Mouse Lymphoid Tissue Contains Distinct Subsets of
Langerin/CD207 © Dendritic Cells, Only One of Which
Represents Epidermal-Derived Langerhans Cells
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Langerin/CD207 is a C-type lectin associated with formation of Birbeck granules (BG) in Langerhans cells (LC).
Here, we describe a monoclonal antibody (mAb 205C1) recognizing the extracellular domain of mouse langerin.
Cell-surface langerin was detected in all epidermal LC, which presented a uniform phenotype. Two subpopulations
of langerin™ cells were identified in peripheral lymph nodes (LN). One population (subset 1) was CD11c'*"/*|
CD8u°¥/CD11b ©/CD40 " /CD86 . The other population (subset 2) was CD11¢c"9"/CD8«"/CD11b'°"%, and lacked
CD40 and CD86. Only subset 1 was fluorescein 5-isothiocyanate (FITC ©) following painting onto epidermis, and the
appearance of such FITC* cells in draining LN was inhibited by pertussis toxin. Mesenteric LN, spleen, and thymus
contained only a single population of langerin* DC, corresponding to peripheral LN subset 2. Unexpectedly, BG
were absent from spleen CD8a+ DC despite expression of langerin, and these organelles were not induced by mAb
205C1. Collectively, we demonstrate that two langerin®™ DC populations (subsets 1 and 2) co-exist in mouse
lymphoid tissue. Subset 1 unequivocally identifies epidermal LC-derived DC. The distribution of subset 2 indicates
a non-LC origin of these langerin ™ cells. These findings should facilitate our understanding of the role played by

langerin in lymphoid organ DC subsets.
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Dendritic cells (DC) are highly specialized antigen-present-
ing cells (Banchereau and Steinman, 1998; Guermonprez
et al, 2002). Sparsely distributed as sentinels in peripheral
tissues, DC are bone marrow-derived leukocytes, with a
considerable degree of heterogeneity (Vremec and Short-
man, 1997; Anjuere et al, 1999; Banchereau et al, 2000;
Ruedl et al, 2000; Ardavin et al, 2001; Henri et al, 2001;
Shortman and Liu, 2002). In mice, the majority of DC ex-
press CD11c (integrin axB2), with several distinct sub-
populations including CD8a*/CD11b (Mac-1, integrin
amp2)©?, and CD8x /CD11b™" cells (Shortman and Liu,
2002).

Langerhans cells (LC) represent a particular DC subset
localized in basal and suprabasal layers of the epidermis,
and in stratified mucosal epithelia (Romani et al, 2003). LC
differ ultra-structurally from other DC by the presence of
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cytoplasmic organelles, known as Birbeck granules (BG),
and consist of superimposed membranes separated by
leaflets with periodic “zipper-like” striations (Birbeck et al,
1961; Wolff, 1967). LC are characterized by strong expres-
sion of the transmembrane type-Il Ca® "-dependent lectin
langerin/CD207 (Valladeau et al, 2000, 2002). The extracell-
ular portion of langerin consists of a membrane-proximal
neck region, and a C-terminal carbohydrate recognition
domain (CRD), with specificity for mannose, GIcNAc, and
fucose (Valladeau et al, 2000; Stambach and Taylor, 2003),
and recently reported to recognize Lewis x-related se-
quences (Galustian et al, 2004). Langerin is a potent pro-
moter of BG formation in LC, and in unrelated cells following
transfection of its coding sequence (Valladeau et al, 2000,
2002).

Because of their specialized location, LC constitute the
first immune barrier to the external environment. LC trans-
port antigens captured in skin and epithelia to draining
lymph nodes (LN), although they undergo a maturation pro-
gram that allows them to present processed antigens to
naive T cells, thus inducing specific immunity (Romani et al,
1989; Stoitzner et al, 2003). This scheme has provided a
useful paradigm to study other DC subpopulations. The
classical “LC paradigm,” however, needs to be revisited
(Serbina and Pamer, 2003; Wilson and Villadangos, 2004).
For instance, recent reports indicate that LC may not prime
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T cells in the context of epidermal/epithelial antiviral immu-
nity, a function that requires participation of other distinct
DC subtypes (Allan et al, 2003; Zhao et al, 2003; Belz et al,
2004b). In addition, the capacity of LC to induce tolerance
to self-antigens expressed in the skin is a matter of debate
(Mayerova et al, 2004; Shibaki et al, 2004).

These considerations led us to develop a monoclonal
antibody (mAb) to the extracellular domain of CD207. This
allowed us to investigate whether langerin/CD207 could be
used to subdivide DC subsets in mouse lymphoid tissue.
We describe here the existence of two langerin™ subsets,
only one of which represents DC derived from skin LC, a
finding that should be valuable for further defining the func-
tional properties of this population within the LN.

Results

mAb 205C1 recognizes an epitope in the extracellular
domain of mouse langerin/CD207 Unlike human langerin,
no antibody that recognizes cell-surface expressed mouse
langerin has, to our knowledge, been described. We there-
fore generated hybridomas with the goal of producing such
an antibody. As shown in Fig 1A, this approach allowed us
to select an antibody, mAb 205C1, of IgM isotype, reactive
with a cell-surface epitope on the COP5 cells transfected
with mouse langerin cDNA used for immunization (see Ma-
terial and Methods). By contrast, mAb 205C1 gave only
marginal background staining on COP5 cells transfected
with mock plasmid, or with plasmid encoding human la-
ngerin. Human LC obtained from in vitro culture of CD34 "
cells with TGF-B1 were found to be unreactive with mAb
205C1 (data not shown). Binding of 205C1 antibody was
blocked by pre-incubation of mouse langerin-transfected
COP5 cells with mannan (Fig 1B), indicating that the epitope
recognized by the mAb interferes with the extracellular CRD
of the lectin. The reactivity pattern of 205C1 with modified
constructs of mouse langerin confirmed its specificity for
the extracellular portion of the molecule (data not shown).
MAb 205C1 also stains LC in fixed epidermal sheets from
naive mice, as shown in Fig 1C (lef?) illustrating a double-
staining with anti-major histocompatibility complex (MHC)
class Il (red) and 205C1 anti-langerin mAb (green), on ac-
etone-fixed dorsal ear epidermis. Previously, we described
mAb 929F3, which stains epidermal LC and is a valuable
tool to follow their emigration into afferent lymphatic vessels
after stimulation (Stoitzner et al, 2003). Anti-langerin mAb
929F3, is of rat origin, and gives a potent intracellular stain-
ing, including a stronger signal than mAb 205C1 in immuno-
histology (Fig 1C, righf), but does not recognize the
cell-surface form of the molecule. MAb 929F3 was used in
this study to monitor intracellular langerin.

To summarize, we describe a novel antibody, mAb
205C1, specific for the extracellular domain of mouse la-
ngerin, thus allowing us to study cell-surface expression of
langerin on DC.

Langerin/CD207 is expressed at the surface of epider-
mal LC Availability of mAb 205C1 prompted us to evaluate
the pattern of langerin expression by epidermal LC. As
shown in Fig 2A (upper row), virtually all freshly isolated LC
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(MHC-1I"'S") obtained after trypsinization of the ear epider-
mis displayed langerin on the cell surface as detected with
the 205C1 mAb. In addition, the cell-surface langerin™ LC
also expressed CD11c. As further shown in Fig 2A (upper
row, right), gating on the CD11c™ cells (R2 window), indi-
cated that 205C1* LC (black dots) expressed low levels of
CD11b, but were CD8a negative. Lack of CD8u reactivity
was confirmed on epidermal sheets (Fig S1). The freshly-
isolated LC also displayed intracellular langerin as detected
with mAb 929F3 (Fig 2A, lower row), in accordance with
previously published distribution data (Valladeau et al,
2002). We observed that freshly isolated LC expressed
both surface and intracellular langerin on the same cells,
and no “single stained” population was detected (data not
shown). Interestingly, when kept in culture over a 3 d period
of time, epidermal LC downregulated both surface and in-
tracellular langerin, with surface langerin disappearing more
rapidly (Fig 2B, decrease of percentage of positive cells and
mean fluorescence intensity). This disappearance was par-
alleled by upregulation of CD40 and CD86 (Fig 2B, increase
of percentage of positive cells), as well as enhanced ex-
pression of MHC class Il molecules on the cell surface (data
not shown). No CD8a was detected on these matured LC
(data not shown). In addition to the description of langerin
expression, the reported phenotype of freshly isolated and
cultured epidermal LC is entirely consistent with our previ-
ous experience, as compiled in Table S1.

In conclusion, we here demonstrate that mouse LC ex-
press a cell-surface form of langerin, similarly to their human
counterparts.

Expression of langerin/CD207 by DC subsets in LN
Langerin has previously been described in LN by Southern
blot analysis of cDNA libraries from mouse tissues and
immunohistology (Valladeau et al, 2002). Based on the
newly available anti-langerin mAb, we explored the pheno-
type of these cells. As analyzed by flow cytometry, we found
langerin-expressing cells in all LN we studied, but strikingly
their phenotype considerably differed. In peripheral LN, i.e.,
a mix of retro-auricular, maxillar, inguinal, and popliteal LN,
we found two different subsets of DC expressing the la-
ngerin molecule. Langerin was clearly detected at the cell
surface, as revealed by mAb 205C1 (Fig 3A, top row, leff),
although a higher proportion of the CD11c™ cells ex-
pressed langerin intracellularly, as detected with mAb
929F3 (Fig 3A, top row, righf). Among the langerin* cells
(R2 window), we found two different subsets (subsets 1 and
2) according to their expression of CD8a (Fig 3A, fop row
black dots in R2). In subset 1 (CD8x"*?) the DC expressing
langerin did not express CD8x and were CD11¢'°"* (Fig
3A, gray dots in R2), and CD11b™8" (not shown). In the ex-
periment shown in Fig 3A (fop), subset 1 cells constitute
47% (100-53) of cell surface langerin cells, and 62.2%
(100-37.8) of intracellular langerin™ cells. In subset 2, la-
ngerin-expressing DC expressed CD8o and were CD11¢Meh
(black dots in R2), and CD11b"™Y (not shown). In the rep-
resentative experiment shown in Fig 3A (fop), subset 2 cells
constitute 53% of cell surface langerin™t cells, and 37.8%
of intracellular langerin® cells. Intracellular langerin was
strongest on subset 1 cells, i.e., CD11c'®" CD8u"* (Fig 3A,
top right row). When cells were analyzed from LN of
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Figure 1

CLASS II LANGERIN
20F3

Characterization of monoclonal antibody (mAb) 205C1. (A) COP5 cells were transfected with an empty plasmid (mock) or a plasmid encoding for
mouse (middle panel) or human langerin (right panel). Cells were stained with mAb 205C1 (green bold line), or with mouse IgM isotype control (black
thin line). The secondary antibody was a RPE-labeled goat anti-mouse. (B) Twenty-four hours after transfection, COP5 cells were detached and
incubated for 30 min with (empty red histogram) or without (green histogram) 1 mg per mL mannan in the presence of sodium azide before staining
with 205C1 antibody. (C) 205C1 mAb stains epidermal Langerhans cells in situ. Ear epidermis was separated from dermis, fixed in acetone for 20
min at room temperature, and double-stained (i) left four pictures: with rat anti-class Il (mAb 2G9) followed by goat anti-rat Alexa Fluor 594™ (red),
and with Alexa Fluor 488™-coupled mAb 205C1 anti-langerin (green) or (ii) right four pictures: with mAb 929F3 anti-langerin revealed by anti-rat Ig-
biotin/streptavidin-Texas Red, and with fluorescein 5-isothiocyanate (FITC)-coupled mAb 2G9. Top pictures are at x 400 (left panels) and x 300
(right panels) magnification, bottom ones at x 1000. Scale bars equal 20 um in top panels and 10 um in the bottom panels.

separate peripheral origins, a similar dichotomy of lan-
gerint cells was obtained, based on expression levels of
CD8a and CD11c (data not shown). Even though our mice
were naive, we found a proportion of langerint cells in pe-
ripheral LN expressing the activation markers CD40 and

CD86 (black dots in R2 window) (47.4% and 60.6%, re-
spectively, in the experiment shown in Fig 3A, bottom row).
Interestingly, these “activated” cells were those from subset
1, i.e., CD11c™" CD8x"9, which furthermore expressed
high levels of MHC class Il (data not shown). By contrast,
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expression by epidermal murine Langerhans
cells. (A) Freshly-isolated Langerhans cells (LC).
Cell-surface analysis (non-permeabilized cells,
upper row): epidermal cells obtained after tryp-
sinization of the ear epidermis were stained
with anti-langerin (monoclonal antibody (mAb)
205C1), anti-major histocompatibility complex
(MHC) class I, anti-CD11c, and anti-CD11b or
anti-CD8a. Cells were first gated according to
their FSC and SSC characteristics, and then
analyzed for their co-expression of langerin and
the above markers. Note that the LC are CD8a
negative. In upper right dot-plots, R2 represents
cells gated on CD11c expression, and black dots
correspond to langerin® cells within this win-
dow. Intracellular analysis (permeabilized cells,
lower row): cells were first stained on the surface
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with anti-MHC class Il and anti-CD11c, then
fixed and permeabilized for intracellular staining

with 929F3 anti-langerin. (B) Langerin/CD207

expression by LC in culture. Isolated epidermal
LC were cultured over a period of 3 d with gran-
ulocyte macrophage colony-stimulating factor
(GM-CSF). Unenriched cell populations were

subjected to 4-color flow cytometric analyses.

Expression of cell surface (mAb 205C1) or intra-

cytoplasmic (mAb 929F3) langerin, and anti-
CD40 or anti-CD86 is depicted on cells gated
for MHC class Il and CD11c double-expression,
i.e., Langerhans cells. Numbers shown inside the
panels represent the percentages of cells in each
quadrant, whereas numbers below the x-axes
correspond to mean fluorescence intensity (MFI)
of the langerin stainings. Note the rapid decrease
of cell-surface langerin and absence of CD40
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expression on freshly isolated cells.

langerin © DC from subset 2 (i.e., CD11¢"9" CD8« ™) did not
express CD40 and only a few of them were CD86 . The
subset 2 cells were also MHC class II°" (data not shown).
The phenotypes of subsets 1 and 2 are summarized in Table
S1, as a side-by-side comparison with in situ, freshly iso-
lated, and cultured epidermal LC. Antigen-uptake and mi-
gration to transport antigens from the skin to draining LN is
an important functional feature of LC (Romani et al, 2001). In
order to determine the relationship between epidermal LC
and the subsets of langerin* cells observed within draining
LN, we painted mouse ears with fluorescein 5-isothiocyan-
ate (FITC) and harvested retro-auricular draining LN. Cells
containing FITC were observed in the draining LN, with a
peak on days 2-3 post-painting. These included
CD11c*cells, as well as cells lacking CD11c, the identity
of the latter population remaining to be defined (Fig 4, sec-
ond row). Markedly, only a proportion of langerin® cells
(24% in the representative experiment presented in Fig 4,

middle row) were FITC*. We investigated CD8a. expression
on CD11c™ cells in relation to langerin and FITC. As shown
in Fig 4 (penultimate row), virtually all langerin*/CD11c*/
FITC * cells lacked CD8a. These cells correspond to subset
1, in accordance with their expression of CD40, CD86, and
high levels of MHC class Il (data not shown), and display all
features of emigrant epidermal LC. By contrast, the vast
majority of subset 2 cells, i.e., langerin */CD8a.*, remark-
ably lacked FITC (Fig 4, penultimate row). Finally, in addition
to subset 1, FITC was also readily detected among
CD11c*/langerin /CD8o.~ cells (Fig 4, bottom row), pre-
sumably representing dermal DC. We next sought to con-
firm that FITC had been captured by DC prior to their
migration from the skin, and not by resident DC within the
lymphatic system. Indeed, combined intradermal and ep-
icutaneous treatment of ear skin with pertussis toxin, an
inhibitor of G-protein coupled receptors (e.g., chemokine
receptors) led to inhibition of DC migration to the LN in
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response to topical application of FITC. Thus, the percent-
ages of FITC-bearing, epidermal-derived LC, as defined by
their CD11c " /langerin * /CD8a.~ phenotype was reduced by
about 40% in three independent experiments (33.6% vs
19.5%, 35.7% vs 15.3%, and 17.7% vs 10.5% in LN drain-
ing FITC-treated skin, with and without additional pertussis
toxin treatment, respectively) (Fig 4). Finally, we compared
langerin expression in mesenteric LN to that observed in
peripheral LN. As shown in Fig 3B, we observed cells ex-
pressing langerin (R2 window), both at the cell surface, and
intracellularly (top row right) within mesenteric LN. Strikingly,
virtually all langerin™ cells displayed a phenotype corre-
sponding to peripheral LN subset 2, i.e., CD11c"" and
mostly CD8x™* (Fig 3B, experiment shown in top row).
Moreover, the activation markers CD40 and CD86 were al-
most completely absent from the langerin™ cells (Fig 3B,
experiment shown in bottom row, black dots in R2).
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Taken together, our results demonstrate that in naive
mice, two distinct subsets of langerin™ cells co-exist in
peripheral LN, whereas only one is present in mesenteric
LN. Only one of the peripheral LN subsets (subset 1) rep-
resents epidermal LC immigrants.

Expression of langerin/CD207 by DC subsets in other
lymphoid organs In order to extend our characterization,
we analyzed by flow cytometry the expression of langerin in
other lymphoid organs. We found subset 2 langerin™ DC
both in spleen and thymus, quite similar to subset 2 in pe-
ripheral and mesenteric LN. Thus, virtually all cell-surface
(mAb 205C1) langerin-expressing cells (R2 gate: 9.8% and
7.2% in spleen and thymus, respectively, in the experiment
shown) were CD11c¢™9" (Fig 5, upper row). In addition, the
vast majority of the langerin™ cells (90% in spleen and
78.6% in thymus, respectively) expressed CD8ua (Fig 5, up-
per row, black dots in R2 window), DEC205* and CD11b'"
(not shown). The same result was obtained by intracellular
staining of langerin with mAb 929F3 (Fig 5, botfom row). As
in the LN, we detected more cells with intracellular langerin
than with the molecule at the cell surface. Both in spleen
and thymus, langerin-expressing cells were negative for the
activation markers CD40 and CD86, and displayed low lev-
els of MHC class Il on their surface (data not shown). We
thus failed to detect subset 1 DC in these organs. In ac-
cordance with previous Southern blot analysis of cDNA Ii-
braries (Valladeau et al, 2002), we were unable to detect any
langerin ™ cells in Peyer’s patches. Finally, no langerin-ex-
pressing cells were found in freshly collected bone marrow
(data not shown), although some cells are able to differen-
tiate into langerin ™ cells upon culture with granulocyte ma-
crophage colony-stimulating factor (GM-CSF) and TGF-$1
(data not shown and (Valladeau et al, 2002)).

Thus, our results demonstrate that langerin is not re-
stricted to LN, but that the phenotype of spleen and thymus

Figure3

Langerin/CD207 expression in lymph node (LN) dendritic cell (DC)
subsets. (A) Peripheral LN. A mix of inguinal, popliteal, retro-auricular,
and maxillar LN were meshed through a stainless sieve, enriched for
CD11c, and processed for 4-color flow-cytometry analysis. Cells were
first gated according to their FSC and SSC characteristics (not shown),
and then analyzed for their co-expression of CD11c¢ and cell-surface
(monoclonal antibody (mAb) 205C1) or intracytoplasmic (mAb 929F3)
(A; top row right) langerin. R2 illustrates the gate selected for langerin*
cells. Black dots in top row represent the CD8a. " cells within R2, and
the percentage of langerin*/CD8a* cells is reported above each win-
dow. Bottom row shows CD40 " (left) and CD86 " (right) cells, depicted
in black within the langerin™ R2 gate, and percentages of langerin ™/
CD40™" or langerin™/CD86™ cells are reported above each window.
Note the two distinct CD11¢ " /langerin * populations. This staining has
been performed five times, featuring quantitative but no significant
qualitative variability with respect to the phenotypes considered. (B)
Mesenteric LN. As above, cells were analyzed for their co-expression of
CD11c and surface or intracellular (B; top row right) langerin. R2 illus-
trates the gate selected for langerin* cells. Black dots in top row rep-
resent the CD8u " cells, and the percentage of langerin " /CD8u. " cells
is reported above each window. Bottom row shows virtual absence of
CD40" (left) and CD86™" (right) cells (black dots in R2), and the per-
centages of langerin ©/CD40™" or langerin"/CD86 " cells is reported
above each window. Note the single CD11c " /langerin™ population.
This staining has been performed three times. Both in panels A and B,
the dot plots showing CD40 and CD86 are from a different experiment
than the CD11c/langerin/CD8a dot plots, thus explaining different per-
centages of langerin* cells (R2).
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langerin-expressing cells is homogenous, unlike the heter-
ogeneity observed in peripheral LN.

Spleen langerin/CD207 " DC lack BG In the spleen, lan-
gerin was detected both at the cell surface (mAb 205C1)
and intracellularly (mAb 929F3) in the CD11c* CD8a " DC
subset (Fig 5). As it has been shown that langerin is involved
in the formation of BG (Valladeau et al, 2000), we speculated
that the spleen langerin-expressing DC would contain such
cytoplasmic organelles. In order to address this question,
we FACS-purified the CD11c™ CD8a.* DC subset from
spleen (Fig 6A), and fixed the cells for electron microscopy
analysis. The purity of the sorted cells (gate R3 in Fig 6A)

was typically in the range of 95%-98% (data not shown).
We chose not to use mAb 205C1 for FACS-sorting in order
to avoid potential ex vivo triggering of langerin. Surprisingly,
as shown in Fig 6C—F, we did not detect any BG in the
cytoplasm of the sorted spleen CD8a" DC, despite their
expression of langerin. By contrast, BG were readily ob-
served in a preparation of epidermal LC processed similarly
for electron microscopy analysis (Fig 6B). Ex vivo treatment
of human epidermal LC with anti-langerin mAb enhances
BG formation (Valladeau et al, 2000). We thus incubated
FACS-purified spleen CD11c*/CD8x" DC (1 h at 37°C)
with mAb 205C1 as a surrogate langerin ligand, prior
to processing the cells for electron microscopy. This
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Figure5

Langerin/CD207 expression in spleen and thymus. Spleen and thy-
mus were digested with collagenase and cells were processed for flow-
cytometric analysis. Cells were first gated according to their FSC and
SSC characteristics (not shown), and then analyzed for their co-ex-
pression of CD11c and cell-surface (monoclonal antibody (mAb)
205C1) (top row) or intracytoplasmic (mAb 929F3) (bottom row) la-
ngerin. Langerin ™ cells were further gated (R2), with the proportion of
positive cells indicated in the R2 window. The percentage of langerin*/
CD8ua*t cells is reported above each window. CD8a " cells are illus-
trated as black dots within R2. Stainings have been performed at least
three times, with some quantitative but no significant qualitative
variability.

Figure 6
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treatment, however, did not result in the induction of BG (data
not shown), as the cells presented an ultra-structure similar
to that of spleen DC not exposed to anti-langerin mAb. Our
results thus show that cell-surface expression of langerin
does not necessarily correlate with the presence of BG.

Discussion

Langerin/CD207 is a type-ll transmembrane protein con-
taining an extracellular lectin domain. We have generated a
mAb, mAb 205C1, which recognizes an extracellular epi-
tope of mouse langerin either within or in close proximity to
its mannose-binding site (Fig 1). To our knowledge, 205C1 is
the first such described antibody, allowing us to establish
that murine LC do express cell-surface langerin (Fig 2, and
Kissenpfennig et al (2005a), similar to their human counter-
parts (Valladeau et al, 2000). The previously described
anti-langerin mAb 929F3 (Stoitzner et al, 2003) exclusively
recognizes the intracellular form, thus combining use of the
two mAb conveniently permits to determine the localization
of langerin.

Freshly isolated LC uniformly expressed MHC class-Il,
CD11c, CD11b, and DEC205/CD205, but neither matura-
tion markers such as CD40 and CD86, nor CD8a. When
cultured, LC upregulated surface MHC class-Il, CD40 and
CD86, but remained CD8u"*? (Fig 2 and Table S1). In ad-
dition, the cultured LC downregulated cell-surface langerin
(Fig 2), an observation that parallels the human molecule
(Valladeau et al, 1999), and reflects the maturation process
associated with emigration from epidermis towards draining
LN. It also parallels the disappearance of BG during the
typical 3 d maturation period of mouse epidermal LC

Ultrastructure of CD8a " spleen dendritic cells (DC). CD8a.* DC were highly purified by FACS cell-sorting based on the rigorously set sorting gate
(R3), as illustrated in panel A, processed for electron microscopy, and analyzed for the presence of Birbeck granules (BG). Virtually none were found
in some 270 cell profiles from three different experiments (i.e., cell sorts). Two examples of normally appearing spleen DC are depicted at low (C and
E) and high (D and F) magnification. For comparison, a stack of typical BG from a Langerhans cell in murine skin is shown in panel B. Scale bars

equal 0.1 ym in B and 1 pym in C-F.
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(Schuler and Steinman, 1985). There is ample evidence that
epidermal LC do not express CD8a, either in situ, freshly
isolated, short-term cultured (i.e., overnight), or cultured for
2-3 d (Romani et al, 1985; Witmer-Pack et al, 1987; Romani
et al, 1991). Similarly, it has been shown repeatedly, that
CD11b/C3bi receptor/Mac-1 antigen is expressed by LC
in situ and that its surface expression does not markedly
change upon culturing for 2-3 d. A compilation of the phe-
notype of LC is presented in Table S1, as based on our
experience.

Mouse langerin transcripts were originally reported in
tissues other than epidermis or mucosa (Valladeau et al,
2002). Taking advantage of the mAb recognizing cell-sur-
face and intracellular forms of the molecule, we analyzed
langerin expression in lymphoid organs of BALB/c mice.
Surprisingly, we found two DC subpopulations expressing
langerin in peripheral LN (Fig 3). Both subpopulations (sub-
sets 1 and 2) reacted with mAb 205C1 and 929F3, dem-
onstrating the presence of cell-surface and intracellular
langerin.

The first peripheral LN population (subset 1) displays a
phenotype similar to that of epidermal LC, but with an “ac-
tivated” profile, i.e., high levels of MHC class Il, as well as
expression of CD40 and CD86 (Figs 3 and 7, and Table S1).
This langerin */CD11c*/CD11b */CD8a """ subset corre-
sponds to “mature LC” (Henri et al, 2001; Allan et al, 2003;
Wilson and Villadangos, 2004). It was recently reported that
epidermal LC migrate in the steady state to draining LN in a
CCR7-dependent fashion (Ohl et al, 2004). The somewhat
higher expression of CD11c described on the immigrant
cells in the latter study could be because of mouse strain
differences (C57BL/6 vs BALB/c). We unequivocally dem-
onstrate the epidermal origin of subset 1, as this population
contained all the langerin™ cells harboring FITC in draining
retro-auricular LN following painting of this tracer onto ear
skin (Fig 4). In line with Ohl et al (2004), the appearance of
langerin " /FITC ™" cells was inhibited by the G-coupled pro-
tein receptor antagonist pertussis toxin, consistent with a
chemokine-mediated event (Fig 4). Finally, the FITC* cells
clearly remained CD8a."°", in contrast to a study by Merad
et al (2000) in which migratory LC acquired CD8q following
FITC sensitization. Taken together, our data indicate that the
phenotype of the LC-derived cells that immigrate to draining
LN is not grossly different in the steady state as compared
with a situation of epidermal disturbance in response to a
chemical sensitizer. It has been reported that DC expressing
low amounts of CD8a. produce less IL12p70 than CD8u™
DC from skin-draining LN upon stimulation with CD40-lig-
and and lipopolysaccharide (Hochrein et al, 2001), a finding
which may have consequences for T cell priming by LC-
derived DC.

We unexpectedly found another langerin ™ DC subpop-
ulation (subset 2) in peripheral LN. Subset 2 was clearly
distinguishable from the LC-derived langerin™ subset 1, by
virtue of its expression of CD8qa, and low levels of MHC
class Il and CD11b. Moreover, subset 2 cells did not ex-
press CD40 and CD86 (Figs 3 and 7, and Table S1). The
phenotype of this novel langerin™ subset surprisingly cor-
responds to the “blood-derived” CD8x* DC population
(Ruedl et al, 2000; Shortman and Liu, 2002; Wilson
and Villadangos, 2004). The functions of such CD8x* DC
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include cross-presentation in the MHC class | pathway (den
Haan et al, 2000), and cross-tolerance with deletion of self-
reactive CD8 " T cells (Belz et al, 2002). In addition, CD8o. ™
DC capture dying cells (lyoda et al, 2002), and appear to be
specialized in priming CTL immunity to viruses (Allan et al,
2003; Belz et al, 2004a, b). It has been suggested that LC
transfer their antigen cargo captured in epidermis to skin-
draining LN-resident CD8x " DC, which accomplish the T
cell priming (Allan et al, 2003). Our data demonstrating that
both the mature form of LC and LN-resident CD8x" DC
express cell-surface langerin raise the question of whether
the molecule might be involved in this process by virtue of
its sugar-recognition, and its endocytic properties (Vallad-
eau et al, 1999). Yet, disruption of the langerin gene neither
abrogates cross-presentation of ovaloumin by CD8o™
splenic DC, nor a number of key LC functions tested (Kiss-
enpfennig et al, 2005a). The latter results, however, do not
rule out a specialization of langerin for certain antigens.

Our data imply that the presence of langerin alone cannot
be used to discriminate peripheral LN DC of skin origin.
Nevertheless, subtle differences with resident LN cells were
observed, as only a fraction of the langerin™ LC-derived
subset 1 cells displayed langerin at their cell-surface, con-
sistent with the downregulation observed in epidermal
cultures. In contrast, all subset 2 cells exhibited both cell-
surface and intracellular forms of langerin. Finally, subset 1
included a fraction of cells with much higher intracellular
langerin than was the case for subset 2.

Of interest, the phenotype of the langerin* cells in mes-
enteric LN (Fig 3), spleen, and thymus (Fig 5) is remarkably
similar to that of subset 2 in peripheral LN. Our findings
corroborate the detection of langerin transcripts in these
tissues (Valladeau et al, 2002), and a report describing lan-
gerin protein in CD8a* spleen DC (McLellan et al, 2002).
The presence of cell-surface langerin in these tissues
prompted us to evaluate the presence of BG, as these or-
ganelles are formed by engagement of this lectin (Valladeau
et al, 2000, 2003). Because of technical difficulties of ex vivo
purifying sufficient cells for electron microscopy, we fo-
cused our analysis on spleen. Strikingly, FACS-sorted
spleen CD11¢c */CD8a.* DC, which do express cell-surface
langerin (Fig 5), displayed no BG in their cytoplasm (Fig 6).
Likewise, pre-incubation with mAb 205C1 antibody failed to
induce the formation of these organelles (data not shown),
by contrast to an anti-human langerin mAb (DCGM4) in hu-
man LC (Valladeau et al, 2000). Our findings demonstrate
that langerin expression is not a sufficient condition to in-
duce BG. Previously, human monocyte-derived DC cultured
in IL-15, and characterized by strong expression of cell-
surface langerin were found to lack BG (Mohamadzadeh
et al, 2001).

Recently, an alternative spliced isoform (AE3) of mouse
langerin has been described (Riedl et al, 2004). The AE3
isoform lacks the membrane-proximal neck-domain, is un-
able to bind mannan (presumably because of lack of trim-
erization mediated by the neck domain), and its transient
expression in mouse fibroblasts fails to induce BG forma-
tion (Riedl et al, 2004). Notably, however, AE3 displays the
extracellular lectin CRD domain recognized by mAb 205C1.
Thus, lack of BG in spleen langerin™ DC could be because
of predominance of the AE3 isoform, an issue of interest for
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Figure7

A model summarizing the distribution of Lan-
gerhans cells (LC) and langerin/CD207 * den-
dritic cells (DC) in BALB/c mouse lymphoid
tissue. Epidermal LC migrate from skin to drain-
ing lymph nodes (LN), where they represent la-
ngerin® subset 1, present in steady state or
following sensitization. In addition, peripheral LN
contain a distinctive langerin™ subset 2, pre-
sumably blood-derived, that resemble mesen-
teric LN, spleen, and thymic langerin ™ DC. Note
that despite their phenotypic similarity, the mod-
el does not imply that the latter langerin* cells
are directly derived from a common precursor.

SPLEEN
nc.

MESENTERIC LN

further studies. Another possibility is that, under physiolog-
ical conditions, the formation of BG is distinctly regulated in
LC and other langerin™ DC, perhaps through differential
availability of intracellular adaptor molecules.

In conclusion, our data unexpectedly demonstrate that
lymphoid tissue langerin™ DC segregate into distinct sub-
sets, only one of which represents the epidermal LC-de-
rived component. In this context, mice with genetically
disrupted Id2 transcription factor neither have epidermal LC
nor CD11¢c*/CD11b~/CD8a* spleen DC, linking the devel-
opment of progenitors of these two DC subtypes (Hacker
et al, 2003). We hypothesize that the langerin* DC subsets
acquire their differentiation markers, i.e., CD8a or CD11b,
according to their local environment. We propose a model
summarizing the distribution and phenotype of mouse LC
and langerin* DC in lymphoid organs (Fig 7). It is notewor-
thy that our data with anti-langerin mAb largely corroborate
the very recently described distribution of fluorescence in a
transgenic mouse expressing EGFP under control of the
langerin gene promoter (Kissenpfennig et al, 2005b). Our
findings should facilitate further dissection of the respective
roles of LC-derived and LN-resident DC in directing pro-
ductive immunity and peripheral tolerance.
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Material and Methods

Mice BALB/c AnN mice were purchased from Charles River (St
Germain-sur-I'Arbresle, France), and used at 8-12 wk of age. All
experiments involving mice were conducted according to Univer-
sity, National, and EU Institutional Guidelines.

Generation of 205C1 antibody mAb 205C1 against cell-surface
mouse langerin was developed in the laboratory (Schering-Plough,
Dardilly, France), as follows: BALB/c mice were immunized with
COP5 fibroblasts transfected with mouse langerin cDNA. Thus,
10 x 108 cells were i.p. injected twice at 3 wk intervals, followed by
an i.v. boost with 50 x 10° cells 3 d before fusion. Splenocytes
were fused (1:5 ratio) with the murine myeloma cell line SP,0,
using polyethylene glycol 1000 (Sigma-Aldrich, St Louis, Missouri).
Hybrid cells were distributed in 96-well plates and fed with DMEM
F12 (Life Technologies, Gaithersburg, Maryland) supplemented
with 10% (vol/vol) horse serum (Life Technologies), 2 mM L-gluta-
mine (Life Technologies), 80 ng per mL gentamycin (Schering-
Plough), 1% (vol/vol) culture medium additive (EFS, Lyon, France),
10-% M azaserine (Sigma-Aldrich), and 5 x 10~ M hypoxanthine
(Sigma-Aldrich). Supernatant fluids were screened for reactivity
with murine langerin-transfected COP5 cells. Selected hybridomas
were cloned by limiting dilution. The selected hybridoma, named
205C1, was further grown in DMEM F12 supplemented with
10% (vol/vol) horse serum, 2 mM L-glutamine, and 80 pug per mL



992 DOUILLARD ET AL

gentamycin (Schering-Plough). Ascites was produced in BALB/c
mice, and the IgM antibody was purified by size-exclusion chro-
matography. MAb 205C1 was either used uncoupled, or coupled
with Alexa Fluor 488™ (Molecular Probes, Eugene, Oregon), ac-
cording to the manufacturer’'s recommendations.

Media and reagents Ex vivo-derived cells were cultured in RPMI-
1640 (Life Technologies), supplemented with 10% (vol/vol) heat-
inactivated fetal bovine serum (FBS) (Life Technologies), 2 mM
L-glutamine, 5 x 107> M 2B-mercaptoethanol (Sigma-Aldrich),
10 mM Hepes (Life Technologies), 1 mM sodium pyruvate (Si-
gma-Aldrich), non-essential amino acids (Life Technologies), and
40 pg per mL gentamycin, hereafter referred to as complete me-
dium. Other reagents used for cell cultures were recombinant
mouse GM-CSF (Schering-Plough), and recombinant TGF-$1 (R&D
Systems Inc., Minneapolis, Minnesota). Transient expressions were
performed in the murine fibroblastic cell line COP5 (Tyndall et al,
1981). Cells were washed twice in phosphate-buffered saline (PBS)
and 6 x 10° cells were electroporated with 15 pg of a pCEV4
plasmid (Takebe et al, 1988) containing mouse or human langerin
cDNA (Valladeau et al, 2002), or with an empty vector (mock con-
trol). Cells were harvested and processed after 24 h in culture in
complete medium. In addition to mAb 205C1, the following anti-
bodies were used for phenotypic analysis: () mAb 929F3 (rat
IgG2a), produced in the laboratory, for intracytoplasmic staining of
mouse langerin/CD207 (Stoitzner et al, 2003); (i) commercial an-
tibodies against mouse antigens (BD-Pharmingen, San Diego,
California), including anti-CD3 complex (clone 17A2), anti-CD4
(clone GK1.5), anti-CD8u (clone 53-6.7), anti-CD11b (clone M1/70),
anti-CD11c (clone HL3), anti-CD40 (clone 3/23), anti-CD80 (clone
16-10A1), anti-CD86 (clone GL1), anti-I-A/I-EV®"® (clone 2G9),
anti-I-A/I-E (clone M5/114.15.2), anti-I-A% (clone AMS-32.1); (iii)
control isotypes including rat IgG2a (clone R35-95), rat IgG2b
(clone A95-1), hamster IgG (clone A19-3), and mouse IgM (clone
G155-228).

DC preparations

Epidermal LC Epidermal cell suspensions were obtained with por-
cine trypsin in Hanks’ Balanced Salt Solution (Sigma-Aldrich) (Koch
et al, 2001). Cells were analyzed by flow cytometry immediately
after isolation, or after a culture period of 3 d in complete medium
supplemented with 100 ng per mL GM-CSF. No further enrichment
step was carried out with the suspensions, as LC are readily dis-
tinguishable by their MHC class-Il and CD11c expression.

DC from lymphoid organs Spleen, thymus, mesenteric, popliteal,
inguinal, and retro-auricular LN were collected from CO2-sacrificed
mice. Organs were cut in small pieces, incubated at 37°C for 30
min in RPMI 1640 supplemented with 5% FBS, 10 mM Hepes, 1mg
per mL collagenase type IV (Sigma-Aldrich), and 40 pg per mL
DNAse | (Sigma-Aldrich). EDTA 5 mM was added for the last 5 min.
Digested fragments were filtered through a stainless-steel sieve,
and cell suspensions washed twice in PBS supplemented with 5%
FBS, 5 mM EDTA, and 5 pug per mL DNAse I. Spleen cell suspen-
sions were re-suspended for 3 min RT in ammonium chloride to
lyse red cells. Lymphoid tissue cells were washed two more times,
and either directly analyzed by flow cytometry, or submitted to an
additional enrichment step because of their notable low proportion
of DC. Thus, for enrichment, cells were re-suspended in PBS/bo-
vine serum albumin (BSA) 1% /ethylene diamine tetraaacetic acid
(EDTA) 5 mM buffer, and magnetically separated by MACS (Miltenyi
Biotec, Bergisch Gladbach, Germany), using CD11c (N418)
MicroBeads according to the manufacturer’s instructions. This en-
richment procedure yielded populations consisting of 40%-80%
CD11c™ cells. Alternatively, for the purpose of FACS-sorting high-
ly-purified CD8o."/CD11c " cells for electron microscopy studies,
low-density spleen DC were enriched by density gradient centrif-
ugation using the method of Vremec et al (1992), modified by
McLellan et al (2002). Thus, spleens were teased out, by tearing the
splenic capsule at the thick end, keeping the rest of the capsule
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intact, and gently squeezing out the splenic contents. Fragmented
spleens were incubated with 1 mg per mL type | collagenase
(Worthington, Lakewood, New Jersey) and DNase | (10 mg per mL)
in 25 mM IMDM with 2% vol/vol FBS for 30 min at 37°C with gentle
shaking. For the last 5 min, 10 mM EDTA was added and spleen
fragments were pressed through a metal tea-sieve and collected
into cold 5 mM EDTA, 10 mg per mL DNase |, 1% BSA in PBS.
Cells were filtered through 70 um cell strainers and washed twice in
cold PBS/EDTA/BSA/DNase |. The digest from every three spleens
was re-suspended in 5 mL of ice cold, iso-osmotic 14.1% Nyco-
denz (Nycomed Pharma, Oslo, Norway) in a 15 mL tube, overlaid
with 2 mL mouse iso-osmotic buffer, and centrifuged for 25 min at
600g. Typically 107 low-density cells with a CD11c DC content of
20%-40% were obtained from each spleen. Low-density spleen
cells were further FACS-sorted as follows: 5 x 107 cells per mL in
PBS plus 1 mM EDTA were labelled with mAb N418 (hamster anti-
mouse CD11c) and mAb 53-6.7 (rat IgG2a anti-mouse CD8a). After
washing, cells were incubated with multiple species Ig-adsorbed
FITC-anti-hamster Ig (Dianova, Hamburg, Germany) and PE anti-
rat Ig (Dianova), and the CD11c*/CD8a* subset was sorted using
a FACS Vantage cell sorter (Becton Dickinson, Heidelberg,
Germany). Purity of the FACS-sorted fractions exceeded 90% as
determined by CD11c expression.

Immunostaining

For flow-cytometry analysis Cell-surface staining was performed in
a PBS buffer with 1% BSA, 0.02% sodium azide. In some exper-
iments, COP5-transfected cells were pre-incubated with mannan
(1 mg per mL; Sigma-Aldrich) for 15 min before staining. For intra-
cytoplasmic staining, cells were permeabilized with saponin (0.1%
vol/vol) for 5 min, and subsequent steps were performed in the
same buffer, except the last wash which was performed in PBS.
For surface plus intracellular staining, either Fix&Perm™ (An der
Grub Bio Research, Kaumberg, Austria) or Cytofix/Cytoperm™
(BD-PharMingen) kits were used according to the manufacturers’
recommendations. Incubations with the antibodies lasted at least
30 min, followed by two washes. When required, second steps
were performed the same way. Flow-cytometric analysis was per-
formed on a FACSCalibur™ (BD Biosciences, Mountain View, Cal-
ifornia) with the CellQuest™ software. Most of the experiments
shown represent 4-color flow-cytometry analysis. Fluorochromes
typically used in such experiments were Alexa 488™ or FITC,
phycoerythrin (PE), PerCP-Cy5, and allophycocyanin (APC).

For immunohistochemistry Ears were separated with strong for-
ceps into dorsal and ventral leaflets. Dorsal halves were incubated
for 30 min at room temperature on NH4,SCN 0.5 M, and epidermis
and dermis were separated from each other with forceps. Epider-
mal sheets were fixed with acetone for 20 min at room temper-
ature, incubated with Alexa Fluor 488™-coupled anti-langerin mAb
205C1 and rat mAb 2G9 anti-mouse MHC class Il. After three
washes, sheets were incubated for 30 min with goat anti-rat IgG-
Alexa Fluor 594™ (Molecular Probes). Alternatively, sheets were
incubated with anti-langerin mAb 929F3 followed by biotinylated
anti-rat 1gG/streptavidin Texas-Red™, and with mAb 2G9-FITC.
Isotype-matched mAb were included as negative controls. After
three washes, sheets were placed on a slide and mounted under
coverslips with one drop of Fluoromount G (Electron Microscopy
Sciences, Fort Washington, Pennsylvania). Specimens were
viewed on a Zeiss Axioscop epifluorescence microscope. Pic-
tures were taken using an Optronics MagnaFire" Digital Camera
(Optronics, Goleta, California).

FITC-induced in vivo migration of LC Mice were painted on both
sides of the ears with 25 pL of FITC (5 mg per mL) diluted in dibutyl-
phthalate (Sigma-Aldrich):acetone (1:1). After indicated times, mice
were sacrificed for collection of ear-draining LN (retro-auricular). LN
were subsequently processed as described above. Pertussis toxin
was purchased from Sigma-Aldrich (P7208). Intra-dermal injection
of the toxin, as described by Itano et al (2003), did not inhibit



125:5 NOVEMBER 2005

migration of LC as opposed to that of dermal DC, leading to the
conclusion that toxin may not have reached the LC in effective
concentrations. We therefore modified the protocol in the following
manner. Pertussis toxin (10 ug per mL in 50 pL of PBS) was injected
into the pinna of the ear 45 min before application of FITC (25 puL per
dorsal ear half, 8 mg per mL in a 1:1 mixture of dibutyl-phtha-
late:acetone). Sixty minutes thereafter, another pertussis toxin treat-
ment was performed epicutaneously (25 pL at a concentration of
10-20 pg per mL in a 1:1 glycerol:water mixture). Draining LN were
analyzed 48 h after FITC treatment. Both unenriched LN cell sus-
pensions (digested by means of collagenase P in the presence of
DNAse for 25 min at 37°C followed by thorough washing in PBS
containing EDTA), and suspensions enriched in DC by Nycodenz
gradient centrifugation (McLellan et al, 2002), were immunolabeled
and analyzed by flow-cytometry with similar results. Four-color
staining was performed, using anti-CD11c-APC (BD), biotinylated
anti-CD8a (BD), followed by streptavidin-PerCP (BD), and anti-
langerin-PE, in addition to the cell tracer FITC. MAb 929F3 was used
for the detection of langerin in permeabilized (Fix&Perm, An der
Grub Bio Research, Kaumberg, Austria) cell suspensions. This an-
tibody was visualized with an anti-rat-Ig conjugated to phycoerythrin
(Jackson Immunoresearch, Avondale, Pennsylvania).

Electron microscopy FACS-sorted spleen cell suspensions were
fixed with Karnovsky’s half-strength formaldehyde-glutaraldehyde
fixative, post-fixed in 3% aqueous osmium tetroxide, followed by
en bloc contrasting in veronal-buffered 1% uranyl acetate. After
dehydration in a graded series of ethanols, specimens were infil-
trated and embedded in Epon 812 resin. Ultrathin sections were
inspected with a Philips EM400 (Fei Company, Eindhoven, The
Netherlands) at an operating voltage of 80 kV.
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