_Zk 2> zk Ak€21t9(zk) 0 ) .
A, —2it0(Zk)
i_éimf(z) = lim m(z) (8 Are 0 ) . (4.6)

See Fig. 1. The existence and uniqueness of the above RHP1 can be given by Liouville’s theorem and the
vanishing lemma [1]. Plugging the asymptotic expansion m = I +m1/z + o(2~ ') into the formula (2.1), we
obtain that

2iz q [ gl d

m(z) =TI+ L <_fzoo_|Q|2de q ) _1_0(2:—1). (47>

Thus, the solution g(x,t) of initial value problem for NLS equation can be expressed by the above RHP1

q(x,t) = 2i lim (zm)12. (4.8)

Z—>00

5. Continuous extensions to a mixed &-RH problem

In this section, we make factorizations of the jump matrix v(z) and continuously extend each factor off R.
The idea of continuous extensions comes from [10,23,24]. Before doing continuous extensions, we renormalize
the RH problem of m(z) so that it is well-behaved at infinity. Then, we deform the jump matrix onto new
contours on which they decay and obtain a new 9-RH problem by extensions.

5.1. Factorizations of jump matrix
We first consider the oscillatory term in the jump matrix (4.2)
e2t0(2) — 20(2) - 5(2) = i0(2) = i(2% 4 z2/t).

Differentiating ¢(z) with respect to z yields a stationary phase point and four paths of steepest descent

%= —2%, g {zo + ei(2k_1)’r/4R+} k=1,2,3,4. (5.1)
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Imz

e=2it0()| 0 ‘627?1,9(2)‘ 50

Rez
zZ0

2it0(z)
le | —0 e2it0()| |
Fig. 2. Exponential decaying domains.

From 0(z) = 22 — 2202 = (2 — 29)? — 22, we get
0>
Re(i) = —2Imz(Rez — 2p). (5.2)

Therefore, we can divide the complex plane into two classes of domains according to the exponential decay
e?9(2)  See Fig. 2.

From the above analysis, the jump matrix (4.2) admits two compositions

1 e 2itd 1 0 S
. y R 20,
0 1 re2itd 1
1 0 1+r2 0 1 e
T e2it0 1 O 1 0 1 ), ? < ~0-
1+|r]? 1+[r]?

To remove the intermediate matrix of the second decomposition, we introduce the following scalar RH
problem.

RHP2. Find a scalar function §(z) which satisfies
(a) d(z) is analytic in C \ R;
(b) 64(2) = 5 () A +1r?), 2 <z

(c) 0(2) ~ z — 00.

By the Plemelj formula, we prove that this RH problem has a unique solution

1 2010 1+ |r(s)|?)ds .Zousds
5(2) = exp %/ g( SI_(Z)I) — exp 1/% , (5.3)

where v(s) = — 5t log(1 + |r(s)[?).
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Imz
I
AL@ 1 AL@)
R - >
A;o <******************+ ****************** > A:J
l
Z7(T) Z(EI) Z+(I)
|
a :Zo b
|
|
I
I
I
I
I
I

Fig. 3. Different spectrum sets.

5.2. Renormalizations of the RH problem for m(z)

For convenience, we introduce some notations

A7 ={ke{l,..,N}||z| < 20} .

For a real interval I = [a, b], we define

Z(I) = {Zk GZHZM GI},
Z_(I) = {Zk S Z||Zk| < a},
Z+(I) = {Zk € Zl|zx| > b}

For a fixed point zg € I, we define

AL (I)={ke{l,...,N}l|a < |z < 20},
AL (I)={ke{l,...,N}|zo < |z| < b}.

See the corresponding domains for different spectrum sets in Fig. 3.
Then, we introduce the function

re= 11 (22) o

keAz,
2
. <z - z;c> (2 — 29)(70)¢iB(2:20)
z— 2 ’
kEAZ,
where
20
B(z,20) = —v(20)log(z — z0 + 1) + / Md&
s—z

Rez

11

here x(s) is the characteristic function of the interval (2o — 1, 29), and log takes the analytic branch along

the cut (—o0, zg — 1].
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Proposition 1. The function T has the following properties

(a) T is meromorphic in C \ (—o0,29]. For each k € AL, T(z) has double poles at z;, and double zeros at

2k )
(b) For z € C\ (=00, 2], T(2) = 1/T(2);
(c) For z € (—o0, z9],

(d) As |z| = oo with |arg(z)] < c <,
T(x) =1+ % £ Im(z) - / v(s)ds| +O(=2); (5.8)
kEAZ, S
(e) Along the ray z = 29 + e'*R . where |¢| < 7, as z — 2o
IT(2, 20) — To(20) (2 — 20)™*0)| < |z — 2o|"/2, (5.9)
where ¢ is a fived constant.

Proof. The proof of above properties is similar to the proof of Proposition 3.1 provided by Borghese et al.
7. O

Next, we construct a new transformation
mW(2) = m(2)T(z)~7. (5.10)
From this transformation, we can achieve the following two goals:

« Renormalize m such that m") is well behaved as t — co along arbitrary characteristic;
« Split the residue coefficients into two sets according to signature of Re(if).

In addition, m (") (z) satisfies the following RH problem.
RHP3. Find a matrix-valued function m™(z) = m(Y(z;z,t) such that

(a) mW(2) is analytic in C \ (RUZ U Z);
mY(z) has the following jump condition my’(z) = m=’(2)vY(2), 2z € R, where
b) m(1(2) has the following j dition m{! W (2)p® R, wh

()T (2)2e—2it0(2)
v(n(z):((l) Gy ><T<z>T—2<12)ew<z> g) 2 € (20, +00); (5.11)

1 0 1 r(z) T*Q(z)e—QitO(z)
= ) I+[r(z)? "+ — ; (5.12
( 1+T7§2)|2 T:Q(Z)e2zt9(z) 1 ) < 0 1 ) S ( 0, ZO)) (5 )

() mD(2) =T+ 0(zY), asz— oo
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(d) m™M(z) satisfies the following residue conditions at double poles 2z, € Z and 2, € Z:

Res m(l)(z) = lim [mgl)(z)NLk(zk) + m(l)(Z)NQ’k(Zk)], keA;

Z=ZL Z—Zk

Res m(V(z) = lim [m{" (2) N3k (2x) + mM (2)Nyg(zr)], ke AL;

z=2z Z—Zk

Res mW(2) = lim [mY(2)0aNy 1 (Zk) oo + mWY (2)ooNo i (Zr)02), k€ AT
Z=ZL Z—ZLk

Res m(l)(z) = li}m [mgl)(z)agN37k(2k)02 + m(l)(Z)O'QN47k(Ek)O'2], ke Ajo;
zZ=Z} Z—rZE

Moreover, the coefficients of the negative second-order term are

P_omW(z) = {l?mz—wk m(i)(z)Nl,k(Zk), keAr;
z=2z) hmz_uk m( )(Z)Nka(Zk))’ k c Ajo’
P_Qm(l)(z) _ l?mzﬂgk m(i)(z)dzNg’k(%}c)Jz, ke Ajo;
Z2=Zk hmz_>5k m( )(2)02N47k(2k)02, k e Ajo’

where

LA (1) () 77 B+ 20t (21) + 3] et )

0 0
N, = , ) .
() (AkT—Q(zk) [Bk + 20t0 (z1,) — —?éi’;’] e2it0(z1) o)

Proof. The analyticity, jump condition and asymptotic behavior of m(l)(z) are easily to be proven. The
difficulty lies in the calculation of residue conditions. We first consider poles z; € Z in the upper half

complex plane and denote m(z) = (m(z), m2(z)), then

m() = (w2 () = (T (ma(IT() = (LLET ) (T )

811(2)

(i) For k € A7 and z; € Z, 2 is the double poles of mgl) and 7', but mél) and T~! are analytic at the
point 2z with 771(z;) = 0, then

) (24) = 2 AP s () (T (1), (513
es mP(2) = mh (2 N () — mo(z L)WW
ey m)(e) = (a2 (1) o) —male) P A (5.14)
(1)

where T(z) = T(2)(z — z)?. Next, we calculate the derivative of m
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! —\/ Tﬁl(z ) _ -1\’
(m{") ) = (1) (21) Sn(z:) + 7 () (;) (2)- (5.15)
From the Taylor expansion, we find
7' _ () @) () @) () s L
s11(z) B s11(zk) N ( 371 (zk) 3(st1(zk))? ) ( k) + (5.16)

Thus, we know

£ W o) B CO NI € i (COEAED
(E) (o) = 37, (ze) 3(3’1’1(2k))12 ' (5.17)
Combing (3.1), (3.2) and (5.15) with (5.17), we obtain
, 1 " 5 . ,
(mi?) ) = b (quliz:) o) (i) ()
+ {7@8}225’“) (2it6’ (zi)br, + di) + by, <(T3;2/(,;Sk) - (T_;():,lff(i:)ll;g(zk)ﬂ X0 3 (2,).
(5.18)
Substituting (5.13) and (5.18) into (5.14), we find
Res m)(2) = 441 (171 (20) " 7290 () ()
_ 4A;1 ((T—l)u(zk))*2 By + Qitef(zk) + %} e—2it9(zk))mgl)(zk>7 (5.19)

where we have used the fact Ax = %. Finally, we obtain the corresponding residue condition for
m®(z).

Then, we calculate the coefficient of (z — 2z;)~2 in the Laurent expansion of m("). We still consider this
condition according to the order of the columns of m().

P:gm(ll)(z) =0, (5.20)
Zg_;mg”(z) = ma(2k) PaT(2) = 2ma(21) (T (2)) " (5.21)

Plugging (5.13) into (5.21), it is straightforward to find

Poom®W(z) = (0,4A,;1 ((T*l)”(zk))_Q6*2“"(2’0) . (5.22)

Z=Zk

(ii) For k € Ajo and 2z, € Z, T and T~ is analytic at the point z;. In this case, the residue condition of
the first column of m() is

Res m{"(2) = Res m1(2) - T~ (z;) + Res ma(2) (T (2) — T~ (z1))

z=zp z=2zp z2=zp
= Res my(2) - T~ (z1,) + lim my (T_l), (2)(2 — 2)*. (5.23)
Z=ZL Z—Zk

Since
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lim my (T_l)/ (26)(2 — 21)% = 2u] (21) (T_l)/ (z1)/s%1 (z1), (5.24)

Z—rZk
!
(m$)' (2) = my(AT(:) + ma()T'(2), (5.29
we give the expression

Res mgl)(z) = AkT_Q(Zk)egiw(zk)(mél))l(zk)

Z=Zk

-2 v _ 21" (z1,) 2it6(zx),,, (1)
+ AT *(2) | By, + 2it0'(21) Tlon) e msy ’ (2k), (5.26)
k

in which we have used equations (3.1) and (3.10). Because of the analyticity of ma(2) and T'(2) at the
point zx, Res,—,, mgl)(z) = 0. Thus, we find the expression of the residue condition in this case.
In addition, we can obtain the coefficient of (z —z;) ™2 in the Laurent expansion of m(1) directly because

T—! is analytic at the point z

0 0
MW (5) = ! — ] 1) _

Pram™(2) = Pam(z) - T () = Jim m (Asz(zk)eZ”H(zk) o) S
Using the same method, we can obtain the corresponding conditions for z; € Z in the lower half
plane. O

5.8. Continuous extensions of jump matriz

In this section, we make continuous extension to the scattering data of the jump matrix ) and construct
a new transformation from m®) to m(?). The transformed m(? satisfies the following properties:

o m®(z) has no jump on R and matches m(P®(z) model, which is given and analyzed in Section 6, on a
new contour $(?) which is defined in (5.28).

e The norm of the function, which is introduced by this transformation, has been controlled so that the
O-contribution to the long-time asymptotics of q(z,t) can be ignored.

e The residues are unaffected by the transformation.

To make continuous extension, we first define a new contour %(?)
@ =2 US, US3 Uy, (5.28)

where ¥, are given in (5.1). Then, the real axis R and the contour ¥(2) separate complex plane C into six
open sectors denoted by Q, kK =1,...,6, depicted in Fig. 4.
Second, let

1
= min (A — pl. (5.29)
2 A\ pueZUZNAu

For any point 2z, = xj + iyx € Z, we have %, = xj, — iyp € Z. Thus, dist(Z,R) > p. Suppose that
Xz € C§°(C,[0,1]) is the characteristic function defined in the neighborhood of discrete spectrum

J 1 dist(2,2U2) < p/3,

xz(z) = {0 dist (2, 2 U Z) > 2p/3. (5.30)
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3o 31
AN ) ‘
. . RY¥Y =1 /,/
. .
N\ Zk /{ [
R(R) — U,gl DN Q // R(A) — ng

2
Q3 \\\ ///Ql

Qy //Z()\\ Qg

s \.
R® = U, o0 BN R® = w,
27 Zk N .
. // L] \\\
4 R® =7 AN
3 L7 - Nt

Fig. 4. Definition of R® in different domains.

Finally, we introduce a transformation R(® to obtain a mixed 9-RH problem.
m®(z) = mW(2)RP (2), (5.31)

where R(?)(z) is defined as follows:

-1
1 0 »
Ry (z)e?i? 1) =Wg', zed,

—2it0 \
R3(z)e > _ U§17 2 €0,
R4(Z)€21t9 1 UL’ Z € iy,

—2itf
Rﬁ(Z)e > = WL7 z € Q67

1, z € Qo UQs;
where the function R;, j =1, 3,4, 6, is defined in following proposition, depicted in Fig. 4.

Proposition 2. There exists a function R;: Qj — C, 7=1,3,4,6 such that

_ T(Z)T(Z)727 S (ZOa 00)7
=) = { (20)To(20)~2(= — 70) 2D (1~ x3(2), 2 € B, (533
r(2)T4(2)?
’ KA (_0072 )a
Rs(z) = { :(;L )|7:}(Z()Z|2)2 0 (5.34)
1 —i |T?zo;)|2 (z = 20)?" ) (1 = x2(2)), =z € o,
r(2)T_(2)~?2
RSN z € (—00, 20),
_ ) 1P -
Ra(z) = 7(20)To(20) > (5.35)

14 |r(z0)[? (2 = 20) 2¥ ) (1 = x2(2)), 2 € s,
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Fig. 5. Jump matrix v® . Yellow parts support & derivative: OR@ # 0; White parts don’t support & derivative: ORP = 0.

mT(z)Qa FAS (Zo, O())7
R, = - ) 5.36
6(2) { T(Zo)To(Z())2(Z o ZO)QU/(zO)(l _ XZ(Z))> = 24’ ( )
and R; admit estimates
|R;(2)| < sin®(arg(z — 20)) + (Re(2)) /2, (5.37)
10R;(2)] < |0xz(2)] + ' (Rez)| + |z — 20|/, (5.38)
OR;(2) =0, if2€QUQs5 ordist(z, ZU Z) < p/3. (5.39)

The proof of above proposition is the same as that in [7] because the form of residue condition doesn’t
affect this transform R (z).
Therefore, m(?)(z) satisfies the mixed 9-RH problem as follows:

RHP4. Find a matrix-valued function m(?(z) = m®)(z; z,t) which satisfies

(a) m®(z) is continuous in C \ (E@ U Z U Z).
(b) m®(2) has the following jump condition mf)(z) = m(2)(z)v(2)(z), z € ¥ where

v@() = (RD) ' (20 (R (2)

1 0 >
) 2it6 1 ’ 2 €2,

1 R3 —2it0
. Z € Yo,
- (5.40)
<R4 2zt0 ) ’ Z € 23’
1 R Z 7211‘/9
, 2 € Xy
0
See Fig. 5.
(c) mP(2) =T+ 0O(z1), as z — 00.
(d) For C\ (P uzu2),
om® (z) = m@(2)0R?(2), (5.41)

where
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! 0 z €}
—OR;(2)e?0 1 )7 b

_5 —2it6
(1 OR3(2)e ) seqs,

0 1
A (2) 1 0
RO = spmen 1) 7€ (5.42)
1 ORg(z)e 0
<0 6( ]? ) s z e QG;
<8 8) R z € Qo UQs.

(e) The m(?(2) has the same residue conditions with m® (z).

Proof. (a)-(d) are easy to be checked, so here we only give a brief proof to (e). It is sufficient to prove the
case where k € Ajo and 2, € CT, since the proof of others is similar. In this case, any z; € € is not the
pole of R, so

/ -1 (0 0
@) = 1 (€] 2 (R (2)
e 0= i () R (R9) (s )R

1 0 0
lim mOR® (R® : : @,
M (R ) ART ™2 (2x) [Bk+2it9/(zk>_—2;(ii§)} itoz) g | T

Substitute (m(Q))/ = (m(l))/ RE +m™ (R(Q))/ and (R(Q))I = 0 into the above equation, and we finish the
proof. O

6. Decomposition of the mixed &-RH problem
In this section, we will find the solution of the mixed d-RH problem m(?)(z) as follows:
Step 1. Separate zero and non-zero parts of 9R(?)(z). Thus, we decompose m(?(z) into a pure Riemann-

Hilbert problem with 9R(?)(z) = 0, which we denote by mgl)qp(z), and a pure 0 problem with IR (z) # 0,
which we denote by m(%)(z2).

ORP(2) =0 — mg}IP(z),
m® (z) = . (6.1)
IRP(2) #0 = m® () = m® (z) (myp(2)) -
The RH problem for the mg}{ p(2) is as follows:

RHP5. Find a matrix-valued function mg}J p(z) which satisfies

(a) mggp(z) is analytic in C \ (£ U Z U 2);
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(b) mgl)qp(z) has the following jump condition mgl)LIP—i-(Z) = mgj)qp_(z)v(z)(z), z € ¥ where v?(2)
has been given by (5.40);

(c) ng}{P(z) — 1, asz— oo;

(d) ORP(z) =0, for z € C;

(e) The residue condition and the coefficient of the negative twice power of the Laurent expansion have the

same form as m(?(z) with m%)qp(z) replacing m® (z).

Step 2. To prove the existence of the solution mgl)q p(2), we separate the jump line from the pole. Suppose
Uy, ={z: ]z — 20| < p/2}. Let mg}fp(z) be further decomposed into two parts:

2)m@ (2), 2 ¢ U,
mgl)qp@) - {ggzim(%)(i)?’ z iZZ:{{ZD. (6.2)

The outer model m(O“t)(z) is constructed by ignoring the jumps in RHP5, which can be approximated by
solitons on the discrete spectrum. The inner model m(ZO)(z) has the same jump with RHP5, which can be
approximated by the parabolic cylinder model in continuous spectrum.

Step 3. Find the solution and its asymptotic behavior of the pure 0 problem m(®)(z).
6.1. The pure RH problem and constructions of its solution

6.1.1. The construction of outer model
By definition (6.2), m(°*)(z) is the solution of m(?)(2) in the soliton region, which satisfies the following
RH problem.

RHP6. Find a matrix-valued function m(°“*)(z) which satisfies

(a) m(©"!)(z) is analytic in C \ (Z U 2);

(b) m () =T +0(z71), z— oo;

(c) m(z) has double poles at each z;, € Z and 2z, € Z, which satisfies the residue relations in (e) of
RHP4 with m(°%)(z) replacing m®(z).

In order to show the existence and uniqueness of solution of m(°“*)(z), we first consider the reflectionless
case of the RHP1. In this case, r(z) = 0 and v(z) = I, then m, = m_. Thus, RHP1 of NLS equation has no
jumps in the whole plane and is analytic in C except for z;, € Z and z, € Z. The RHP1 can be equivalently
rewritten as the following solvable RH problem:

RHP7. Given discrete data o4 = {(zx,¢ik),0 =0,1, 2 € Z};::r Find a matrix-valued function m(z|og)
which has the following properties:

(a) m(z|og) is analytical in C \ (Z U 2);
(b) m(zlog) =1+ 0(z71), z— oo;
(c) m(z|og) satisfies the following relations at each double pole z;, € Z and 2z € Z

~

Res m(z|og) = ILm [m(zloa)nox +m'(z|loa)ni k], (6.3)
zZ=2z 22k
Res m(zlog) = 1i>ng [m(z|oq)oamg ko2 + m/(z|oq)oamy oo) (6.4)
Z=Zk z Zk
P_sm(zlog) = ZanZlk m(z|oqd)ni k, (6.5)

Z=Zk
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P_oym(z|og) = lim m(z|og)oeTiy ko2, (6.6)
Z2=Zy Z—ZK

where
0 0 0 0
p— 5 P— 3 607
nok <W’o,k(fﬂ,t) 0) ok <71,k($6,t) 0) (6.7)
with

Yo (2, t) = co e ), (6.8)
Nk (@, 1) = c 50, (6.9)
Cok = Ay (Bk + Zitﬁ’(zk)) , (6.10)
ek = Ag. (6.11)

Proposition 3. Given discrete data oq = {(zx, i), 0 =0,1, 2 € Z}gzl, there exists a unique solution of
RHP7 for each (x,t) € R?, ast — oo,

Gsot(T,t;04) = 21 lim (zm(z|oa))q - (6.12)

Proof. The proof includes two parts. One is for the uniqueness, and the other is for the existence. The proof
of uniqueness is relatively simple, here we only briefly introduce the steps and mainly prove the existence.

Uniqueness: To prove the uniqueness of this solution, we first need to introduce a transformation to
remove singularity of m(z|og) and then use Liouville’s theorem to provide the uniqueness. Existence: We
rewrite Res,—,, m(z|og) and P_ym(z|oy) into the following form:

2=z
0 1

Res m(z|oq) = a(o)(zk)no,k- + a(l)(zk)nl,k = (a%(zk)%’k + aéf;(zk)%’k 0) = (al’k 0) ,  (6.13)
agy (zk)Y0,k + a3y (26) 716 0 Bk 0

Z=Zk
PLym(zloa) = a® (s — [ U2 ()0 0 o (a2 0 (6.14)
2=z ' ag)(zk)fyl,k 0 B2k O

From the symmetry m(z|ogq) = com(z|og)o2, we know

0 3

Res m(z|oq) = o2 [a(o)(zk)no,k + a(l)(zk)nl,k} o2 = ( _ BM) ; (6.15)

Z2=Z) 0 o]k
Poam(2loa) = 02a® (nymanos = | 0 P2 ) (6.16)
2=7%r ’ 0 oo

Notice that when r(z) = 0, v(z) = I. Therefore, the above RH problem for m(z|o4) has the following
solution

m(z|cr)]+§:[ L g 0 +71 azk 0
v lz—z \ frp O (z—2k)*> \ Bo O

) \ (6.17)
1 0 *BLk 1 0 *BQ,k
+z—%(0am >+@—%P<0am ﬁ'
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Substituting (6.17) into (6.3) and (6.5) respectively, we get the following linear equations after normalization

B1k Ba.k Bk 2.1
— - T2 2)*'7171'( VI PR Y
zj—zr (25— Zk) (2 — 2k) (2 — 2k)

’Yo,j(

N
a1, + E
k=1

N
= _ o Qo _ o1k 200 1,
517‘_ Fo.i (= , 4+ > — .5 (= 5 N 5
! ; j(zj —z (% — Zk)Q) j((Z] —z)? (% —a)?
N _ _
Qg+ Z Buk + 525 )] =0,
k=1

fm(zj —Z (5 — &)

N
5_2,j—2[72,j(_g1’k + 2k 2)] =72,5-

pet zi—a (5 — )

Next, we transform the above linear equations (6.18)-(6.21) into matrix form. Let

a1 = (11, ,oan)T, ag = (ag1, - ,aan)7,
Bl = (61,17"' 761,N)T7 62 = (62,17"' 752’N)T’
70, Vi, .
A= (aj; ) Qij = , - - , 1, :17"'7Na
( Z])NXN i 2175‘7 (sz’gj)Q j
n0,i 274 ..
B = (bij)nxn, bij = — - ~— i,j=1,--- N
( ZJ) X 1] (Zz 72,],)2 (Zz *Zj)B
C:(Cij)NXN7 Cij: ’71,1'7 , i’jzly...7N7
Zi — Zj
Y1,i

D = (dij)nx N, dij:( ,j=1,---,N.

Zi — 5]‘)27

) o

)] = Y0.55

b

(6.18)

(6.19)

(6.20)

(6.21)

Thus, the above linear equations (6.18)-(6.21) are equivalent to the following partitioned matrix equation

In 0 A B aq 0
0 Iy cC D ag [ [0
—A* -B* Iy 0 Bi |l | A
-C* -D* 0 Iy B2 "

(6.22)

Moreover, we can prove the coefficient matrix of the above equations is positive definite as ¢ — co. According

to the Cramer’s rule, the solution of the (6.22) exists and is unique as t — co. O

Remark 1. RHP7 is a special case in Zhang’s paper [37] with ny = ngs = -+ = ny = 2, but the method of

proof in his article is completely different from ours.

For convenience, let A € {1,2,--- ,N}, V=A°={1,2,--- , N} \ A and define

s =TT (272) ost= 20 T (22

keA kev

Then we make a transform

mA (z|adA) =m (z|oq) an(z)7®.

(6.23)

(6.24)
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As we can see from the above expression, the transformation (6.24) splits the poles between the columns of
mA (z\aﬁ) according to the choice of A, and it satisfies the following nonreflective RH problem.

N
RHP8. Given discrete data UdA = {(zk,ciA,J ,0=0,1, 2 EZ} . Find a matrix-valued function
' k=1

mA (z\odA) which has the following properties:

(a) m® (z|o3) is analytical in C \ (Z U 2);
(b) m® (zlc2) =I+0(z7Y), 22— o0;
(c) m”? (z|04) has the following relations at discrete spectrum Z U Z
Res m® (z]07) = ILm [mA (208) ng + (mA), (z[02) nfk} ) (6.25)
Z=Zk Z—2Zk ’ )
Res m® (z]07) = 1er_1 [mA (202) 02@02 + (mA), (z]02) O'QFAkO'Q} ) (6.26)
=2z} Z—Zk ’ )
P_ym® (z|crdA) = le mA (z\odA) ney, (6.27)
2=z 22k ’
P_ym® (z]07) = lim m® (z|o7) oon?, 7y, (6.28)
z2=Z 22k ’
where
0 o (x,t
(O g’o,k(x ))’ keA,
A
n®, = 6.29
0k 0 0 (6.29)
A , kev,
Yo (@, t) 0
(O 71,k<x7t)> ’ ]{3€A,
0 0
nfy, = . . (6.30)
( A ) , kev,
’yl,k(zrt) 0
with
CA 6—21':‘,0(,%)7 ke A,
You@ ) =3 08 o (6.31)
ok , keV,
_ _ . 2a//l 2
Cok = _4Ak 1a£(zk) ? |:22t9/(2k) + Bk + 3(1/2((2:))} ’ he A7 (632)
: bty (2)alt (21) 2 [2it9’(zk) + By — 2% g;] . kev,
CA 6721;159(21“)’ k c A’
k(1) = { Zk 2it6(=21,) (6.33)
CL.LE ; keV,
4A af ()72, keA,
O S (6.34)
' bpsty(zr)ad(zx)™2,  keV.

The proof is similar to the proof of RHP3.
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xr=uvit + 1 xr = vat + T2

Fig. 6. Space-time S(z1, x2, v1, v2) on the half-plane —co < = < 0o, t > 0.

N
Proposition 4. For nonreflective scattering data O’dA = {(zk,cfk) =0,1,2; € Z}k , RHPS owns a

unique solution ast — oo and
Qsol (x,t;JdA) = 2¢ lim (zmA (z|adA)) =2i lim (2m (2]04))15 = @sot (@, t;0q), t— 00. (6.35)
12

Z— 00 Z— 00

Proof. Since the transformation (6.24) is explicit, from Proposition 3, we know this RHP8 has a unique
solution as ¢ — oo. Using transformations (4.7) and (6.24), we can obtain

1 [ = [ g’ dz + 8Zkealmzy q(z,t) _
A A € ) 1
m =]+ — z + . 6.36
(Z|Ud ) 2iz < q(z,t) fw lq|?dx — 8Zrecalmzy © (Z ) ( )

Hence, the formula (6.35) can be found. O

In order to establish the relationship between m(°*!)(z) and m® (z|03), we take A = A7 and replace
the scattering data O'dA with scattering data

O'((iOUt) —_ {(Zka él,k) ’éi,k = ch(s(zk)z’ 1= 0’ 1}kN:1 . (637)

Notice that the conditions defining m(©“*)(z) are identical to those defining m*=o (z|a§out)), we can draw

a conclusion.
Corollary 1. There exists a unique solution for the RHP5 as t — co. Moreover,
m) (2) = m™=0 (z|a((iout)) ) (6.38)

where the scattering data Ut(iom) is given by (6.37). In addition, the corresponding N-soliton solution satisfies

; AT
qsol (I;t§ O'C(low)) = {sol <Qj,t; 04 z0> , t— o0

Next, we consider the large z behavior of the above solutions.

Proposition 5. Given discrete scattering data o4 = {(zk,¢ix) .1 =0,1, 2, € Z}szl, pairs of points y1,yo with
y1 < y2 € R and velocities vy, vo with v1 < vo € R, we define the cone

S(y1,y2,v1,v2) := {(y,t) € R*ly =yo+vt, yo € [y1,42), v € [UlaUZ]}~ (6.39)

See Fig. 6.
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I
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|
|
|
|
|
I
I

+ Rez

Fig. 7. Fix v, and v so that vi < va. I = [—v2/2, —v1/2]. For example, the original data has five pairs of discrete spectrum, but
inside cone S(z1, 2, v1,v2), the solution is asymptotically described by two double-pole solutions gsei(z, t;04(I)) with discrete
spectrum in Z(I) = {z1, z3}.

Take I = [—va/2,—v1/2]. Then, when t — oo with (y,t) € S(y1,y2,v1,v2), we have

m& (zlaa) = (1+ 011 ) m*=0 D (2, 1oy (1)) (6.40)

where
o7 (1) = {(zmcin(D)) i =0,1,2z, € AL (D}, (6.41)
p=pl) = Lo {Im(zy)dist(Re(zx), 1)} = ez, {2Im(zp)|vi — vz, [} (6.42)

An example has been given in Fig. 7.

Proof. Let
AT(I) = {kllzrl < —v2/2}, AT(I) = {kl[z| > —v1/2} .
For t > 0, (z,t) € S(z1,x2,v1,v2), we have
—v9/2 < 29+ o/ (2t) < —v1/2,

and as t — 00, xg/(2t) = 0, —v3/2 < 29 < —v1/2. By the residue condition and the coefficient of negative
second power of Laurent expansion, it is easy to calculate that

1 Z(I
Iy O 1= {O( - = € 2(0), (6.43)

O (et | 2z, € Z\ Z(I).

For each 2z € Z\ Z(I), we introduce small disks Dy whose radius are sufficiently small that they are
non-overlapping. We define a function

AT AT
1 zQ 1 )
I— 2—2g nO,k - (z—2z1)? nZ,k ’ z e Dk?’
T(z)=<T L0 1o D (6.44)
YL T2 | =5 0k T ez ek | 92 2 €Lk, :

1, elsewhere.
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Then we introduce a transformation

A% <z|0_dAzo) =m0 (z|o’dAzo> T(2). (6.45)

AT A7 . =
Furthermore, mizo <z|od 0) has jumps across each boundary of Dy and Dy,

o <zajzo> = o (z|crdAZ°) 3(2), 2 €Dy UdDy, (6.46)
with
|5-I|=0 (e*‘wlt\) (6.47)

which can be given by the formula (6.43).

_ AT A . .
Take A = A7 (I), then m®") (2|07 (I)) has the same poles as M™% ( 2o, ZO) with the same residue

conditions and the coefficient of negative second power of Laurent expansion. Hence,

-1

e(z) = m™=o <z|adAz_"> {mAZ_O(I) (z|0;(]))} (6.48)

has no poles but satisfies e (2) = e_(z)v.(2) with || v- — I ||= O (e=**I). From the theory of small-norm
Riemann-Hilbert problems, we know e(z) = I + O (e~} as |t| — oco. Finally, by equations (6.45) and
(6.48), we obtain

m>=o (zloq) = (I + (’)(6_2““‘)) m®= D (z;y,t|a;([)) . O (6.49)

Therefore, we can obtain the following corollary.

A
Corollary 2. Assume that qso; <x, ty0, ZU) 1s the N -soliton solution of the NLS equation with scattering data

N
AZ AZ
0,70 = {(zk,ci$;°> ,1=0,1,k e AZ_O} . Then, as (z,t) € S(x1,x2,v1,v3), t = 00,

k=1

ou A - _
qsol (fE,t, Uc(i t)) = {sol (xat;ad O) = Gsol (x7t;o—d (I)) + O (6 4“'”) ) (650)

where qsor (z,t;05 (1)) is the N(I)-soliton solution of the NLS equation with the scattering data o (I).

6.1.2. The construction of local model
At the beginning of the construction of local model near the saddle point, we consider the jump matrix
in the interior of the region.

Proposition 6.

O (Jz — 20|~ 1t712), 2€e2@ne,,

2 _ =
17 = Hi=ee=1 (e'2), 2@\ U, (651
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Proof. We prove the above proposition for the case z € 31, and other cases can be shown in a similar way.
The jump line is z — 29 = |z — 20|e’™/* at ¥; and

0= (z—20)% — 22 = i|lz — 20|* — 22. (6.52)

Using (5.37) and (5.40), we obtain
|R,e?0(2)| < (%q + ¢y (Rez) ™Y 2) e 2tlz—=0l? (6.53)

where (Rez) /2 < c¢. In the interior of U, m'2) . has no pole and
o» MREP
| v® -1 | Lo (m2 < €]z — 20|72, ze 2@ ne,,. (6.54)

Thus, it is clear that the jump v is point-wise bounded, but not uniformly decayed to the identity matrix.
Additionally, as z € X3 N {|z — z| > p/2},

1 0@ = I || oo gen < ce™ /2 O (6.55)

In order to achieve a uniformly small jump Riemann-Hilbert problem for the function E(z) defined by

(6.2), we establish a local model m(*¢) which matches mg;{ pon ) N, . For this reason, the translation

scale transformation is defined by

A= A(2) = 2Vt(z — 20). (6.56)
Notice that if we take ro = r(z0)T(20) 22 (z010evVD~t20) the jump of mg}{P is in accordance with that
of the parabolic cylinder model problem m(P)| which satisfies the following RH problem, see more details
in [17].

RHPY. Fix ry € R, find an analytic function m® (X, ry) such that

(a) mP (X rq) is analytic in C \ (),
b) m®e) (X, 7o) has continuous boundary value mPe A, 7o) on X(2)
+

m(ﬁw) ()\77“0) = m(fC) ()\’To)v(pC) <)‘7TO>7 C € 2(2)3 <657)
where
1 0 NS
roA=2iveiX?/2 1 |7 - b
7 2iv ,—iA? /2
(1 A e ) A=Y,
0 1
(pe) () — 6.58
v ST .
(o) =14 5 A (6.58)
. . ) = 443,
A2 ]
1 7 )\2%1/67%)\2/2
, A=y
0 1

See Fig. 8.
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P

7 2iv  —iX?/2
L e ATe
0 1

1 0
I —iv iX?/2
THREAT N2 1

33

P

1 0
ro)\’zi”e“z/z 1

1 Fo/\m"e’”‘z/z
™)

Fig. 8. Jump matrix v,

(ve)
(c) As A = oo, mP)(\,rg) =1 + 7m1p)\(7’0) +0O(\72).

Moreover, the asymptotic behavior of m(pc)()\, 7o) has been verified in the paper [38], which is

. 1 0 —Z'ﬁ (TQ) —
PN, ro) =T+ ~ ? +O (A2 6.59
m T , ) .
=15 (Y o () (659
where
27rei7r/4e—7rl//2 \/ﬁe—iﬂ/4e—7ﬂ//2 v
_ _ _ . 6.60
Prz(ro) e A 7ol (i) Bia(r0) (6.60)
Therefore, it is convenient to define m(*0)(z), which is given by (6.2), as follows
m) (z) = m (2)m P (X, o). (6.61)

Further, m(*0)(2) is a bounded function in U, and fulfills the jump condition v(?)(z) of mg}{P(z).
6.2. The small-norm RH problem for E(z)

In this section, we deal with the error function E(z). By the definition (6.38) and (6.61), it is obvious
that E(z) meets the RH problem as below.

RHP10. Find a holomorphic function E(z) such that

(a) E(z) is analytical in C \ (&), where &) = ait,, U (5@ \ U, ), see Fig. 9.
(b) For z € £¥) E(2) has continuous boundary values E (z) which satisfy

where

m@) (2)v@ (z)mow) (z)~1, ze XA\ U,,,
R _{ ()0 (Ym0 (2 \ oo

mO (2)m@e) (A, 7o) m (2)71, 2 € DUy,

(c) For z € 00, E(z) =1+ O (271).
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Fig. 9. Jump contour Z(¥) for error function E(z).
Utilizing Proposition 6, the formula (6.62) and the boundedness of m(°“%)(z), we can obtain

0] (e*t”z/2> , 2€X@\U,,

‘U(E)(Z) - I‘ =
O (t71/7), z € U,,.

Proposition 7. RHP10 has a unique solution.

Proof. According to Beal-Cofiman theorem, the solution of RHP10 can be constructed by

E(z) =1+ 1 / e (s) (U(E)(s) —1) as,

271 s—z
n(E)

where up € L? (E(E)) satisfies
(1 - C'LUE) HE = I

with C,, being a integral operator defined by

Cun(P@) = C- (£ (P () - 1)),

where C_ is the Cauchy projection operator

: 1 f(s)
_ = 1 — :
C-(f)) z’—>zug§:<E> 211, / sfz/ds
)
Using the above formulas (6.66) and (6.67), we get
1Cuwsllp2sEy < IC-llL2 ) HU(E) - IHLOO(E(E)) S0 (t_l/?') :

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

This means that 1 — C,,, is invertible. Subsequently, ur and the solution of the RHP10 exist and are

unique. 0O

By (6.63) and the process of proof of Proposition 7, it is straightforward to obtain the following corollary.
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Corollary 3.

[ (= =1)]

s = Il agsceny = © (£712). (6.70)

_ ~1/2 >
=0 (t ) . pello0), k>0, (6.69)

Next, we consider the asymptotic expansion of F(z)

E
E(z) =1+ 71 +0(27?), (6.71)
where
1
= (B) _
E, 5 / nr(s) (v I) ds. (6.72)
=(E)
Proposition 8.
1 c _ —

Ey(,t) = ﬁm(ouﬂ(zo)mg” V(ro)m @) (z0) "t + O (7). (6.73)

B=_ (v“?) _ 1) ds— — L / (U<E> _ I) ds — % / (up(s) — I) (U<E> - I) ds. (6.74)

2,
s, SENU, (B)
Then, the conclusion can be obtained by estimating the three integrals respectively. O
6.3. The pure O-problem and its asymptotic behaviors
In this section, we acquire a pure d-problem after removing the & component of m(?. We define
m® (2) := m® (2)m) p(2) 7" (6.75)
Then, m®)(z) is continuous and has no jump in C, which satisfies a pure d-problem.
RHP11. Find a matrix-valued function m®)(z) with the following properties.

(a) m®(z) is continuous in C \ (R UX®);
(b) For z € C, Im®) (2) = m®) (2)w® (z) where

w®(2) = migy p ()R migy p(2)”" (6.76)
(c) For z € oo, m®(2) =TI+ 0O (271).

Proof. By the definition of m(®)(2), it is obvious that m®(z) is continuous in C \ £ and satisfies the

condition (b). At the same time, using formulas (5.40) and (6.75), we can find that

mf)(z) =mP(z), zex®.
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From the property (e) of RHP3, we prove the residue condition for the case k € AZ}, Imz; > 0, because
the proofs for the other cases are similar.

!/
Res m® (z) = (762,2mg2)(zk),0) + (7% ( (2)) (z k),O) = lim (m(Z)n((f,l + (m@)) nﬁ:) , (6.77)

Z2=2z 2= Zk
Pom® () = (1{3me (),0) = lim (m@n). (6.78)
where
WA = AT () [Bk + 20t (z3,) — %} e%0(zr) (6.79)
42 k = ART 2 (2,)e0(z0) (6.80)
”(()211 = (3{(}2}3 8) ) n?z)c = (3% 8) . (6.81)

2
Since (nﬁi) =0(i=0,1), n?k) is the nilpotent matrix.

As 2, is the second-order pole of m® (z), m)(2) has the Laurent expansion with the following form

P_ym(zloa)  Resm(z|oy)

m®(z) = Z:(ZZ’“_ SeE + ZZZ’; = +al(z) +b(z) (2 — z1) + Oz — z)*. (6.82)

Substituting (6.82) into (6.77) and (6.78) respectively, we acquire

Res m?(z) = a(zk)n((f,)C + b(zk)n(Ql)€7 (6.83)
zZ=2zK ’

P_om®(z) = a(zk)nﬁ)C (6.84)
Z=Zk

And then, bring (6.83) and (6.84) back to (6.82), we have the Laurent expansion

e n@ e
m® (2) = alz) [T+ —25 + —DF | 4 p(z) +b(z)(z — 1) + O(z — 1) (6.85)
z—zr (22— 21)? -

Notice that m(? and mg}{P have the same residue relations and detm(® (z) = detmg}ﬂ;( ) =1, it can be
calculated directly

@ ! oy i r ni’) r )
(mRHP> (2) = [I e Zk)Q] o2a(z) 02+<I — (Z—Zk)2> oob(z) 02 (2 — 2)+O(2—21)*.
(6.86)

Then,
m® (z) (mgggp) ) = o), (6.87)

in which we have used the property of nilpotent matrix nﬁ) (i = 0,1). Hence, m® (z) has only removable
singularities at each zj.
The property (b) can be obtained by 6m§§;{P =0. O
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The solution of this RHP11 is constructed by the following integral equation

m® //m S_“}Z(B )dA(s), (6.88)

where dA(s) is the Lebesgue measure on C. Meanwhile, the equation (6.88) can also be represented by
operators, which is

(I—C0)ym®(z) =1, (6.89)

where C' is the Cauchy-Green integral operator,

// f(s i(i) dA(s). (6.90)

In addition, this operator C' admits the following estimation.
Proposition 9. Fort — oo,

I C o S 174, (6.91)
which implies that (I — C)™" eists.

As z — 0o, we consider the asymptotic expansion of m(g)(z)

(3 (3)
m® () =1+ ™ // s ()W) (), (6.92)
S — Z
where

// m® (s)w® (s)dA(s). (6.93)

To reconstruct the solution g(z,t) of the {NLS equation with double poles, we need to determine the long
(3) (3)

time asymptotic behavior of m;™’. We can testify the following property of m;™.
Proposition 10. There is a constant ¢ such that

Im{¥| < et=3/4. (6.94)

Proof. The proofs of Propositions 9 and 10 are similar to the proof of Proposition 6.1 and Appendix D in
[7] respectively. O

7. Long time asymptotics for fNLS equation

Now we begin to seek the long time asymptotic behavior of the solution for the fNLS equation.
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Theorem 1. Take qo(xr) € HY'(R) and suppose that the corresponding scattering data is
oa = {(zr,cik),1=0,1, 2 eZ}ivzl with zj is double zeros of the scattering coefficient s11(z). Fiz
X1, T2,v1,v2 € R with v1 < x9,v1 < wvy. Take I = [—vy/2,—v1/2] and zg = —x/(2t). Take qsor (x,t;ad_(l))
be the N(I) soliton corresponding to the scattering data

o7 (I) = {(zrycin(D)),i= 0,1,z € AL (D}, -
Then as t — oo with (x,t) € S(x1,x2,v1,v2), we have
q(z,t) = qsor (:E,t; o, (I)) + t_l/gf +0 (t_3/4) , (7.1)

where

f= (7711)2 a(ZO)ei(r2/(2t)fu(20)1og\4tl) + (n12)2a(zO)efi(wz/(2t)fv(ZO)log\4t\)’ (7.2)

with |a(z0)]? = |v(20)], v(20) = —%log(l + |7(20)|%) and

Z0

arga(zg) = 2 + argl (iv(z0)) — argy(zo) — 4 Z arg(zo — zx) — 2 / In|s — zo|dln (1 +|r(s)]?), (7.3)
keAz, —o00

where n11,M12 1S the elements in the first row of m®=0 0 (z;y,t|0; (I))

Proof. Reviewing a series of transformations we have made in the process of solving the initial problem
(1.1)-(1.2), which are (5.10), (5.31), (6.2) and (6.75), and backward pushing these transformation processes
gives us

m(z) = m® (2) E(z)m") (R@)(z))*1 T, 2 C\Us,. (7.4)

In particular, we consider cases where z tends to infinity in the vertical direction of z € Q5 or Q5. In these
cases, we have R(?) = I and

m(z) = <I+@+O (%)) <I+%+O (2—12)> <I+ mi““ +O(Z—12>> (1+ leog‘ +O(Zi2)>.

(7.5)

After that, we get

mi = mgOUt) + B+ mgg) + T10'3, (76)

where my is the coefficient of the z—!

Proposition 10 tell us that

in the Laurent expansion of m. Meanwhile, the equation (4.8) and
q(z,t) = 2i ((mg""”)12 + (E1)12) +0 (t‘3/4) . (7.7)

Let mlout) — [ 11 M2} Using Proposition 8, we have
121 722

(E1)i2 = ﬁ (Br2(m1)? + Ba1(m2)?) (7.8)
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where
B12(20) = Ba1(20) = au(zg)et (7 /(@D =¥(z0)logldt]) (7.9)

Bringing 2: (mgom)) = sol (x,t;a((iout)) and (7.8) back to (7.7), we find

12
a(@,t) = quot (505" ) 4472 10 (1794, (7.10)
where f is given by (7.2). In addition, using Corollary 2, we obtain
q(a,t) = st (x50, (1)) +t7 V2 f +0 (t—3/4) , (7.11)
where (z,t) € S(z1,22,v1,02). O

Remark 2. Though the asymptotic result (7.1) has the same form with that obtained in [7], they have
different meanings. For example, the first term gs,; (x,t;crd_(l )) demonstrates high-order pole solutions,
while it denotes simple pole solutions in [7]; The second term t~1/2f is an interaction between high-order
pole solutions and the dispersion term, while it denotes an interaction between simple pole solutions and
the dispersion term in [7].

Remark 3. The asymptotic result (7.1) shows that the initial value problem of the fNLS equation with
zero-boundary and double poles in scattering coefficient has the property of the soliton resolution, which is
as t — 00, any solution of the fNLS equation can be decomposed into solitary wave part and dispersion part.
Linear NLS equation iq; 4+ ¢, /2 is dispersive and any solution of this linear equation has the estimation
|| ¢ ||z~ t~1/2. Therefore, the second term in the formula (7.1), which includes the t~/2, represents the
contribution of the dispersion term. The multiple solitary wave solutions gs.; (x,t;og (I )) corresponding
to the scattering data, which is superposed by a finite single soliton solution, appear in the long time
asymptotic expansion when the NLS equation includes a nonlinear term |q|%q.

Remark 4. After modification on the residue conditions (4.3)-(4.6), we can show that the solutions of the
Cauchy problem of the fNLS equation with high-order pole spectrum data still possess the property of
soliton resolution like Theorem 1.
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