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Richard L. Eckert,*+1§9 James F. Crish,* Tatiana Efimova,™ Shervin R. Dashti,* Anne Deucher,™
Frederic Bone,* Gautam Adhikary,” Guosheng Huang,™ Ramamurthy Gopalakrishnan,* and

Sivaprakasam Balasubramanian™

Departments of *Physiology and Biophysics, fBiochemistry, {Reproductive Biology, §Dermatology, and {Oncology, Case Western Reserve University

School of Medicine, Cleveland, Ohio, USA

The epidermis is a dynamic renewing structure that provides life-sustaining protection from the environment.
The major cell type of the epidermis, the epidermal keratinocyte, undergoes a carefully choreographed program
of differentiation. Alteration of these events results in a variety of debilitating and life-threatening diseases.
Understanding how this process is regulated is an important current goal in biology. In this review, we summarize
the literature regarding regulation of involucrin, an important marker gene that serves as a model for understanding
the mechanisms that regulate the differentiation process. Current knowledge describing the role of transcription
factors and signaling cascades in regulating involucrin gene expression are presented. These studies describe a
signaling cascade that includes the novel protein kinase C isoforms, Ras, MEKK1, MEK3, and a p386—extracellular
signal regulated kinase 1/2 complex. This cascade regulates activator protein one, Sp1, and CCATT/enhancer-
binding protein transcription factor DNA binding to two discrete involucrin promoter regions, the distal- and
proximal-regulatory regions, to regulate involucrin gene expression.
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Keratinocyte differentiation. Keratinocytes are the major cell
type responsible for the structure of the epidermis. They
begin as stem cells in the basal epidermal layer (Cotsarelis
et al, 1989; Li et al, 1998; Taylor et al, 2000; Alonso and
Fuchs, 2003; Gambardella and Barrandon, 2003). As they
move to the epidermal surface, the cells cease cell division
and undergo morphological changes to form the spinous,
granular, transition, and cornified layers. Spinous layer cells
are characterized by the presence of extensive intercellular
desmosomal connections, whereas granular layer cells are
distinguished by the presence of granules that contain the
products of keratinocyte differentiation. Continued differ-
entiation of the granular layer cells results in formation of
the transition zone which separates the dead from living
epidermal layers. It is in this zone that the cellular
constituents are extensively enzymatically remodeled. This
remodeling ultimately results in the formation of the
cornified layer, the covalently cross-linked terminally differ-
entiated corneocytes that form the skin surface (Green,
1980).

Achieving these morphological alterations relies on
executing a preset program of differentiation that requires
tight regulation of gene expression. The involucrin gene is
a model for elucidating the mechanisms that guide gene

Abbreviations: AP1, activator protein one; C/EBP, CCATT/enhan-
cer-binding protein; DRR, distal-regulatory region; hINV, human
involucrin; PKC, protein kinase C; PRR, proximal-regulatory region;
URR, upstream-regulatory region

expression during differentiation (Eckert and Green, 1986;
Eckert et al, 1997b). Involucrin (hINV) is a 68 kDa precursor
of the cornified envelope that was originally described by
Rice and Green (1979) and ultimately cloned by Eckert and
Green (1986). The protein is rod shaped and includes
several reactive glutamine residues that function in the
formation of covalent isopeptide bonds (Yaffe et al, 1992;
Eckert et al, 1993; Robinson et al, 1997; Lazo and Downing,
1999; Steinert and Marekov, 1999; Kajava, 2000). Involucrin
is cross-linked early in cornified envelope formation and
forms a scaffold for incorporation of other precursors (Rice
and Green, 1979; Eckert et al, 1993; Steinert and Marekov,
1997). Involucrin expression initiates in the early spinous
layer and is maintained in the granular layer. In the transition
zone, involucrin is incorporated, via the action of transglu-
taminase, as a component of the cornified envelope (Yaffe
et al, 1992; Eckert et al, 1993; Robinson et al, 1996).

During the differentiation process, numerous genes are
turned on and off at specific stages (Eckert and Welter,
1996; Eckert et al, 1997a). The study of involucrin gene
expression has identified some key mechanisms whereby
intracellular signaling cascades and transcription factors
regulate differentiation-dependent gene expression. More-
over, these studies have shed light on the mechanisms
whereby a variety of agents, including calcium (Bikle et al,
2001; Deucher et al, 2002), vitamin A (Poumay et al, 1999),
protein kinase C (PKC) activators (Welter et al, 1995), and
antioxidants (Balasubramanian et al, 2002), regulate kera-
tinocyte differentiation. This manuscript reviews our under-
standing regarding the mechanisms that regulate hINV gene
expression.
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The Involucrin Promoter—The
Distal-Regulatory Region (DRR)

Initial transgenic mouse studies revealed that a 6 kb
segment of DNA encoding the hINV structural gene and
2.5 kb of DNA upstream of the transcription start site, could
drive appropriate hINV gene expression in epidermis (Crish
et al, 1993) (Fig 1A). Expression was observed in all
stratified squamous epithelia that were tested, including
ectocervix, esophagus, epidermis, footpad, and specific
segments of the hair follicle. Expression was not observed
in the endocervix, brain, or liver (Crish et al, 1993). In
addition, expression was differentiation-appropriate (i.e.,
confined to the suprabasal layers in each tissue). The
expression pattern essentially matched the pattern ob-
served in human tissues. In addition, the expressed human
involucrin protein was found incorporated as a component
of the murine cornified envelope, indicating that it was
functioning as a transglutaminase substrate (Crish et al,
1993).

Based on these studies, we hypothesized that the DNA
sequences required for appropriate expression were loca-

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY

lized within the 2500 nucleotide segment upstream of the
transcription start site. Characterization of this region,
called the upstream-regulatory region (URR), was carried
out using cultured keratinocytes and luciferase reporter
assays (Welter et al, 1995). This study identified, within
the URR, specific DNA segments called the distal- and
proximal-regulatory regions (DRR, PRR) that are required
for optimal promoter activity (Fig 1A). Deletion of the DRR
(nucleotides —2473/—1953) results in a 50% loss of
promoter activity and further deletion of the PRR (—241/
—7) results in an additional loss such that the promoter is
inactive. An important finding of this study is the presence
of activator protein one (AP1) transcription factor binding
sites at each location (Fig 1A). Subsequent studies reveal
that mutation of either AP1 site, AP1-5 in the DRR or AP1-1
in the PRR, results in a substantial loss of transcriptional
activity. Moreover, DNA/protein interaction studies confirm
that selected AP1 factors, including JunB, JunD, and Fra-1,
interact at these sites (Welter et al, 1995). In addition, a
12-O-tetradecanoylphorbol-13-acetate ~ (TPA)-dependent
increase in hINV promoter activity is associated with
increased AP1 factor interaction at the AP1-1 and AP1-5
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The involucrin gene and regulatory regions. (A) The hINV gene regulatory sequences. The entire hINV gene is presented with the transcription
start site designated at + 1. The sequence is taken from the original reports ( Eckert and Green, 1986; Crish et al, 1998). The transcription start site
and direction of transcription is indicated by the arrow and the two black rectangles indicate the exons. The entire protein coding sequence is
encoded in the second exon (Eckert and Green, 1986). The upstream-regulatory region (URR) includes nucleotides —2473/—1. The distal-regulatory
region (DRR) includes nucleotides —2473/—1953 and the proximal-regulatory region (PRR) encompasses nucleotides —241/—7 (Welter et al, 1995;
Crish et al, 1998). The activator protein (AP)1-5 (DRR) and AP1-1 (PRR) sites are indicated as blue spheres, the Sp1 site (DRR) is a green square, and
the C/enhancer binding protein (EBP) site (PRR) is a red parallelogram. The immediate early element is indicated by a question mark. (B)
Cooperation of the DRR and PRR is required for appropriate expression. The hINV gene DRR and PRR are indicated. The DRR encodes an AP1 site
(AP1-5) and a Sp1 site that bind AP1 and Sp1 factors, respectively (see text). An additional site, the immediate early element, marked by a question
mark, was identified during in vivo transgenic mouse gene regulation studies (Crish et al, 2002). This element is required for involucrin expression in
the immediate suprabasal layers in vivo. The PRR includes an AP1 site (AP1-1) and a C/EBP site that bind, respectively, AP1 and C/EBP
transcription factors. These complexes also interact with co-activators (Crish and Eckert, unpublished) to form extended transcriptional complexes.
We propose that the DRR and PRR, which are separated by 1.7 kb, are brought together to form a larger complex that then interacts with the basal
transcriptional apparatus to activate tissue-specific and differentiation-appropriate expression.
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sites (Welter et al, 1995). It is important to note that other
AP1 sites, present within the URR, do not function in gene
regulation. Thus, only selected AP1 sites within the URR are
functional. Additional studies confirm that hINV promoter
activity is cell type-specific, as promoter activity and hINV
protein expression are observed in normal human kerati-
nocytes but not in cultured fibroblasts (Welter et al, 1995).

An analysis of the sequence surrounding the AP1-5 site
in the DRR revealed the presence of a canonical Sp1 site,
located immediately downstream of the AP1 site and
separated from the AP1 site by a single nucleotide (Crish
et al, 1998). Sp1 transcription factors comprise a family of
proteins, including Sp1, Sp2, Sp3, and Sp4. These proteins
contain a conserved DNA binding domain composed of
three zinc fingers near the C-terminus and serine/threonine-
and glutamine-rich domains in the N-terminal region (Apt
et al, 1996; Suske, 1999). Sp1 factors act by binding to
G-rich elements, similar to the G-rich site located adjacent
the AP1-5 site in the hINV promoter DRR. Since AP1 and
Sp1 factors function as co-regulators in other systems (Wu
et al, 2003), we suspected that this Sp1 site may be
required, with the AP1-5 site, for optimal hINV gene
expression. A comparison of the role of these sites reveals
that mutation of the AP1-5 site results in a complete loss of
promoter activity, whereas mutation of the Sp1 site results
in a partial reduction in activity (Banks et al, 1998).

Gel mobility supershift studies show that Sp1, but not
Sp2, Sp3, or Sp4, bind at the Sp1 site. The selective Sp1
binding is an interesting finding, since Sp1, among the Sp1
family members, is generally considered a transcriptional
activator (Suske, 1999) that frequently acts synergistically
with other proteins to increase gene expression (Courey and
Tjian, 1988; Courey et al, 1989; Pascal and Tjian, 1991). We
surmised that Sp1 may cooperate with the AP1 factors that
bind at the AP1-5 site. Indeed, mutagenesis studies
suggest that these sites act together to synergistically
activate the promoter (Banks et al, 1998). The importance of
the close juxtaposition of the AP1-5 and Sp1 sites was
confirmed by showing that increasing the distance between
these sites results in a reduction in promoter activity (Banks
et al, 1998).

In addition, Sp1 factors may have a role in regulating cell
type-specific involucrin expression. Involucrin is normally
not expressed in non-epithelial cells (Rice and Green, 1979).
Moreover, hINV promoter activation is not observed in 3T3
cells or HEK-293 (non-epithelial) cells; however, overex-
pression of Sp1 in 3T3 cells or HEK-293 cells results in
an substantial increase in both endogenous hINV and hINV
promoter activity (Banks et al, 1999). Thus, Sp1 level
profoundly influences involucrin expression, suggesting that
Sp1 factors may help direct tissue- and cell type-selective
expression. Moreover, reducing the effective Sp1 con-
centration in normal human keratinocytes reduces hINV
promoter activity (Banks et al, 1999). Thus, Sp1 has an
important role as a regulator of hINV gene expression.

Recent transgenic mouse studies (Adhikary and Eckert,
unpublished) reveal that unlike the partial loss of expression
observed in other tissues, mutation of the Sp1 site results in
a complete loss of hINV promoter activity in the corneal
epithelium. This suggests that Sp1 plays a more important
role in the corneal epithelium than in other surface epithelial
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tissues, and is consistent with a demonstrated role of Sp1
factors in regulating gene expression in the cornea (Wu
et al, 1994).

The DRR Region Is Necessary and Sufficient
for Normal hINV Expression In Vivo

The above studies identify an important role for the DRR
region, and specifically the DRR AP1-5 and Sp1 sites in
regulating hINV gene expression. The importance of this
region was examined in detail using transgenic mice. A
promoter deletion series was designed and each construct
was tested. These experiments revealed that deletion of the
DRR eliminates hINV transgene expression in epidermis
and other surface epithelia (Crish et al, 1998). In addi-
tion, a remarkable finding is that the DRR region, itself,
DRR_5473/_1953 (Flg 1A), when linked to the hINV basal
promoter, is sufficient to drive tissue-specific and differentia-
tion-appropriate expression in epidermis (Crish et al, 1998).

Further transgenic studies revealed additional multiple
functions for the DRR. As noted above, the DRR_5473/_1953
segment drives near-normal, tissue-specific, differentiation-
appropriate expression. This suggests that elements within
this region may exist that mediate expression in specific
epidermal layers. We examined this by segmenting the DRR
into two SUbfragmentS, DRR,2473/,2100 and DRR,2100/,1953,
and testing the ability of each to drive expression in trans-
genic mice. The downstream segment, DRR_5100/_1953,
does not drive expression in epidermis. The upstream
segment, DRR_5473/_2100, iN contrast, drives expression,
but only in the uppermost suprabasal layers (Crish et al,
2002). Recombination of these elements, of course,
recapitulates the complete differentiation-dependent pat-
tern of expression. These findings demonstrate that the
DRR consists of spatially distinct elements, each of which is
required to drive differentiation-appropriate expression.
This finding is consistent with the modular promoter
hypothesis, which states that multiple, spatially distinct
DNA segments, containing distinct transcription factor
binding sites, assemble a protein regulatory complex that
drives appropriate gene expression. The multiprotein com-
plex then interacts with the basal transcription machinery
(Hadchouel et al, 2003; Ogata et al, 2003).

Mutation of the AP1-5 site, in the absence of other
mutations in the DRR, results in a complete loss of
expression in epidermis, esophagus, and cervix (Crish
et al, 2002), suggesting that the presence of AP1 factors
is necessary for expression. Moreover, mutation of this site
in the context of the full-length promoter also results in a
complete loss of expression in these tissues, pointing to
a physiologic in vivo role for this site. Gel mobility shift
analysis of extracts taken from mouse epidermis suggests
that c-Jun and Fra-1 interact at this site (Crish et al, 1998).
This AP1 factor binding profile differs slightly from that
observed in extracts prepared from human keratinocytes,
where JunB, JunD, and Fra-1 are the major interacting
proteins (Welter et al, 1995), and suggests that expression
may be achieved by different AP1 factors in mouse versus
human epidermis. As will become clear below, in spite of
the transgenic studies showing that the DRR is sufficient to
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drive differentiation-appropriate expression, this is not the
complete story, and the PRR region also plays an important
regulatory role.

Other Regulatory Responses Mediated
by the DRR

As outlined above, the DRR element, originally identified by
Welter et al (1995), that is required for hINV expression in
transgenic mice (Crish et al, 1998), has a broad regulatory
role and mediates response to a wide variety of agents. For
example, Bikle and coworkers showed that elevation of
extracellular calcium resulted in an increase in JunD, Fra-1,
and Fra-2 binding to the hINV promoter AP1-5 site and that
mutation of this site resulted in a loss of calcium respon-
siveness (Ng et al, 2000). This response was confirmed in
the context of calcium and PKC-dependent promoter acti-
vation (Deucher et al, 2002). Lopez Bayghen et al (1996)
have also reported calcium-dependent regulation mediated
via the DRR. Oxysterols, PPARa activators, cholesterol
sulfate, and vitamin D also exert their effects, in part, via this
element (Hanley et al, 2000, 2001; Komuves et al, 2000;
Bikle et al, 2002). The vitamin D response is interesting,
since it acts via a vitamin D response element in conjunction
with the DRR AP1-5 site, and the differentiation-dependent
increase in gene expression is associated with the exchange
of the vitamin D receptor co-activator, DRIP205, for SRC
family co-activators, SRC2 and SRC3 (Bikle et al, 2003).
Thus, selective co-activator use by the vitamin D receptor,
may have a role in regulating differentiation. An intriguing
finding of all of these studies is the conservation of JunD
and Fra-1 as AP1 factors associated with the DRR AP1-5
site following stimulation. Taken together, these studies
identify a critical role for these AP1 family transcription
factors in the regulation of hINV gene expression.

Characterization of the PRR

The PRR is contained in nucleotides —241/—7 and is
marked by the presence of the AP1-1 site and a CCAAT/
enhancer-binding protein (C/EBP) transcription factor bind-
ing site (Welter et al, 1995) (Fig 1A). As previously noted,
mutation of the AP1-1 site, which selectively binds junB,
junD, and Fra-1, results in a 50% drop in transcriptional
activity (Welter et al, 1995). Other investigators have also
identified a role for the AP1-1 site. Hudson and coworkers
reported that glucocorticoids increase hINV promoter
activity and that this increase is inhibited by treatment with
all-trans-retinoic acid or 9-cis-retinoic acid (Monzon et al,
1996). This response is mediated via the PRR AP1-1 site.
These investigators also noted that TPA-dependent hINV
promoter activation via the AP1-1 site is reduced by retinoid
co-treatment (Monzon et al, 1996).

The C/EBP site also plays an important role in the
regulation of hINV gene expression. Mutation of the C/EBP
site results in a reduction in basal promoter activity and a
reduction in the response of the promoter to treatment
of cells with differentiating agents (Agarwal et al, 1999).
Moreover, individual C/EBP transcription factors differen-
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tially regulate promoter activity. In contrast to other C/EBP
factors, which are less efficient regulators of promoter
activity, C/EBPa binds to the promoter and increases
activity. C/EBP-dependent regulation can be complex,
since C/EBP factors interact and different combinations
can produce different regulatory outcomes (Rosen, 2002;
Cassel and Nord, 2003). Indeed, this is the case with hINV,
as co-expression of C/EBPB and C/EBPS with C/EBPqg,
suppress C/EBPa-dependent promoter activation. This
suggests that the ratio of G/EBP factors present within the
cell may help determine the level of hINV gene expression.
Likewise, GADD153, a dominant-negative C/EBP transcrip-
tion factor (Bartlett et al, 1992; Fawcett et al, 1996), inhibits
the C/EBPa-dependent increase in hINV promoter activity
(Agarwal et al, 1999). Gel mobility shift studies indicate that
treatment with the keratinocyte differentiating agent, TPA
which increases hINV gene expression, increases C/EBPa
loading at the hINV promoter C/EBP binding site. Thus,
increased transcriptional activity is associated with in-
creased C/EBPa binding to DNA. Finally, mutation of the
C/EBP site results in a loss of TPA-dependent promoter
activity, further confirming a role for C/EBP as a positive
transcriptional activator (Agarwal et al, 1999).

Treatment with thapsigargin, an intracellular calcium
mobilizing agent (Thastrup et al, 1989, 1990), inhibits the
TPA-dependent increase in hINV promoter activity in a
C/EBP-dependent manner. This result is surprising, since
increased intracellular calcium would be expected to
increase hINV gene expression (Deucher et al, 2002). But
this effect appears to be due to the non-specific ability of
thapsigargin to reduce the amount of C/EBP factor bound
to the hINV promoter C/EBP binding site (Balasubramanian
et al, 2000).

In addition, recent transgenic studies (Crish, Gopala-
krishnan, and Eckert, unpublished) indicate that mutation of
DNA elements within the PRR results in modified expression
in transgenic mice. The most striking finding is a loss of
continuous expression along the length of the tissue in mice
harboring a full-length transgene in which the C/EBP site is
mutated.

Involucrin Gene Regulation Model

Based on the results of these studies, we propose a model
for regulation of involucrin gene expression via the DRR and
PRR elements (Fig 1B). In this model, transcription factors
load at the AP1-1 and Sp1 sites in the DRR followed by
loading of adaptor proteins. Identification of these proteins
is presently underway. Binding at three essential sites, the
AP1-5 and Sp1 sites in the DRR_5473/_2100 Segment, and
the immediate suprabasal site in the DRR_5100/_1953 S€Q-
ment, is necessary for the complete program of differentiation-
appropriate transcription. The AP1-5 site functions as an
on-off switch, the Sp1 site cooperates with AP1-5 site to
synergistically activate expression, and the immediate
suprabasal site is required for expression in the immediate
suprabasal layers (Crish et al, 1998).

Transcription factor loading also occurs at the PRR
AP1-1 and C/EBP sites. C/EBPa binds at the C/EBP site
(Agarwal et al, 1999) and junB, junD, and Fra-1 bind at the
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AP1-1 site (Welter et al, 1995). This binding is presumably
followed by binding of co-regulatory proteins at both the
DRR and PRR sites. Since both sites are required for appro-
priate expression in vivo, we speculate that the DNA bends
(Tolhuis et al, 2002; Ogata et al, 2003) to bring the DRR and
PRR regions into juxtaposition and that this combined
complex then interacts with the basal transcription machin-
ery to drive differentiation-dependent transcription.

Mitogen-Activated Protein Kinases (MAPK)

The above studies define C/EBP, Sp1, and AP1 factors as
being important regulators of hINV gene expression. An
important question is which intracellular signaling cascades
regulate the activity of these factors and, in turn, regulate
promoter activity. Initial tests with various pharmacologic
inhibitors indicated that the MAPK might regulate involucrin
gene expression (Efimova et al, 1998).

The MAPK cascades consist of three kinase modules—
including a MEK kinase (MEKK), a mitogen-activate protein
kinase/extracellular signal regulated kinase (MAPK/ERK
kinase, MEK), and a MAPK (Davis, 1995; Robinson and
Cobb, 1997). Three MAPK cascades have been extensively
studied. These include the mitogen-responsive ERKs, the
stress-responsive c-Jun N-terminal kinase/stress-activated
protein kinases (JNK/SAPK), and the p38 MAP kinases (Han
et al, 1996; Jiang et al, 1996; Lechner et al, 1996; Li et al,
1996b; Kumar et al, 1997; Cuenda and Dorow, 1998).
Activated MAPK phosphorylate a variety of target proteins
including transcription factors (Cano and Mahadevan, 1995;
Robinson and Cobb, 1997), and cytoplasmic, cytoskeletal,
and mitochondrial proteins (Chen et al, 2001).

MAPK are characterized by a dual phosphorylation
sequence, Thr—X-Tyr (TXY), located in the regulatory loop
located between subdomains VII and VIII (where X is Glu,
Pro, or Gly) (Hanks and Hunter, 1995). The p38 MAPK
possess a Thr—Gly-Try (TGY) motif, the ERK1/2 and ERK5/
BMK1 kinases encode a Thr-Glu-Tyr (TEY) motif, and the
JNK/SAPK kinases possess a Thr—Pro-Tyr (TPY) motif. The
central amino acid in these motifs and the length of the loop
influence MAPK substrate specificity and ability to autopho-
sphorylate (Jiang et al, 1997). Phosphorylation of the dual
phosphorylation sites results in MAPK activation. Although
there is a substantial overlap in function among the MAPK
classes, it is clear, as outlined below, that each mediates
context-dependent functions.

MAPK Regulate hINV Promoter Activity

Efimova et al (1998) used pharmacologic agents, dominant-
negative and constitutively active kinases, and kinase
assays to examine the role of MAPK cascades in regulating
hINV promoter activity. Initial studies showed that protein
kinase C and Ras activity are required for MAPK activation
and hINV promoter response (Efimova et al, 1998). For
example, treatment with TPA, a known activator of PKC,
increases hINV promoter activity, and inhibition of PKC or
Ras activity results in a loss of the TPA-dependent acti-
vation. In addition, expression of constitutively active Ras
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triggers downstream events in the MAPK cascade that
increase hINV promoter activity. PKC and Ras activation
lead to MEKK1 activation. MEKK1, the first kinase in the
cascade, appears to be a key integrator of regulatory input.
The MEKK1-associated signal is then directed to several
MEK, including MEK7 and MEKS, although later studies
also suggest a role for MEK6 (Dashti et al, 2001a).
Ultimately, the signal is channeled to p38 MAPK (Efimova
et al, 1998).

As noted above, the AP1 transcription factors, Sp1 and
C/EBP factors are downstream targets of this activation.
Increased p38 MAPK activity results in increased AP1 factor
levels, and increased AP1 factor binding to the hINV
promoter AP1 sites (Welter et al, 1995). JunB, JunD, and
Fra-1 are confirmed as regulators that bind to the hINV
promoter AP1 sites. Moreover, TAM67, a dominant-negative
mutant of c-Jun that inhibits the activity of all AP1 factors
(Wu et al, 2003), inhibits the p38-dependent promoter
activation (Efimova et al, 1998). Activation of this MAPK
cascade also results in increased C/EBP« and Sp1 binding
to DNA (Banks et al, 1998; Agarwal et al, 1999). The
involvement of C/EBP, Sp1, and AP1 factors in regulating
differentiation-dependent involucrin gene expression is
perhaps not surprising, as these factors have been
implicated as differentiation regulators in other systems.
These findings suggest a PKC, Ras, MEKK1, MEK3 path-
way that activates p38 MAPK. p38 MAPK, in turn, acts to
increase binding of selected AP1, Sp1, and C/EBP factors
to the hINV promoter to increase promoter activity.

The Role of PKC

Additional studies examined the role of PKC family
members in greater detail. The PKC family comprises
multiple isoforms that are divided into three subfamilies—
the novel, classical, and atypical subtypes (Liu and Heck-
man, 1998). These kinases have been suggested to have an
important role in skin biology and pathobiology (Dlugosz
and Yuspa, 1991, 1994; Denning et al, 1995, 2002). The
observation that TPA, a diacylglycerol analogue, activates
hINV gene expression (Welter et al, 1995), whereas BIS-IM,
a specific inhibitor of PKC, blocks TPA-dependent increase
in expression, suggests a role for PKC in regulating hINV
gene expression. We therefore sought to assess the role of
specific PKC isoforms as regulators of hINV gene expres-
sion. Co-expression of individual PKC isoforms with the hINV
promoter reveals that the novel PKC isoforms produce a
dramatic increase in hINV promoter activity. Endogenous
involucrin levels are also increased by overexpression of
novel PKC isoforms. Moreover, this activation is not inhibited
by Go-6876, an agent that inhibits classical PKC subtypes,
but is inhibited by a dominant-negative form of PKCa
(Efimova and Eckert, 2000). Dominant-negative PKCS ex-
pression also inhibits TPA-dependent promoter activation.
A further study assessed the role of PKC as an upstream
regulator of MAPK activity. Several striking observations
suggest a novel pattern of MAPK regulation by PKCé and
other differentiation activators. Expression of PKCn or
PKCd causes a marked reduction in ERK1/2 activity without
changing ERK1/2 protein level (Efimova et al, 2002). This
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suppression of ERK1/2 activity coincides with a substantial
increase in p38 MAPK activity. This inverse regulation—a
net increase in the p38 MAPK to ERK activity ratio—is also
confirmed for keratinocytes treated with several pharma-
cological agents that enhance keratinocyte differentiation—
including okadaic acid, and TPA (Efimova et al, 2003). The
shift in p38 MAPK to ERK ratio in favor of p38 coincided
with increased hINV promoter activity (Efimova et al, 2002).
To identify the link between nPKC activation, the shift in the
ratio of p38 MAPK to ERK activity, and activation of hINV
promoter activity, the effect of nPKC activation on C/EBPa
level, was examined.

These studies reveal a substantial increase in the
endogenous C/EBPa level in the presence of PKCS or
PKCn, and an inhibition of endogenous C/EBPu levels in
the presence of dnPKCs or dnPKCn (Efimova et al, 2002).
Consistent with a role for nPKC and C/EBPu in regulating
hINV gene expression, co-expression of these regulators
prompts an increase in C/EBPa binding to the hINV PRR
C/EBP transcription factor binding site and a corresponding
increase in hINV promoter activity. Moreover, GADD153, a
dominant-negative C/EBP factor, inhibits the increase, and
mutation of the C/EBP transcription factor binding site in the
hINV PRR results in a loss of this regulation (Agarwal et al,
1999). nPKC and C/EBPa also act as partners to increase
expression of endogenous hINV. The nPKC-dependent
activation of hINV is also inhibited by dnRas, dnMEKK1, and
dnMEKS3, but is increased by dnERK1 (Efimova et al, 2002).

PKC$ also Functions in Concert with
Calcium to Increase hINV Promoter Activity

PKCs also functions with calcium, an important regulator of
keratinocyte differentiation, to enhance promoter activation
(Deucher et al, 2002). Promoter truncation experiments
demonstrate that this response is mediated by DNA
elements located within the DRR. Specific mutation of the
AP1-5 site eliminates the calcium response, the PKCd
response, and the response when the agents are combined
(Deucher et al, 2002). Moreover, mutation of the DRR Sp1
site results in a partial loss of response. This study shows
that calcium treatment does not alter PKCa or PKCS level or
cause a redistribution of PKC3 to membranes; however,
calcium treatment does cause a marked increase in tyrosine
phosphorylation of PKC3. The role of tyrosine phosphoryla-
tion of PKCd is not well understood; however, increased
phosphorylation of PKC$ has also been observed in mouse
keratinocytes following treatment with increased extracel-
lular calcium (Denning et al, 2000). Moreover, this tyrosine
phosphorylation may be physiologically important, as
tyrosine-phosphorylated PKCS is also detected in mouse
epidermis (Denning et al, 2000). But the increase in phos-
phorylation in this system trails the increase in expression of
differentiation-associated genes, suggesting it may not
have a role in differentiation. A recent study shows that
TPA treatment promotes phosphorylation at PKCS Tyrqg7 in
3T3 cells; however, mutation of this site does not appear to
reduce the ability of PKC4é to phosphorylate substrates (Li
et al, 1996a). Different phosphorylation sites, including Tyrs4+,
Tyrass, and Tyrsip, are selected when COS-7 cells are
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treated with hydrogen peroxide, with Tyrz11 being the major
phosphorylation site (Konishi et al, 2001). In vitro studies
show that phosphorylation of PKC3 Tyrs14 increases basal
PKCS activity in the presence of diacylglycerol (Konishi et al,
2001). In contrast, the Src family kinase-mediated phos-
phorylation of PKC8 on Tyrgs and Tyrsgs causes inactivation
of PKCS and promotes a neoplastic phenotype in v-ras-
transformed mouse keratinocytes (Joseloff et al, 2002).
These varying results suggest that additional studies will be
necessary to determine whether phosphorylation of PKC3
has a positive effect on involucrin gene expression, and to
identify the PKC3 tyrosine residues that are modified.

An interesting finding is that classical PKC isoforms,
such as PKCuq, inhibit the calcium-dependent activation of
the hINV promoter, whereas dominant-negative PKCa
enhances the calcium-dependent increase. Thus, PKCa
and PKCé produce opposing effects on hINV promoter
activity (i.e., antagonism between classical and novel
PKCs). This suggests that the balance between PKCS and
PKCa may influence the extent of keratinocyte differentia-
tion (Deucher et al, 2002). This represents one example,
wherein members of a single signaling family produce
opposing effects on the regulation of hINV gene expression.
Another example is the inverse role of ERK1/2 and p385 in
regulating hINV gene expression (Efimova et al, 2003). Other
studies have also examined the role of PKC in regulating
hINV gene expression. Takahashi et al (1998) studied the
regulation of hINV promoter by PKC in SV40-transformed
keratinocytes. In this context, PKCa and PKCn increase
hINV promoter activity via effects that require the AP1-1 site
within the PRR (Takahashi et al, 1998). It is interesting that in
the context of this immortalized cell line involucrin expression
is increased by PKCua. This suggests that the pattern of PKC-
dependent regulation may depend upon cell environment.

An ERK-p386 Complex Regulates
Gene Activation

As noted above, agents that regulate involucrin gene
expression consistently increase p385 MAPK activity and
reduce ERK1/2 activity (Efimova et al, 2002, 2003). There
are multiple mechanisms that might explain such coordi-
nate regulation. It is possible that one signaling pathway
acts to inhibit ERK1/2 activity, whereas a second pathway
increases p38d activity. A second possibility is the novel
idea that p386 and ERK1/2 are part of a complex in which
the regulatory responses are transferred directly via
changes within the complex. Studies designed to distin-
guish these possibilities reveal that ERK1/2 and p386 exist
in keratinocytes as components of a complex (Efimova et al,
2003).

Time course studies show that total p38 activity
increases within 4 h after treatment with okadaic acid. This
onset of p38 activity is associated with a corresponding
reduction in ERK1/2 activity. In each case, this represents
an actual change in activity, as the level of individual MAPK
is not altered by treatment. Both ERK1 and ERK2 activities
are decreased by treatment; however, selective changes
are observed in activity of individual p38 MAPK isoforms.
Four p38 MAPK isoforms are known to exist, including



123:1 JULY 2004

p38a, B, 6, and y (Lee et al, 1994; Lechner et al, 1996;
Goedert et al, 1997; Kumar et al, 1997). Only p38a, p388,
and p386 are expressed in keratinocytes (Dashti et al,
2001b). Among these isoforms, only p38d activity is
increased following Okada acid treatment. Thus, the major
stimulus for activation of hINV promoter activity is provided
by a reduction in total ERK1/2 activity with an accompany-
ing increase in activity of the p386 MAPK isoform (Efimova
et al, 2003). Additional support for an exclusive role for
p386 is provided by the observation that treatment with
SB203580, an agent that inhibits p38a and  activities
(Cuenda et al, 1997; Kumar et al, 1997; Enslen et al, 1998),
does not stop the increase in p38 activity. Additional studies
show that this is likely to be physiologically relevant, as
p38d is expressed in all layers of the epidermis (Efimova
et al, 2003). Although p385 appears to be the major
regulator of hINV gene activation, under special conditions,
in the presence of constitutively active MEK6 or MEK7, a
role of p38a has also been identified (Dashti et al, 2001a, b).

An important and unique finding is the presence, in
keratinocytes, of an ERK1/2-p386 complex (Efimova et al,
2003). The complex is constitutively present in both
untreated and treated keratinocytes. Significant ERK1/2
activity, but little p386 activity, is observed in untreated cells;
however, treatment with okadaic acid results in a reduction
in ERK1/2 activity and an increase in p386 activity within
the complex (Efimova et al, 2003). The level of the kinases is
not altered by okadaic acid treatment. This finding alters
some common assumptions regarding regulation by MAPK.
Previously, the MAPK cascades have been envisioned as
linear regulatory pathways in which the MAPK (ERK, p38,
etc.) are independent signaling proteins (Cobb, 1999). But
our studies suggest that there is a convergence at the level
of MAPK and that incoming signals in keratinocytes impinge
on a MAPK signaling complex that may include multiple
MAPK. The composition of this complex is an important
topic that is presently under investigation.

Regarding the downstream changes observed following
activation of this complex, both C/EBP and AP1 factor
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levels increase. The increase is not inhibited by the p38a/
p38p inhibitor, SB203580, confirming that it is likely to be
mediated by p386. There is also a substantial increase in
the level of c-Jun, JunB, JunD, Fra-1, Fra-2, C/EBPg, and
C/EBPB The time course of increase for each of these
transcription factors parallels the increase in p385 activity
and the decline in ERK1/2 activity, suggesting that
transcription factor levels are controlled by the changing
activity of the ERK1/2-p385 complex.

The increased transcription factor level is associated
with increased binding to JunB, Fra-1, and JunD, and
C/EBP factors to the hINV promoter PRR AP1-1 and C/EBP
sites, respectively. The altered expression of these factors
ultimately leads to increased hINV transcription—both the
endogenous gene and the promoter. Moreover, the in-
creased transcription is inhibited by the dominant-negative
form of MEK®, the kinase immediately upstream of p383 in
the MAPK signaling cascade (Efimova et al, 1998).

A Signal Transduction Model

Taken together, these findings suggest that the novel PKC
enhance hINV gene expression by activation of a pathway
that includes novel PKC isoforms, Ras, MEKK1, and MEKS3.
MEKS, in turn, regulates the activity of a p386—-ERK1/2
complex such that p386 activity is increased and ERK1/2
activity is reduced. This alteration in MAPK activity is
correlated in time with an increase in transcription factor
binding to DNA and activation of hINV promoter activity
(Fig 2). An interesting and important feature of this regulation
is the convergence of the signal at the level of the MAPK. The
MAPK cascades have been viewed as functioning as distinct
entities at the MAPK level, without direct cross-talk. Our
model, in contrast, indicates that the signal actually
converges onto a complex that includes multiple MAPK.
Another important finding is that the ERK1/2—p385 complex
is constitutively present in cells and that incoming stimuli
alter the relative activity of the MAPK isoforms within the
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ulation of involucrin gene expression. The L
stimulus activates the indicated cascade which B +
ultimately alters the activity of MAPK encoded in Upstream nPKC
a signaling complex. This complex exists in Regulators
resting and stimulated cells. The net effect of Ras
the stimulus is to increase p385 activity (small - +
upward arrow) and reduce extracellular signal MEKK1
regulated kinase (ERK)1/2 activity (small down- MAPK
ward arrow) without changing the level of these Module MEK3
kinases. This shift in activity results in an increase
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complex, but not their association (Efimova et al, 2003). The
only other examples of a MAPK complex of this type is in
Hela cells or 293T cells (Zhang et al, 2001; Sanz-Moreno
et al, 2003). These authors describe an ERK1/2-p38ua
complex that assembles in a stimulus-dependent manner
in Hela cells (Zhang et al, 2001) and in a stimulus-
independent manner in 293T cells (Sanz-Moreno et al, 2003).

Other Agents also Alter Activity of the
ERK-p386 Complex

The above studies show that phorbol ester, okadaic acid,
and calcium regulate hINV gene expression by interfacing
with the MAPK cascade. Other agents also operate through
this mechanism, including green tea polyphenols. Green tea
polyphenols are antioxidants that have important cancer
chemopreventive properties (Ahmad and Mukhtar, 1999).
Balasubramanian et al (2002) showed that treatment with a
biologically active green tea polyphenol, (—)-epigallocate-
chin-3-gallate (EGCG), results in an increase in hINV
promoter activity. This activation requires the hINV promoter
AP1-1 site within the PRR. This response to EGCG is
associated with an increase in AP1 factor level and
increased binding of Fra-1 and JunD to the AP1-1 site,
and is inhibited by the dominant-negative forms of Ras,
MEKK1, MEKS, and p38. Moreover, EGCG treatment shifts
the p386/ERK activity ratio in favor of p389, a response that
is characteristic of the MAPK pathway that regulates hINV
expression (Balasubramanian et al, 2002). Thus, it appears
that a wide variety of structurally diverse agents activate
involucrin gene expression via regulation of the ERK1/2-
p385 complex.

POU Domain Proteins Suppress hINV
Promoter Activity

The POU domain transcription factors are a superfamily
of homeodomain proteins that regulate cell differentiation
and proliferation (Scholer, 1991; Wegner et al, 1993). POU
domain protein act by binding to specific DNA sequence to
regulate gene expression; however, POU domain factors
can also regulate gene expression in a binding site-
independent manner (Yang et al, 1994). Involucrin promoter
activity is suppressed by a host of POU homeodomain
proteins, including Oct1, Oct2, Brn4, SCIP, Skn1a, and
Skn1i (Welter et al, 1996; Chapman and Latchman, 1998).
This suppression is POU protein DNA binding site indepen-
dent. Moreover, activity of the hINV minimal promoter is
suppressed by POU protein expression, suggesting that
POU proteins may be interact with the basal transcription
machinery. An interaction of POU domain proteins with the
basal transcriptional apparatus has been observed in
several systems (Arnosti et al, 1993; Zwilling et al, 1994).
Studies by Welter et al (1996) suggest that POU domain
proteins may suppress hINV promoter activity by suppres-
sing the activity of an unknown factor involved in basal
transcription. The physiological importance of this regula-
tion is not known, although POU domain proteins are
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expressed in epidermis (Andersen et al, 1993; Yukawa et al,
1993, 1996; Faus et al, 1994).

At the beginning of the 1990s, it was appreciated that
the gene expression of several gene products, including
involucrin, was increased during epidermal differentiation.
The extent of this knowledge was defined by studies
assessing mRNA level and by runoff studies assessing
transcriptional activity. Moreover, knowledge of cell signal-
ing mechanisms was largely defined using pharmacologic
inhibitors. A brief review of our present understanding of the
mechanisms that regulate involucrin gene expression
provides one example of how rapidly our understanding
has improved. It can only be anticipated that this rapid rate
of progress will continue during the next decade.
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