Recessive x-Linked Ichthyosis: Role of Cholesterol-Sulfate
Accumulation in the Barrier Abnormality

Elizabeth Zettersten, Mao-Qiang Man, Junko Sato,* Mitsuhiro Denda,* Angela Farrell, Ruby Ghadially,

Mary L. Williams, Kenneth R. Feingold, and Peter M. Elias

Dermatology Service, Veterans Affairs Medical Center, and Departments of Dermatology and Pediatrics, University of California, San Francisco, California,

U.S.A.; *Shiseido Research Center, Fukuura Kanazawa-ku Yokohama-shi, Japan

Cholesterol sulfate is a multifunctional sterol metabolite,
produced in large amounts in squamous keratinizing
epithelia. Because patients with recessive x-linked ichthy-
osis display not only a 10-fold increase in cholesterol
sulfate, but also a 50% reduction in cholesterol, we
assessed here whether cholesterol sulfate accumulation
and/or cholesterol deficiency produce abnormal barrier
function in recessive x-linked ichthyosis. Patients with
recessive x-linked ichthyosis display both an abnormal
barrier under basal conditions, and a delay in barrier
recovery after acute perturbation, which correlate
with minor abnormalities in membrane structure and
extensive lamellar-phase separation. Moreover, both the
functional and the structural abnormalities were corrected
by topical cholesterol. Yet, topical cholesterol sulfate
produced both a barrier abnormality in intact skin and

extracellular abnormalities in isolated stratum corneum,
effects largely reversed by coapplications of cholesterol.
Together, these results suggest that cholesterol sulfate
accumulation rather than cholesterol deficiency is
responsible for the barrier abnormality. Despite the
apparent importance of cholesterol sulfate-to-cholesterol
processing for normal barrier homeostasis, neither steroid
sulfatase activity nor mRNA levels are upregulated fol-
lowing acute perturbations. These results demonstrate
both a potential role for cholesterol sulfate-to-cholesterol
processing in normal permeability barrier homeostasis,
and that basal levels of steroid sulfatase are sufficient to
accommodate acute insults to the permeability barrier.
Key words: epidermal lipid metabolism/permeability barrier/
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holesterol sulfate appears to possess multiple, possible

functions in keratinizing epithelia, where it is: (i) both

a marker of squamous metaplasia (Jetten et al, 1989)

and a possible inducer of differentiation (Denning et al,

1995); (i1) a negative feedback regulator of cholesterol
synthesis in vitro (Williams et al, 1987); (iii) an indicator of pathologic
desquamation in recessive x-linked ichthyosis (RXLI) (Williams and
Elias, 1981); and (iv) an inducer of excess scale in normal skin (Maloney
et al, 1984). Although cholesterol sulfate is also present in minute
quantities in extracutaneous tissues, it occurs in much larger quantities
in keratinizing epithelia. In epidermis, its levels peak at around 5% of
total lipid in the stratum granulosum, declining to about 1% in the
outer stratum corneum (Long et al, 1985; Ranasinghe et al, 1986; Elias
et al, 1988). Cholesterol sulfate, like cholesterol, is localized to
membrane domains in the stratum corneum of both normal and RXLI
subjects (Elias et al, 1984; Koppe et al, 1978).

Whether cholesterol sulfate is an important bulk precursor of the
cholesterol requirement for permeability barrier homeostasis is not
known. In RXLI, due to absence of the enzyme steroid sulfatase,
which catalyzes the desulfation of cholesterol sulfate to cholesterol
(Shapiro et al, 1978; Kubilus et al, 1979), cholesterol sulfate levels in
the stratum corneum are ==10-fold elevated, whereas free cholesterol
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levels are =50% reduced (Williams and Elias, 1981). Substantial
cholesterol, however, is delivered directly to the stratum corneum
interstices by the exocytosis of epidermal lamellar body contents, which
are enriched in cholesterol (Grayson ef al, 1985; Feingold et al, 1990),
a mechanism that could suffice for barrier requirements.

If cholesterol sulfate processing provides an important quota of
cholesterol for the barrier, then one would expect to encounter
permeability barrier abnormalities in RXLI. Prior clinical studies on
barrier function in RXLI have been indecisive: some studies
report minor abnormalities in basal barrier function (e.g., Frost et al,
1968); whereas others claim that barrier function is normal (Lavrijsen
et al, 1993) or near-normal (Johansen et al, 1995). In this study, we
first evaluated barrier function in patients with RXLI; and second, we
employed several approaches to assess the role of cholesterol sulfate
accumulation versus cholesterol deficiency in development of the barrier
abnormality. Our studies indicate that cholesterol sulfate processing is
important for normal barrier homeostasis, because cholesterol sulfate
accumulation appears to be responsible for the barrier abnormality in
RXLI. Yet, neither steroid sulfatase activity nor mRNA levels are
regulated by experimental perturbations to barrier function.

MATERIALS AND METHODS

Test materials Cholesterol (Sigma, St Louis, MO) and cholesterol sulfate
(Research Plus, Bayonne, NJ) were dissolved alone or together at a 2%
concentration in propylene glycol:isopropanol (7:3, vol/vol). Solutions were
applied to test area A twice daily for 1 wk, and one additional time immediately
after acute barrier abrogation (see below). Vehicle alone was applied to test area
B twice daily for 1 wk and once more after acute abrogations. Cream or lotion
based vehicles were avoided in order to isolate the effects of sterols versus
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vehicle. Test area C served as an untreated control area. Cholesterol sulfate
solutions were used for animal studies only (see below).

Studies in human volunteers Thirty male Caucasian volunteers, aged 15—
75, gave informed consent to participate in the study (protocol approved by
UCSF Committee on Human Research.) Fifteen subjects, who carried the
diagnosis of RXLI, previously confirmed by enzyme assay, agreed to studies of
basal function, whereas five of these subjects agreed to further functional and
morphologic studies. Control subjects comprised five age- and sex-matched
volunteers, without skin disease. All participants were in good general health;
none were taking oral medications; and all topical treatments were terminated
at least 2 wk prior to these studies. All measurements were obtained from the
ventral forearm, 3 cm below the antecubital fossa, where the scaling symptoms
were relatively mild in the RXLI volunteers.

Animal studies Cholesterol sulfate (2%) or vehicle alone was applied twice
daily for 5 d to the contralateral flanks of groups of 6-12 wk old, male hairless
mice (n = 6). Transepidermal water loss (TEWL) was measured daily, with an
electrolytic water analyzer (Meeco, Warrington, PA) immediately prior to the
next morning’s application. Biopsies were obtained for electron microscopy
after the last TEWL measurements, and processed as described below.

In another set of studies, tape strippings of normal murine skin were floated
immediately on drops of 0.5% trypsin in phosphate-buffered saline. Either 2%
cholesterol, 0.5% cholesterol sulfate, cholesterol sulfate 0.5% plus cholesterol
(2%), or vehicle was added to the outer surface of the samples for 2 h. At the
end of incubations, the samples were fixed for electron microscopy (see below).

Assessment of basal barrier function TEWL was measured over the three
test areas (4 X 1.3 cm? each) on the volar forearms of human subjects using an
Evaporimeter (ServoMed), and recorded in mg per cm? per h over background.
Three sites were measured within each test area, and averaged to generate one
data point for subsequent analysis. TEWL values were registered 45 s after
application of the probe to the skin. The mean temperature was 21°C (range,
18-24°C), the average relative humidity was 39% (range, 28%—-52%), and the
average atmospheric pressure was 8.9 mmHg (range, 5.3-13.8 mmHg). A
closed box with a Plexiglas top was used to protect the measurement zone
from excess air convection, and a gold-plated cover with a screen and grid was
used for probe protection.

Assessment of barrier integrity and recovery Barrier integrity, i.e., stratum
corneum cohesion, was tested in the same areas used for the basal TEWL
measurements, using sequential cellophane (Tesa Tuck, New Rochelle, NY)
tape strippings. TEWL was measured on three sites within each area after each
group of 10 sequential tape strippings until a comparable degree of barrier
disruption was obtained in all volunteers, defined as a TEWL of =2.0 mg per
cm? per h. Ten microliters of 2% cholesterol in propylene glycol:propanol or
the vehicle alone were applied to each test area immediately after barrier
abrogation. TEWL was determined again in all test areas at 6 h, 24 h, and 1 wk
after barrier abrogation.

Tissue preparation Male hairless mice (ages 6—12 wk) (Charles River
Laboratories) were used for studies on enzyme regulation. Tape-stripped or
acetone-treated versus untreated (TEWL = 4 mg per cm? per h) skin was
compared at various time points from 4 to 12 h after barrier disruption.
Epidermis was separated from dermis by incubation in 10 mM ethylene diamine
tetraacetic acid in Ca™ - and Mg" *-free phosphate-buffered saline, pH 7.4,
at 37°C for 30—40 min, followed by gentle vortexing. Epidermal preparations
then were homogenized (3 X 15 s) with a Polytron homogenizer, followed by
sonication at 35% power (2 X 10 s) on ice. The homogenization buffer
consisted of 10 mM Tris, pH 7.5, containing 0.15 M sucrose and 2 mM
ethylene diamine tetraacetic acid. Crude homogenates were first centrifuged at
10,000 X g for 10 min, then at 100,000 X ¢ for 60 min, both at 4°C. Steroid
sulfatase activity was measured in the microsomal pellet, as described below.
Protein content was measured by a variation of the method of Bradford
(Johansen et al, 1995).

Steroid sulfatase assay Steroid sulfatase activity was assayed in acetone-
treated or tape-stripped versus untreated hairless mouse epidermis, as described
by Milewish et al (1990), with modifications. Assays were performed in 0.1 M
Tris buffer (pH 7.4) containing 5.6 mM glucose. Microsomes, isolated from
epidermis (0.1 mg) were incubated with 15 UM [*H]dehydroepiandrosterone
sulfate (5 WCi) for 2 h at 37°C, with a final assay volume of 1.1 ml. The
product, [*H]dehydroepiandrosterone, was extracted from the reaction mixture
with benzene (Kubilus et al, 1979; Epstein et al, 1984), and an aliquot was
counted by liquid scintillation spectrophotometry.
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Figure 1. Barrier function in RXLI versus age/sex-matched control
subjects. n = 15 in each group; differences are significant by Student’s t test.

mRNA isolation, northern blotting, and densitometry Epidermis (0.2—
0.4 g) was obtained from the treated versus untreated torsos of male hairless
mice, and processed for mRINA extraction (Chomczynski and Sacchi, 1987).
Poly(A)* mRINA was isolated by olio(dt) chromatography (type 77F, Pharmacia
LKB), as described previously (Wood et al, 1992). Eight to 10 micrograms of
Poly(A)* mRINA (extracted from the epidermis of two mice) were loaded per
lane onto a formaldehyde/1% agarose gel. After electrophoresis, the gel was
stained with acridine orange for visualization of the integrity of residual
ribosomal RNA bands. RNA was transferred to Nytran membranes and
subsequently fixed by baking at 80°C for 2 h. cDNA probes were [3*P]-labeled
by the random priming method according to the manufacturer’s instructions
(Amersham, Arlington Heights, IL). Labeled probes were purified by exclusion
chromatography through G-50 mini spin columns. Hybridization to RINA was
performed as described previously (Wood et al, 1992). Briefly, northern blots
were prehybridized for 1 h at 65°C in hybridization bufter and exposed to the
radiolabeled probe overnight in the same buffer at 65°C. The first wash was
carried out for 30 min at room temperature, and the second wash was performed
at 65°C for 1 h. The blots were exposed to film at =70°C, and then scanned
with a model GS-670 imaging densitometer (Bio-Rad, Hercules, CA). All
values are presented as ratios of relative intensity of enzyme mRNA:relative
intensity of cyclophilin mRNA, which was chosen to normalize for RNA
loading, because it did not change after barrier disruption.

Electron microscopy Human volunteers with RXLI were treated for 1 wk
with 2% cholesterol versus vehicle. Cyanoacrylate strippings were obtained from
cholesterol- and vehicle-treated sites as well as from untreated sites. Additional
biopsies from each site were obtained 6 h after barrier abrogation in three
subjects. Biopsies of either 1% cholesterol sulfate- or vehicle-treated hairless
mouse skin were also obtained after twice daily applications for 5 d. All samples,
including samples incubated with lipids in vitro, were fixed in half-strength
Karnovsky’s fixative overnight, washed in 0.1 M sodium cacodylate bufter, and
post-fixed in 0.5% ruthenium tetroxide in 1.5% potassium ferrocyanide (Hou
et al, 1991), followed by ethanol dehydration and embedding in an Epon-
epoxy mixture. Ultrathin sections were contrasted further with lead citrate and
viewed in a Zeiss 10 A electron microscope (Carl Zeiss, Thornwood, NY)
operated at 60 kV. Micrographs were photographed randomly by an uninvolved
observer and interpreted blindly by the authors.

Statistical analysis Statistical analysis utilized the Student’s t test with a two-
way analysis of programs (Stat-Works). Data were expressed as mean * SEM
with < 0.05 considered significant. When the results from the Student’s test
were checked further by Wilcoxon and/or ANOVA analysis, the difference
between RXLI and normals remained significant.

RESULTS

RXLI patients display abnormal barrier function To assess the
potential importance of cholesterol sulfate processing for normal barrier
homeostasis, we first measured barrier function in patients with RXLI
versus an age-matched group of male controls. As seen in Fig 1, barrier
function is abnormal in RXLI versus normal, age-matched, and sex-
matched subjects under basal conditions, with an almost 40% mean
increase in TEWL levels versus controls (n = 15; p < 0.001). We next
compared the kinetics of barrier recovery after similar initial insults
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Figure 2. Barrier recovery after acute perturbations. Data are for six
RXLI and five age/sex-matched controls after tape stripping of volar forearms.
The differences at 6 h are significant by Student’s t test.

(i.e., initial TEWL levels = 2.0 mg per cm? per h). Although both
the RXLI and the control group (n = 5 each) display normalization
of barrier function (100% recovery) by 1 wk, divergence in recovery
rates is apparent at earlier time points; i.e., 6 and 24 h (Fig 2; p < 0.02
and p = 0.08 for 6 and 24 h, respectively). These results show that
patients with RXLI demonstrate a significant barrier abnormality under
both basal and stressed conditions.

Topical cholesterol normalizes barrier recovery rates in
RXLI To assess the possibility that the delay in barrier recovery in
RXLI could be attributed to impaired cholesterol sulfate processing,
we next measured barrier recovery in RXLI versus control human skin
after topical cholesterol applications. For these studies, we employed a
2% concentration of cholesterol, which displays few effects in normal
skin, but improves the barrier abnormality in aging skin (Mao-Qiang
et al, 1993; Ghadially et al, 1996; Zettersten et al, 1997). As reported
previously (Mao-Qiang et al, 1993), topical cholesterol either has no
effect or slightly delays barrier recovery in normal skin (6 h, NS), and
the vehicle has no effect (Fig 3A). In contrast, topical cholesterol
significantly accelerates barrier recovery in RXLI subjects (Fig 3B;
p < 0.001 and 0.037 at 6 and 24 h, respectively). Moreover, control
sites in RXLI subjects, treated with vehicle alone, exhibit delays in
recovery. Furthermore, a comparison of data from cholesterol-treated
RXLI to cholesterol-treated control sites reveals no difterences in the
kinetics of recovery (Fig 3C; NS); i.e., cholesterol completely normal-
izes the kinetics of barrier recovery. Together, these results show that
cholesterol repletion normalizes barrier recovery in RXLI.

Barrier dysfunction in RXLI is associated with abnormalities
in extracellular lamellar organization (Fig 44, B) Although prior
electron spin resonance studies revealed abnormal lipid interactions in
the stratum corneum of RXLI patients, these changes were linked
solely to the desquamation abnormality (Rehfeld et al, 1988). Hence,
we next assessed extracellular lamellar membrane ultrastructure in skin
biopsies from three untreated RXLI patients versus several historical,
age-matched, and sex-matched controls, utilizing ruthenium tetroxide
post-fixation. In all three subjects, we observed extensive separation
into lamellar and nonlamellar domains, as well as abnormalities in the
organization of the extracellular lamellae in the stratum corneum
[Fig 4B (vehicle-treated); untreated RXLI (not shown) appears similar
to vehicle-treated sites].

To ascertain whether these membrane abnormalities could be
attributable to a deficiency of cholesterol, we next compared stratum
corneum ultrastructure from cholesterol- versus vehicle-treated sites
from cyanoacrylate tape strippings from three subjects with RXLI.
Although prior studies have shown that topical cholesterol improves
the desquamation abnormality (Lykkesfeldt and Hoyer, 1983), its effects
on barrier function in RXLI have not been assessed. As seen in
Fig 4(A), 1 wk of twice daily cholesterol applications largely normalized
extracellular membrane structure; i.e., treated sites were indistinguish-
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Figure 3. Barrier recovery in RXLI versus age/sex-matched controls
after cholesterol treatment. Data shown are for (A) cholesterol versus vehicle
in normal control subjects, (B) cholesterol versus vehicle treatment in RXLI
subjects, and (C) cholesterol-treated RXLI versus untreated normal control
subjects. n = 5 in each group. Statistical comparisons are by Student’s t test.

able from unaffected controls, and nonlamellar domains also largely
disappeared. In contrast, vehicle-treated sites in RXLI subjects remained
highly abnormal (Fig 4B). These results show first, that the barrier
abnormality in RXLI is attributable to abnormalities in extracellular
membrane structure and/or formation of separate lamellar and nonla-
mellar domains. Second, they show that cholesterol repletion largely
normalizes both of these abnormalities.

Topical cholesterol sulfate also produces a barrier abnormality
in normal skin The ability of topical cholesterol to normalize the
function and ultrastructure in RXLI has several potential explanations
(see below). Therefore, to ascertain further whether the barrier
abnormality in RXLI is due to a failure of cholesterol sulfate-to-
cholesterol processing resulting in cholesterol deficiency, or to an
accumulation of excess cholesterol sulfate, we next assessed the effects
of repeated topical applications of 2% cholesterol sulfate to normal
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Figure 4. Ultrastructure of vehicle-
versus cholesterol-treated RXLI. The
same membrane abnormality is present
in three different patients, and is not
influenced by vehicle (B). Lamellae are
fragmented and disrupted (arrows), with
extensive, nonlamellar domains present
within the extracellular spaces. In
contrast to vehicle, 2% cholesterol
treatment twice daily for 1 wk
completely normalizes the structure of
extracellular lamellae (A, arrows). (A, B)
RuOy, postfixation. Scale bar: 0.5 Pm. ‘—}
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Figure 5. Repeated applications of topical cholesterol sulfate results in
a barrier abnormality. Twice daily applications of 2% cholesterol sulfate versus
vehicle. Data shown are after 5 d treatment, and significances were calculated
by Student’s t test. n = 6 sites each.

hairless mouse skin (for ethical reasons, we did not perform these
studies in human subjects). Prior studies have shown that topical
cholesterol sulfate, but not topical cholesterol, produces an ichthyosi-
form dermatosis in intact hairless mouse skin (Maloney et al, 1984). As
in these prior studies, twice daily applications of 2% cholesterol sulfate
versus vehicle alone for 5 d results in a mild ichthyosiform eruption,
characterized by histologic hyperkeratosis, but no significant epidermal
hyperplasia or inflammation (not shown). As seen in Fig 5, cholesterol
sulfate-treated animals also display a moderate, but significant increase
in TEWL levels (p < 0.05). Co-applications of cholesterol with
cholesterol sulfate prevent development of the ichthyosiform abnormal-
ity (as in Maloney et al, 1984), as well as the permeability barrier
alterations (not shown). Finally, RuO, post-fixed preparations from
CSOy-treated, but not vehicle-treated samples display both extensive
phase separation and disruption of lamellar membrane structure (Fig 64
versus B), as in RXLI (cf., Fig 4B). These studies show that applications
of excessive cholesterol sulfate to normal (steroid sulfatase replete) skin
produce a barrier defect that is comparable functionally and structurally
to RXLI.
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Excess cholesterol sulfate produces membrane abnormalities in
normal stratum corneum To distinguish further whether the
barrier abnormality in RXLI is due to cholesterol sulfate accumulation,
or metabolic consequences of excess cholesterol sulfate [e.g., downreg-
ulation of cholesterol synthesis (Williams et al, 1985, 1987)], we next
applied cholesterol sulfate topically to isolated tape strippings of murine
stratum corneum. As seen in Fig 7(A), cholesterol sulfate produces
direct effects on the SC extracellular membrane organization. Both
extensive nonlamellar domain formation and disruption of lamellar
membrane structure are evident. In contrast, coapplication of cholesterol
with cholesterol sulfate largely prevents development of the abnormality,
producing minimal domain separation alone (Fig 7B), and neither
cholesterol alone nor the vehicle alter membrane structure in most
areas (Fig 7C; cholesterol alone not shown). These results show that
cholesterol sulfate produces both direct effects on stratum corneum
membrane organization and lamellar/nonlamellar domain separation.

Acute changes in barrier function do not regulate steroid
sulfatase Whereas the above studies suggest that cholesterol sulfate
processing is important for normal barrier homeostasis, we next asked
whether barrier function regulates steroid sulfatase, the enzyme which
catalyzes this reaction. As seen in Fig 8, mRNA levels for steroid
sulfatase do not change 4 h after barrier disruption. Moreover, enzyme
activity does not change significantly at various time points (2, 4, 12 h)
after tape stripping in comparison with untreated and O time controls
(= immediately after stripping; data not shown). Together, these results
indicate that steroid sulfatase levels are not regulated by acute alterations
in barrier status.

DISCUSSION

Prior studies have addressed multiple, potential functions of cholesterol
sulfate in squamous epithelia (Fig 9), including roles in: (i) difterenti-
ation; (i) desquamation; and (iii) cholesterol metabolism. A role for
this molecule in differentiation is supported by (i) the high concentration
of cholesterol sulfate in the outer nucleated layers of epidermis (Elias
et al, 1984); (ii) the observation that cholesterol sulfate content in
mucosal epithelia normally is low, but increases dramatically with
hypovitaminosis A-induced squamous metaplasia (Rearick and Jetten,
1986; Rearick ef al, 1987); (iii) stimulation of the N isoform of
epidermal protein kinase (PKC) by cholesterol sulfate (Denning et al,
1995); (iv) evidence for transactivation of the involucrin gene in
keratinocytes by PKCn following exposure to cholesterol sulfate (Ikuta
et al, 1994); and (v) finally, the hyperorthokeratosis in RXLI could be
interpreted as an imbalance in proliferation versus differentiation (the
former is normal, but the latter is increased) (Williams, 1991). These
results suggest that cholesterol sulfate plays an important role in
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Figure 6. Ultrastructure of (A) cholesterol sulfate- versus (B) vehicle-treated normal mouse skin. Applications were made twice daily for 5 d. Arrows
depict both membrane fragmentation and phase separation in cholesterol sulfate-treated sites, but only minimal nonlamellar domain formation with vehicle alone.

RuOy postfixation. Scale bar: 0.5 pm.

Figure 7. Cholesterol sulfate (CSO,) produces membrane abnormalities
and nonlamellar domain formation in isolated stratum corneum. Murine
SC tape strippings were incubated with either 2% CSOy alone (A); 2%
cholesterol (Chol) plus 2% CSO, (B); cholesterol alone (not shown); or vehicle
(Veh) alone (C) for 2 h. (A, B) Open arrows depict membrane structural
abnormalities; single arrows depict nonlamellar domains; arrowheads depict normal
extracellular lamellar membranes. C, vehicle alone; D, desmosomes. (A—C)
RuOy postfixation. Scale bar: 0.5 Pm.

epidermal differentiation, and that the signaling pathway involves
PKCn.

The role of cholesterol sulfate in the modulation of desquamation
is supported by (i) the development of ichthyosis in patients with
RXLI, who generate a 10-fold excess of cholesterol sulfate in the face
of steroid sulfatase deficiency (Williams and Elias, 1981), and (ii) the
development of excess scale in animals treated with topical cholesterol
sulfate (Maloney et al, 1984), and as shown again in this study. The
following four molecular mechanisms have been proposed to explain
these ichthyosiform changes: (i) The inability of cholesterol sulfate to
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Figure 8. Steroid sulfatase mRNA levels do not change after barrier
disruption. Data shown are for immediately before and 4 h after acetone
treatment. No significant differences were observed at these or other time
points (2, 12 h data not shown).

FUNCTIONAL CONSEQUENCES OF THE
EPIDERMAL CHOLESTEROL SULFATE CYCLE
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Figure 9. Cholesterol sulfate is a plurifunctional molecule. Diagram
illustrates several potential effects of this molecule on epidermal function in
relation to the concentration gradient of cholesterol sulfate within the epidermis.

form eutectic mixtures with other SC extracellular lipids, which would
result in phase separation (Rehfeld er al, 1986). This mechanism is
supported by prior electron spin resonance work (Rehfeld et al, 1988),
and by our observations here on RuO, post-fixed material, which also
demonstrate this phenomenon morphologically. (if) Cationic cross-
linking of the sulfate moiety with Ca™™ ions is possible in the SC
interstices, although evidence to support this hypothesis has not
been forthcoming (Williams, 1991). (iii) Cholesterol sulfate inhibits
extracellular proteases that participate in desmosomal and stratum
corneum dissolution (Sato et al, 1998), and desmosomes are retained
in excess at all levels of the SC in RXLI (Mesquita-Guimaries, 1981).
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(iv) Finally, altered membrane dynamics could occur from the reduced
cholesterol, rather than from the excess cholesterol sulfate levels in
RXLI (Williams and Elias, 1981; Williams, 1991).

This last finding, i.e., that cholesterol levels are 50% reduced in the
stratum corneum of RXLI, led to the hypothesis that cholesterol sulfate
might be an endogenous, feedback regulator of cholesterol synthesis.
Indeed, in both cultured human fibroblasts and keratinocytes, choles-
terol sulfate inhibits cholesterol synthesis at pathophysiologically relev-
ant concentrations, and with an efficacy approaching LDL-cholesterol
and 25-OH-cholesterol (Williams et al, 1987), two classic feedback
regulators of cholesterol synthesis. Furthermore, prior catabolism to
cholesterol is not required, i.e., cholesterol sulfate itself is the regulator
(Williams et al, 1985). Finally, cholesterol sulfate displays detergent
eftects that allow it to cross cell membranes (Ponec and Williams,
1986; Tempesta et al, 1995), followed by binding to cytosolic constitu-
ents (Ponec and Williams, 1986), again supporting its potential capacity
as a feedback regulator. Yet, cholesterol sulfate does not appear to
inhibit epidermal cholesterol synthesis in vivo (Menon et al, 1985).

The 50% reduction in cholesterol in RXLI has an alternate explana-
tion, i.e., failure of cholesterol sulfate-to-cholesterol processing, an
hypothesis explored here. Therefore, we examined the possibility that
cholesterol sulfate processing by steroid sulfatase could provide a second
source of bulk cholesterol, required for permeability barrier homeostasis.
Prior studies in fetal skin, where steroid sulfatase activity peaks coincide
with barrier formation (Hanley et al, 1997), support this view. Moreover,
we showed here that RXLI patients display a permeability barrier
abnormality even under basal conditions, supporting three of four prior
studies (Grice and Bettley, 1967; Frost et al, 1968; Lavrijsen et al, 1993;
versus Fartasch, in press). Furthermore, we found that the barrier
abnormality becomes even more apparent when the barrier is first
stressed, i.e., the kinetics of barrier recovery are abnormal over the
initial 24+ hours, approaching normal rates only after 1 wk. That this
defect is due to decreased steroid sulfatase within affected keratinocytes
is shown in gene replacement studies, where grafted RXLI keratinocytes
that are stably transfected with the steroid sulfatase gene reconstituted
an epidermis with an intact barrier (Freiberg et al, 1997). In addition,
the ultrastructure of both RXLI and cholesterol sulfate-treated normal
stratum corneum, utilizing the RuOy, post-fixation method, reveals
not only the previously described desmosome abnormality (e.g.,
Williams et al, 1987; Fartasch, 1997), but also membrane structural
abnormalities and extensive domain separation. These microscopic
lesions would be expected to produce a barrier defect. Our results
differ from those of Fartasch (1997), who described normal extracellular
membrane structure in three patients with RXLI. Possible explanations
for this discrepancy include either seasonal or phenotypic variations in
disease severity in the two study groups. Finally, topical cholesterol
corrects both the barrier and the membrane abnormalities in RXLI.
Whereas these results support the hypothesis that defective cholesterol
sulfate processing contributes to the barrier abnormality, they do not
address directly whether the abnormality is due to excess cholesterol
sulfate, inhibition of cholesterol synthesis, or a deficiency of bulk
cholesterol.

Although downregulation of cholesterol synthesis seems unlikely
(Menon et al, 1985), topical cholesterol corrects (i) the desquamation
abnormality (Lykkesfeldt and Hoyer, 1983; Maloney et al, 1984); (i1)
the membrane and extralamellar phase abnormalities in RXLI in vivo
(these studies); and (iii) cholesterol sulfate-induced abnormalities in vitro.
These data are consistent with a pathogenic role for excess cholesterol
sulfate, because: (i) topical cholesterol sulfate alone produces a barrier
abnormality in intact skin, where no processing defect exists; and (ii)
in vitro experiments demonstrate the ability of cholesterol sulfate to
produce abnormalities in extracellular organization, particularly phase
separation, indicating a likely direct effect of excess cholesterol sulfate
on barrier homeostasis. Thus, these studies together suggest that the
principal mechanism contributing to the barrier abnormality in RXLI
is accumulation of cholesterol sulfate.

These studies also demonstrate that cholesterol reverses the potentially
pathogenic effects of excess cholesterol sulfate on stratum corneum
membrane structure and barrier function. Prior studies demonstrated
benetits of topical cholesterol both to treat excess scale in RXLI (cited

CHOLESTEROL SULFATE ACCUMULATION INDUCES A BARRIER ABNORMALITY 789

in Lykkesteldt and Hoyer, 1983), and to prevent the emergence of
abnormal desquamation with topical cholesterol sulfate applications to
normal murine skin (Maloney et al, 1984). The mechanism(s) of
cholesterol’s benefit, however, is not clear. When applied alone to a
damaged barrier in young skin, cholesterol is either detrimental or
exerts no effect (Mao-Qiang et al, 1993). In contrast, topical cholesterol
(Ghadially et al, 1996) and cholesterol-enriched, physiologic lipid
mixtures (Zettersten ef al, 1997) accelerate barrier recovery in chronolo-
gically aged skin. In the case of aging, cholesterol appears to overcome
a profound decrement in cholesterol metabolism (Ghadially et al, 1996).
In these studies, one can hypothesize two potential mechanisms:
First, topical cholesterol could overcome inhibition of endogenous
cholesterol synthesis by excess cholesterol sulfate, a mechanism that is
operative in vitro (Williams ef al, 1985, 1987), but not demonstrated in
preliminary in vivo studies (Menon et al, 1985). This mechanism,
however, cannot explain the ability of cholesterol to neutralize the
negative effects of cholesterol sulfate on isolated, normal stratum
corneum, as shown here. A second mechanism might relate to an
ability of cholesterol to either bind cholesterol sulfate, analogous to a
chelating agent or exchange resin, or to normalize the eutectic
properties of SC extracellular lipids (Rehfeld et al, 1986). Further
studies will be needed to evaluate these and other potential mechanisms
for the ameliorating effects of topical cholesterol.

Finally, despite the apparent importance for cholesterol sulfate
processing by steroid sulfatase, we could not demonstrate that this
enzyme is regulated in relation to barrier abrogations. Neither enzyme
activity nor mRINA levels are upregulated after acute disruption. It is
likely therefore that the levels of steroid sulfatase that are present under
basal conditions suffice for ongoing, or even increased demands for
cholesterol sulfate processing. This interpretation parallels our work
with other stratum corneum extracellular lipid processing enzymes,
where an excess of enzyme seems to be present, e.g., B-glucocerebrosid-
ase (=20-fold excess is present basally) (Holleran et al, 1993, 1994).
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