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Abstract 13 

Water Sensitive Urban Design (WSUD) stormwater systems, also known as Low Impact 14 

Development (LID) systems or Nature Based Solutions (NBS), are currently implemented based on 15 

the underlying assumption of statistical stationarity of rainfall, which threatens to become outdated 16 

under climatic uncertainty. This paper applies a new downscaling method to examine the implications 17 

of climate change on future rainfall and evaluate the reliability of WSUD stormwater infrastructure in 18 

pollution reduction, flow frequency mitigation and reliability as an alternative water supply. A variety 19 

of future atmospheric scenarios are considered as part of this comprehensive assessment by analysing 20 

an ensemble of eight different downscaled General Circulation Models (GCMs). High resolution 21 

catchment-scale rainfall projections for Melbourne, Australia were generated using a scheme called 22 

High-resolution Downscaling of Rainfall Using STEPS (HiDRUS) at a fine 1 km and 6-minute scale 23 

for more precise analysis with uncertainty estimates. Statistical analyses show that, in general, the 24 

climate models predict a drier future with fewer rainfall events and longer dry periods when 25 

comparing the simulated near future (2040-2049) periods against the base-line period (1995-2004). 26 

The difference simulated between historical and future rainfall projections show minimum difference 27 

of WSUD performance in pollution removal and flow frequency reduction, with slightly lower 28 

harvesting reliability (<3%) observed under future climate; high variabilities, however, were observed 29 

across GCM simulations, indicating big uncertainties of system reliability under various conditions, 30 

e.g. design wetland sizes may vary from 2.5% to 4.0% of the impervious catchment area according to 31 
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different future projects across GCMs. Larger WSUD systems are recommended to ensure reliable 32 

performance of pollution removal, as well as harvesting reliability under simulated future conditions. 33 

The significance of considering an ensemble of different GCMs as opposed to many scenarios 34 

generated by a single ‘best’ climate model was also demonstrated for the robust estimation of 35 

uncertainty in future WSUD reliability. This work highlights important considerations for the future 36 

design, management and quantitative evaluation of WSUD reliability.  37 

Keywords: General Circulation Model (GCM); climate downscaling; stormwater management; 38 

pollutant removal; stormwater harvesting; Water Sensitive Urban Design (WSUD) 39 

1. Introduction 40 

Urbanisation and climate change are growing concerns (Semadeni-Davies et al., 2008; IPCC, 2013) 41 

and pose challenges to water professionals. Numerical studies have been conducted to investigate the 42 

impact of future climate and rapid urbanisation on urban catchment hydrology requiring fine 43 

resolution data (e.g. Andréasson et al., 2004; Denault et al., 2006; Olsson et al., 2009; Zahmatkesh et 44 

al., 2015). Future climate scenarios with fine resolutions can be generated in many ways, via 45 

artificially decreasing/increasing historical rainfall time series (e.g. Bach et al., 2013; Urich et al., 46 

2013), or through adjusting Intensity-Frequency-Duration (IFD) curves (e.g.McIntyre et al., 2007); 47 

different downscaling techniques, including dynamic downscaling (e.g. Thoeun, 2015), and statistical 48 

downscaling (e.g. Hewitson and Crane, 1996; Rummukainen, 1997) have also been used to generate 49 

future projections from GCMs. These methods are often used to investigate the climate change on 50 

urban hydrological processes (Denault et al., 2006; Olsson et al., 2009) and conventional urban 51 

drainage systems (Prudhomme et al., 2002; Semadeni-Davies et al., 2008) in a regional / city scales. It 52 

is frequently found that higher rainfall intensities and peak flows are expected in urban areas in the 53 

future thereby impacting the performance of conventional urban drainage networks with larger flows, 54 

longer event durations and more frequent pluvial floods (Ashley et al., 2005; Rosenberg et al., 2010; 55 

Kang et al., 2016; Wang et al., 2017). The studies regarding the impact of climate change on local 56 

catchment scales are often limited due to the lack of finer scale of space-time rainfall predictions. 57 
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Recently, Raut et al. (2018) developed a multiplicative random cascade model – HiDRUS, which is 58 

able to generate very fine spatial and temporal resolution rainfall projections (in one kilometre and six 59 

minutes); HiDRUS is the first kind of method that allows for GCM outputs to be downscaled to a 60 

local catchment scale, taking into account the topographical features of the local landscape.  61 

Sustainable solutions, e.g. stormwater biofilters, constructed wetlands and ponds, developed under the 62 

concept of Water Sensitive Urban Design (WSUD, also known as LID or NBS) (Fletcher et al., 63 

2015), were designed to mimic natural hydrological processes removed through urbanisation 64 

(Semadeni-Davies et al., 2008), and they have also been found to effectively counter the adverse 65 

effects of climate change and urbanisation (Bach et al., 2013; Wang et al., 2017). However, these 66 

systems are traditionally designed and operated under the basis of stationary (e.g. using historical 67 

data) to achieve required treatment targets (VSC, 1999). This, despite the fact that climate change 68 

leads to more extreme rainfall (across most of Australia) and longer dry periods (in southeast and 69 

southwest Australia) (Steffen et al., 2017), can impact the structural integrity and function of many of 70 

these natural systems; for example extreme events with either long dry periods or large volumes were 71 

found to adversely impact the pollution removal performance of stormwater biofilters (Zhang et al., 72 

2014). Hence, with detailed historical hydrological inputs used to design WSUD and their perceived 73 

long operational lifespan (e.g. usually goes beyond 20 years), it is questionable whether currently 74 

designed WSUD systems can still deliver adequate treatment several years later and, thus, it is 75 

necessary to investigate the impact that climate change can inflict.  76 

Relevant research on climate change impact on the performance of WSUD systems is rather limited 77 

due to the requirement of high space-time resolution of rainfall data and it is currently unclear 78 

whether existing WSUD systems can provide adequate treatment under future climate. Burge et al. 79 

(2012) conducted a case study in Melbourne, Australia to measure the likely impact of climate change 80 

on WSUDs using multiple scenarios of adjusted historical rainfall time series to represent the 81 

extremes of a number of projected ranges of climate change scenarios. It was found that potential 82 

climate change futures will have minimal impact on the efficiency and effectiveness of WSUD 83 

infrastructure, e.g. most stormwater treatment devices cope very well with the climate change 84 
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predictions (worst case scenario was a pollutant load reduction performance of only up to 6% for 85 

bioretentions systems) while, in the most cases, the reduction in system reliability as an alternative 86 

water supply was within 5% of the base case. Sharma et al. (2016) however found that climate change 87 

will lead to increased outflow concentrations of total suspended solids and copper from a stormwater 88 

retention pond by comparing current climate and a synthetic future climate scenario with increased 89 

intensity of rainfall events and longer dry periods. Both studies used simple approaches to account for 90 

future climate (i.e. rainfall scaling/adjustments) and the contradicting findings trigger the further need 91 

for investigating the level of uncertainty of the treatment performance of WSUD systems under future 92 

climate and, hence, understanding the reliability of these systems designed according to the current 93 

paradigm, against variable future scenarios.  94 

As decentralised WSUD systems are usually designed to treat medium to small events (i.e. up to 2 95 

years return periods) and can be located at the smaller street and allotment scales, higher spatial (~ 96 

1 km) and temporal resolution (< hourly) of future rainfall time series are needed (Ochoa-Rodriguez 97 

et al., 2015). However, the lack of fine catchment-scale future rainfall time-series impedes the 98 

advancement of our understanding of WSUD system reliability under future climate. A further 99 

impediment is that there are even fewer studies that consider multiple scenarios in accounting for 100 

future climate uncertainties (Jones, 2000). GCMs are diverse in their implementation of the physics of 101 

atmosphere and have different couplings of atmosphere-ocean-ice components (IPCC, 2013). 102 

Therefore, it is reasonable to hypothesise that investigating multiple scenarios across GCMs would be 103 

far superior to exploring various scenarios within a single specific GCM (e.g. Rosenberg et al., 2010); 104 

this can also lead to as a more conservative all-encompassing understanding about the degree of 105 

uncertainty of future system reliability for WSUD planning and robust decision making.  106 

The aim of this study is to investigate the impact of future climate for three key functions of WSUD: 107 

(1) pollutant treatment performance and (2) flow frequency reduction (both are investigated for two 108 

common decentralised WSUD technologies – biofilter systems and constructed wetlands), as well as 109 

(3) harvesting reliability (based on the design of rainwater tanks). To undertake this study, we used 110 

HiDRUS (Raut et al., 2018) to downscale fine spatial and temporal resolution rainfall projections (in 111 
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one kilometre and six minutes) from an ensemble of eight different GCMs. Statistical investigation of 112 

historical and future rainfall projections for different rainfall characteristics was performed and 113 

compared to rain gauge data. We identified the extent of the future rainfall variability and the extent 114 

to which multiple rainfall time series from a single GCM vs. an ensemble of time series from multiple 115 

GCMs should be considered. Using an ‘optimum number’ of simulations extracted from different 116 

GCMs, we then propagated these rainfall projections to WSUD models to investigating their impact 117 

on system reliability and the associated design variability.  118 

To the authors’ knowledge, this is the first study that evaluates the future reliability of WSUD systems 119 

using finer scale space-time predictions of future rainfall downscaled from GCMs against a multitude 120 

of system behaviours. This study specifically focuses on Melbourne, Australia as the city has a rich 121 

history with WSUD and thousands of assets already implemented (Kuller et al., 2018). Nevertheless, 122 

the methods are state-of-the-art and transferable to any other region in the world for which future 123 

rainfall data can be obtained. It should be acknowledged that our goal is not to validate whether 124 

GCMs and the HiDRUS can reproduce exact historical rainfall patterns, but to investigate variabilities 125 

of WSUD reliability impacted by future climate.  126 

2. Methods 127 

2.1 Rainfall data sets  128 

This study specifically focused on one site: Melbourne Regional Office (MRO; Latitude: -37.81 °S 129 

Longitude: 144.97 °E), which has observed 6-min time series rainfall data for 1995-2004 (from the 130 

Bureau of Meteorology – BoM). The observed data is regarded as the baseline for the evaluation of 131 

climate change effects. Ten-year periods have been found to achieve a satisfactory compromise 132 

between modelling a short period that represents current climate conditions and a longer period that 133 

better illustrates climatic variability (Ashley et al., 2005). In the BoM rainfall data, there were two 134 

periods of missing data: 1-30 Nov 1998 and 1-28 Feb 2002; the data in the missing period were 135 

recorded as zeros but replaced by the authors using data from a nearby rain gauge station (Bundoora; 136 

Latitude: -37.72 °S Longitude: 145.05 °E; about 18 km north-east from MRO). 137 
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In this study, eight different GCMs that span the entire variability of the Australian region were 138 

selected (Table 1); a similar set of GCMs was also used in other studies within this region (Raut et al., 139 

2016). Selecting only eight GCMs was also was a compromise due to (1) large disk space requirement 140 

for storing the downscaled rainfall data-sets that have very fine spatial and temporal resolutions (e.g. 141 

> 100 TB), and (2) long computation time for WSUD modelling using the long-term downscaled 142 

rainfall series. This study used the RCP8.5 scenario from CMIP5 which represents the CO2 emission 143 

scenario  that is highly energy-intensive as a result of high  population growth and a lower rate of 144 

technology development (van Vuuren et al., 2011). 145 

Table 1 GCMs used in this study: temporal resolution of all GCMs is daily. 146 

GCM Modeling Group, Country 
Horizontal Resolution 

(Latitude × Longitude*) 

ACCESS1-0 CSIRO, Australia 1.25o × 1.875o 

ACCESS1-3 CSIRO, Australia 1.25o × 1.875o 
BCC-CSM1 Beijing Climate Centre, China 1.9o × 1.9o 
CMCC-CMS Centro Euro-Mediterraneo, Italy 2o × 2o 
CNRM-CM5 Meteo-France, France 1.9o × 1.9o 
GFDL-CM3 Geophysical Fluid, Dynamics Lab, USA 2.0o × 2.5o 
MIRO-C5 Centre for Climate System Research, Japan 1.4o × 1.4o 

MRI-CGCM3 Meteorological Research Institute, Japan 2.8o × 2.8o 

The HiDRUS model developed by Raut et al. (2018), was used to downscale the eight GCMs. The 147 

model uses multiplicative random cascades (which is often used in the urban hydrological context, e.g. 148 

Licznar et al. (2015) and Müller and Haberlandt (2018)) from the Short-Term Ensemble Prediction 149 

Systems (STEPS, Seed et al., 1999) to generate high-resolution rainfall fields. The rainfall structures 150 

follow Lagrangian temporal evolution in an AR2 framework. For details on the model, please refer to 151 

Seed et al. (1999), Raut et al. (2012) and Raut et al. (2018). Briefly, the model is capable of 152 

downscaling rainfall from time and space resolutions of several hours and a hundreds of kilometres to 153 

scales of minutes and kilometres (which is required for catchment-scale modelling). The model can 154 

successfully reproduce the frequency distribution of 6-minute rainfall intensities, storm durations, 155 

inter-arrival times and autocorrelation function against radar data at 12 locations in the Greater 156 

Melbourne area (Raut et al., 2018). The spatial variation in rainfall accumulation is realised by using 157 

multiplicative bias factors computed from the observed data (Raut et al., 2018). The model was run 158 

with historical parameters estimated from the Melbourne radar data during the observation period 159 

2008-2015. It should be noted that the period/data used to estimate historical parameters (2008-2015; 160 
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radar data) is different from the historical period of this current study (1995-2004; rain gauge data); 161 

further studies by Raut et al. (Submitted manuscript) on testing HiDRUS has validated that the 162 

parameter transferability was acceptable across different periods and datasets. 163 

Using HiDRUS, 100 continuous simulations of rainfall at 1 km spatial and 6 minutes temporal 164 

resolutions were generated from each GCM over the periods of 1995-2004 (historical projections) and 165 

2040-2049 (“near-future” projections – for simplification “future” is used throughout the paper 166 

instead of “near-future”) at MRO. The 100 different simulations provide estimation of the ‘within-167 

GCM’ variabilities of different scenarios; further analysis was done to evaluate the number of 168 

simulations needed to represent the variability in Section 2.2.2. 169 

2.2 Rainfall data analysis 170 

2.2.1 Rainfall characteristics 171 

Model simulations (i.e. historical and future rainfall projections) and BoM rain gauge data were 172 

compared using a set of common rainfall characteristics at 6-min time steps. The purpose was to 173 

better understand the behaviour of each GCM so that subsequent changes in WSUD reliability could 174 

potentially be explained. Characteristics investigated included: Annual Rainfall (mm), Number of 175 

Rainfall Events per year (a count of the number of events that are recorded; a threshold of a minimum 176 

six hours were taken to separate two consecutive rainfall events), Event Duration (hours), Average 177 

Rainfall Intensity (mm/hr; average rainfall intensity across all the rain events recorded - propagated 178 

from 6-minute data), Maximum Rainfall Intensity (mm/hr; the average of the highest rainfall intensity 179 

of all the rain events recorded), Average Dry Period (hrs; average length of dry periods between two 180 

events), and Annual Rainy Days (a day with recorded total rainfall 1mm).  181 

Box plots were created for each of the selected rainfall characteristics to compare downscaled and rain 182 

gauge data over the same periods. These not only provided an insight into the variability of scenarios 183 

being modelled, but how accurately GCMs can reproduce historical rainfall. An analysis of trends 184 

would also signal important findings about the GCM model-generated rainfall time series and future 185 

climate predictions in general.  186 
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2.2.2 Capturing variability in model rainfall characteristics 187 

A large ensemble of simulations from models is highly desirable to robustly account for uncertainties 188 

in hydrological design (Raut et al., 2018), e.g. in this study 100 simulations were generated from each 189 

GCM. However, it is often not convenient or practical to use the entire rainfall simulation data-set 190 

generated for WSUD modelling. It was therefore required to develop a pragmatic approach to the 191 

modelling by using fewer simulations while still ensuring that the extracted sample is representative 192 

of the original data. In this study, subsets of the 100 scenarios from each GCM (i.e. subsets of 5, 10, 193 

25 and 50 scenarios) were randomly selected 10,000 times to generate large number of possible 194 

scenario combinations. These subsets were statistically compared to the original 100 GCM 195 

simulations. Each subset was compared against the original 100 scenarios: (i) to ascertain whether the 196 

reduced sample was statistically representative of the original data (i.e. has similar median) and (ii) 197 

was clearly derived from the same continuous distribution at the 5% significance level. This was done 198 

using Wilcoxon rank-sum and two-sample Kolmogorov-Smirnov tests (Gibbons and Chakraborti, 199 

2011).  200 

2.3 Propagation of future rainfall projections to stormwater models 201 

2.3.1 Stormwater treatment performance 202 

The Model for Urban Stormwater Improvement Conceptualisation (MUSIC) (eWater, 2014) and a 203 

third party software package, known as the DaCapo Design Curve Generator (Bach and Dotto, 2016), 204 

were employed to evaluate the change in WSUD treatment performance (presented as design curves) 205 

under future climate using the downscaled rainfall projections as input with the number of simulations 206 

selected for use. MUSIC is a conceptual model that uses 6-minute continuous rainfall data to simulate 207 

rainfall-runoff, pollution generation and treatment processes across a user-defined catchment and 208 

WSUD treatment train, widely used in the Australian urban water industry to evaluate the treatment 209 

performance of WSUD assets. As multiple scenarios and a large number of system designs were 210 

required, DaCapo was used. The software systematically generates MUSIC simulations files though 211 

varying the parameter values and batch runs them to produce data with which to plot WSUD system 212 
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performance curves (i.e. pollutant removal efficiency vs. system size).  213 

In this study, two WSUD technologies – stormwater biofilters and wetlands were selected for 214 

investigation, as they are currently the most widely used WSUD systems for stormwater treatment 215 

(Hatt et al., 2006), and their treatment performance, as well as flow mitigation capacities have been 216 

well reported (Gogate et al., 2017). System sizes were varied from 0.01 – 5% of the catchment 217 

impervious area (taken here as 1 ha, 100% impervious) for biofilters and 0.01 – 10% for wetland 218 

systems. Two different biofilter designs with extended detention depths of 0.1m and 0.4m and 219 

wetland designs having water depths of 0.1m and 0.5m were tested. Other input parameters are 220 

summarised in Table 2. Four key indicators were simulated through MUSIC: flow reductions, load 221 

reductions of Total Suspended Solids (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). Results 222 

were expressed in terms of these four indicators and plotted as performance curves against varying 223 

system sizes using both BoM rain gauge data and rainfall projections for all selected GCMs. It should 224 

be noted that biofilter and wetland systems were investigated individually in this study, i.e. one single 225 

WSUD technology in a catchment, to understand the specific impact of climate change on individual 226 

system. 227 

Table 2 Key design inputs used in MUSIC to model pollutant removal efficiency for biofilters and wetlands 228 

System Type Design Parameter(s) 

Biofilter System  

System Surface Area [% catchment impervious area] 0.01 – 5 (1) 

Extended Detention Depth [m] 0.1 and 0.4 

Submerged Zone Depth [m] 0.4 

Filter Depth [m] 0.5 

Media Saturated Hydraulic Conductivity [mm/hr] 180 
System Exfiltration Rate [mm/hr] 0.0 (2) 

Constructed Wetland System  

System Surface Area [% catchment impervious area] 0.01 – 10 (1) 

Extended Detention Depth [m] 0.1 and 0.5 

Permanent ponding depth [m] 0.35 

System Exfiltration Rate [mm/hr] 0.0 (2) 

Detention Time [hrs] 72 

Treatment Targets to be meet (3):  

Total suspend solids (% load reduction) 80 

Total Nitrogen (% load reduction) 45 

Total Phosphorus (% load reduction) 45 
(1) 30 different surface areas were modelled, increasing exponentially from 0.01 to 5 (for biofilter) or 10 (for 229 
wetland); (2) Both WSUD systems were assumed to be lined, i.e. water in the systems was not allowed to 230 
exfiltrate into the groundwater; (3) according to by Best Practice Environment Management (BPEM) guideline 231 
in Victoria, Australia (VSC, 1999) 232 
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2.3.2 Impact on flow frequency  233 

WSUD is known to reduce peak stormwater flows. Hence, in this study, the potential of biofilters and 234 

wetlands to reduce flow frequency in urban areas was estimated, mainly in terms of managing the 235 

frequent flood events (e.g. return periods up to 2 years); the 6-min time series flow data exported from 236 

MUSIC were examined to identify all the peak daily discharges (excluding zero flows that resulting 237 

from no rain) for partial frequency analysis (for detailed methods please refer to Pilgrim (2007)), for 238 

the above investigated catchment. In addition to the urbanised catchment (no WSUD 239 

implementation), two WSUD catchments were further explored: (1) biofilter sized as 1% of 240 

catchment area with extended detention depth (EDD) of 0.1 m and (2) wetland sized as 3% of 241 

catchment area with EDD of 0.5 m; both were typical biofilter/wetland design size in Melbourne. The 242 

generated historical and future rainfall projections, as well as observed BoM rain gauge data were 243 

used to generate the flow frequency curves to show the likelihood of daily peak flow changes. 244 

2.3.3 Storage-Behaviour analysis 245 

To assess changes in the reliability of alternative water supply through stormwater harvesting using 246 

rainwater tanks under future climate, a hypothetical storage-behaviour analysis was undertaken with 247 

continuous simulation of inflow, outflow  and  changes  in  storage  volume  of  a  simple rainwater  248 

tank  according  to  mass  balance principles (Fewkes and Butler, 2000; Liaw and Tsai, 2004; Mitchell 249 

et al., 2008). The storage-behaviour model was simulated at a daily time step using aggregating 6-250 

minute GCM downscaled rainfall. Imteaz et al. (2011) and Mitchell et al. (2008) both demonstrated 251 

that using a daily time step in the water balance model can sufficiently determine a realistic tank 252 

volume. 253 

For this analysis, the runoff coefficient of the roof catchment was set to 1.0 where the generated 254 

runoff from a designated household roof area of 200 m2 was assumed to divert completely to the 255 

connected storage tank. A constant daily demand (D) of 0.43 m3/day was set according to the reported 256 

daily water demand for in Melbourne (Coombes and Kuczera, 2003); tank sizes between 1 to 10 m3 257 

were simulated to express results as a storage-reliability curve. Water demand, tank storage, spillage 258 
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(using a ‘yield after spill’ order Mitchell et al., 2008) and supply were then calculated following the 259 

sequence of equations listed below (Eq. 1 to 4). On a particular day, if the water storage is greater 260 

than the tank capacity C, the excess water will spill over and the tank storage level at the end of the 261 

day is reset equal to C. The amount supplied is then equal to the demand, D, or limited to the volume 262 

remaining in the tank, Si, depending on how much water is available.  263 

𝑉𝑖 = 𝑅 × 𝐴  (1) 

𝑆𝑖 = 𝑉𝑖 + 𝑆𝑖−1  (2) 

𝑉𝑠𝑝𝑖𝑙𝑙 = 𝑆𝑖 − 𝐶     for 𝑆𝑖 > 𝐶  (3) 

Sui = { 
Di  Si = Si - D for Si > D  

(4) 
Si Si = 0 for Si < D                 

where, Vi is the harvested rainwater inflow on the ith day (m3), R is the daily rainfall (mm), A is the 264 

roof area (m2), Si is the water stored in the rainwater tank (m3), Si-1 is the amount of water at the 265 

beginning of time step/day before (m3), Vspill is the spilled amount of water from the tank (m3), C is 266 

the capacity of the rainwater tank (m3), Sui is the amount of water supplied each day, and Di is the 267 

daily rainwater demand (m3).  268 

Volumetric reliability is used to quantify the performance of the rainwater harvesting system and was 269 

calculated as: 270 

 𝑅𝑒 =
∑ 𝑆𝑢

∑ 𝐷
 × 100  (5) 271 

where, Re is the volumetric reliability of the tank, D is the cumulated demand over the simulated 10-272 

year period and Su is the total amount of water supplied in response to this demand. Reliability curves 273 

are developed using the output from Eq. 4 with reliability (Re) plotted against storage volume, i.e. tank 274 

capacity (C) to visually discern the effect of future climate conditions on stormwater harvesting 275 

reliability.    276 
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3. Results & Discussion 277 

3.1 Statistical analysis of rainfall data 278 

Figure 1 compares different rainfall characteristics (e.g. annual rainfall, intensities, durations, rainy 279 

days, etc.) across the different data sets and time periods. By comparing historical projections and 280 

future projections, a drier future was simulated by all GCMs, evidently by less annual rainfall 281 

(average of 579.4 mm of all GCMs), smaller number of rainfall events per year (93), as well as longer 282 

dry periods (43 hours) compared to that of historical projections: 667.8 mm annual rainfall, 110 283 

events, and 40 hours dry periods respectively. The results also indicate less rain days each year for 284 

most of the GCMs, except for CMCC-CMS and MIRO-C5. In addition, the observed trends for both 285 

the average and maximum rainfall intensities vary across different GCMs, with some simulated higher 286 

extreme maximum intensities (e.g. ACCESS1-1, BCC-CMS1, CMCC-CMS and CNRM-CM5); this 287 

have good agreement with previous studies that suggest higher rainfall intensities in the future (e.g. 288 

Rosenberg et al., 2010). Other GCMs, however, generated lower extreme intensities in the future. 289 

Across all eight GCMs, MIRO-C5 is found to be the ‘wettest’ model (annual rainfall between 950 and 290 

1000 mm) and GFDL-CM3 the ‘driest’ (annual rainfall between 500-650 mm). Within each GCMs, 291 

the variation between 100 simulations is, however, small except for maximum intensity (which has a 292 

similar range between GCMs). This indicates that variations between GCMs should be prioritised 293 

rather than variations within a single GCM to understand future climate variability.  294 

It was found that the rainfall characteristics of historical rainfall projections from the studied GCMs 295 

did not have perfect match with that of observed BoM rain gauge data (Figure 1). Discrepancies 296 

between rain gauge data and the projections from GCMs is evident, especially for Average Dry 297 

Period (underestimated: 30-50 hours by GCM compared to 65 hours by BoM data; Figure 1); both 298 

average and maximum rainfall intensities estimated from GCM projections were generally higher than 299 

that from BoM data. Differences are expected as these GCMs are usually not calibrated directly to the 300 

observed rainfalls but rather the atmospheric conditions to produce the global-scale atmospheric 301 

processes (IPCC, 2013). Hence while GCMs may have good fit with historical atmospheric conditions, 302 
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the rainfall produced may be very different from historical measurements. The downscaling process 303 

attempts to reflect the spatial variability within a single spatial domain. HiDRUS has been able to 304 

reproduce spatial patterns of rainfall across Melbourne, Australia’s domain as has been demonstrated 305 

(Raut et al., 2018). However, further distinguishing a single point (i.e. Melbourne Regional Office) 306 

within this spatial domain for reasons of comparison with historical data will exacerbate uncertainties. 307 

The authors believe that further calibration of the data against observations may actually risk altering 308 

the model’s intended behaviour entirely. As such, instead the uncertainties of each GCM were 309 

embraced by exploring their ‘within model’ variability as well as their use as an ensemble future 310 

rainfall data set. All selected GCMs are therefore included for further analysis; as it provides a more 311 

robust assessment of the variability of WSUD reliability under future climate. Given the above 312 

arguments further over-calibration of the downscaled time series are refrained, but the following 313 

analysis of the results are performed while keeping in mind the actual differences between 314 

downscaled historical GCM simulations and BoM observations.  315 

3.2 Variability analysis of model simulations 316 

The frequency distribution curve in Figure 2 shows that a high level of similarity is retained when 317 

reducing the sample size from the original 100 simulations downscaled from each GCM with even 5 318 

simulations yielding significant proportions of p-values greater than 0.05. This is true for all models 319 

as only slight variations are observed. It is therefore suggested that, for 10-year future scenario rainfall 320 

time series, 5 to 10 simulations from a single GCM’s downscaled outputs would be sufficient to 321 

capture intrinsic model variability and maximise computational efficiency, also allowing modellers to 322 

consider a greater variety of GCMs or climate scenarios in their assessments. These findings hold true 323 

for Melbourne, but would have to be assessed for other locations. Findings may also differ for shorter 324 

time series.  325 
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 327 
Figure 1: Box plots of rainfall characteristics at Melbourne Regional Office using 6-minute ensemble of GCM simulations and rain gauge data over the 328 

baseline period of 1995-2004 (historical projections) and future period of 2040-2049 (future projections). 100 simulations from each GCM were used for this 329 

investigation. 330 
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  331 

Figure 2: Frequency distribution curve for proportion of sample sizes (5, 10, 25, 50 and 100) that 332 

show significant similarity with the original 100 ensemble simulations for each GCM. GCMs are 333 

indicated with legends following a colour gradient from wettest (top dark blue: MIRO-C5) to driest 334 

(bottom orange: GFDL-CM3).  335 

3.3 Stormwater treatment performance 336 

Figure 3 presents the design curves generated using historical and future rainfall projections, with the 337 

comparison to one generated based on BoM observation data (only volume and TN curves are 338 

presented here as examples due to the high similarities between the pollutants). Interestingly, despite 339 

the statistical differences of rainfall characteristics identified in Figure 1 between historical and future 340 

rainfall projections, the design curves in Figure 3 show high similarities between the historical and 341 

future ones. However, slightly higher runoff volume reduction (~3%) is simulated from future rainfall 342 

projections compared to historical conditions (Figure 3). This finding is further confirmed by the 343 

direct comparison of WSUD treatment performance estimated from historical and future rainfall 344 

projections (Figure 4) — all points are closely centred around the 1:1 “no-impact” line (i.e. future 345 

equals to history) for pollution reduction, while majority of the points (>95%) for runoff volume 346 

reduction are above the “no-impact” line. The increased performance of runoff volume reduction in 347 

the simulated future is likely due to decreased inflow volumes in the drier future, which was found 348 

previously to lead to higher volume reductions (Hatt et al., 2009); pollutant removal in WSUD 349 

systems, however, is influenced by multiple factors e.g. it was reported that longer dry periods can 350 
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adversely impact system performance in removing sediments and nutrients in stormwater (Hatt et al., 351 

2009; Zhang et al., 2015). Nevertheless, other design elements/operational factors of biofilters (e.g. 352 

plants, submerged zones and maintenance), which are not accounted in MUSIC may become crucial 353 

when considering future climate. For example, a notable increase in dry period or decrease in the 354 

number of rainy days (see Figure 1 f and g) will require a change in design of how water is retained in 355 

the system or more frequent maintenance to ensure that plants within the system are healthy.  356 

Figure 3 also indicates variability among different scenarios within a single GCM and different GCMs. 357 

Bigger variations of reductions are observed between GCM predictions than within a GCM. GCM 358 

projections produce broader bands for wetland systems compared to biofilters, showing that wetlands 359 

appear more susceptible to future climate. This could also be due to of larger system size and scale, 360 

e.g. wetlands are usually an order of magnitude larger than biofilters.  361 

Table 3 summarises the desired system size to meet treatment targets required by BPEM guideline in 362 

Victoria, Australia (Table 2) estimated using the BoM curve as well as the GCM curves in Figure 3. 363 

According to the estimates, in general, large uncertainties exist considering various historical and 364 

future scenarios with the latter ones providing higher variability. It can be seen that if wetlands are to 365 

be designed to achieve BPEM targets, they should be sized to 3.5% of catchment impervious area 366 

according to the BoM curve (which currently underpins system design and compliance checking in 367 

practice); depending on different future scenarios, system sizes can vary from 2.5% to 4.0% of the 368 

catchment area, indicating that the current design may be sufficient but under some GCM scenarios 369 

(e.g. MIRO-C5), larger systems may be required. In terms of biofilters, the current designed system 370 

size (0.8% of the catchment impervious area) is at the lower boundary of the variability bands 371 

estimated from all GCMs (0.8-1.5% of catchment area; Table 3) to deliver the same treatment 372 

performance. While it is often not necessary, biofilters could be sized to 1.5% of the catchment area 373 

for ensuring 100% reliability under future conditions according to the current analysis. MICRO-C5, 374 

which is the ‘wettest’ GCM, always guides the critical system design for both systems.  375 
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 376 

Figure 3: Wetland (EDD=500mm) and biofilter (EDD=400mm) design curves. The shaded bands 377 

indicate the variation between the 5 simulations used in each GCM. GCMs are indicated with legends 378 

following a colour gradient from wettest (dark blue: MIRO-C5) to driest (orange: GFDL-CM3). 379 
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Figure 4: Comparison of treatment performance estimated using historical design curves and future 380 

curves for wetland (EDD= 500mm) and biofilter (EDD = 400 mm).   381 



  

18 

Table 3 Estimated sizes of the systems required to meet BPEM targets (i.e. 80% TSS, 45% TP and 382 

45% TN load reduction) using historical and future projections, as well as BoM rainfall 383 

 Wetland1) 

(Historical) 

Wetland 

(Future) 

Biofilter 

(Historical) 

Biofilter 

(Future) 

MIRO-C5 3.8-4.0%3) 3.7-4.0%  1.4% 1.4-1.5% 

CNRM-CM5 3.3-3.4% 3.1-3.5% 1.1-1.2% 1.1-1.2% 

ACCESS1-3 2.9-3.5% 3.2-3.6% 1.0-1.1% 0.9-1.1% 

BCC-CSM1 2.8-3.2% 2.8-3.2% 0.9-1.0% 0.9-1.0% 
CMCC-CMS 3.1-3.2% 3.2-3.4% 0.9-1.0% 0.9-1.0% 

MRI-CGCM3 3.1-3.2% 2.9-3.1% 0.9-1.0% 0.9-1.0% 

ACCESS1-0 2.8-3.1% 2.7-3.2% 1.0-1.1% 0.9-1.1% 

GFDL-CM3 2.5-3.1% 2.5-3.1% 0.8-1.0% 0.8-0.9% 

BoM 3.5% 3.5% 0.8% 0.8% 
Note: 1) the critical pollutant for wetland design is TSS; 2) the critical pollutant for wetland design is TP; 3) sizes are 384 
expressed as percentage of catchment area;  385 

3.4 Impact on flow frequency  386 

The comparisons of peak flows estimated by MUSIC using historical and future rainfall projections, 387 

as well as observed BoM rainfall are presented in Figure 5. As indicated, in general climate change 388 

simulated through HiDRUS from different GCMs shows high similarity of flows between historical 389 

and future scenarios and with the direct comparisons in Figure 5c&f show limited impact for small 390 

flows (i.e. <0.1 m3/s) with low variability, closely aligning to the 1:1 “no-impact” line. This explains 391 

why minimal differences of pollution removals were estimated between historical and future 392 

projections found in Figure 3 as WSUD systems are usually designed for small events with flows up 393 

to 3-month return period (=0.25 [Years], peak flow is equivalent to approximately 0.1 m3/s) for 394 

pollution treatment. While for higher flows (>3-month return period), points scatter further away from 395 

the “no-impact” line and the differences vary according to different GCMs, indicating higher 396 

variabilities between GCMs. For example, the GCMs with both higher average and maximum rainfall 397 

intensities in the future projections (e.g. CNRM-CM5, Figure 1) often have higher estimated flows 398 

than the ones with lower estimated average and maximum rainfall intensities (e.g. BCC-CMS1). 399 

The flow frequency behaviour of a fully urbanised catchment with no WSUD systems implementation 400 

(estimated from the BoM rainfall by MUSIC) was also plotted in Figure 5. Biofilters or wetlands can 401 

provide the greatest benefit up to a return period of around 3-month, after which there are minimal 402 

differences with that of an urbanised catchment in terms of peak flows, potentially indicating the 403 
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ineffectiveness of these systems under such significant events; biofilters and wetlands are able to 404 

reduce the peak flow of 3-month return period rainfall event from 0.085m3/s to 0.075m3/s and 405 

0.070m3/s, respectively. Again, considering future climate, large uncertainties are observed between 406 

GCMs, and even with WSUD implementation, the estimated flows often exceed the values of the 407 

urbanised catchment at present day. The estimated 3-month flows vary from 0.06 - 0.12 m3/s for the 408 

WSUD catchments and the wettest model (MIRO-C5) represented the most critical design scenario 409 

(i.e. = 0.12 m3/s); this is expected as MIRO-C5 has the highest intensities and longest event durations 410 

(Figure 1). This also explains why the BoM curves are closer to the lower bounds of the curves as 411 

BoM rainfall data has relatively lower rainfall intensities. Comparative evaluation also illustrates 412 

another risk of selecting a singular “best” model as if selecting wettest GCM MIRO-C5 might lead to 413 

overly conservative predictions of larger, more frequent flows. 414 

 415 

Figure 5: Comparisons of daily peak flows generated from historical and future projections, as well 416 

as observed BoM rainfall; Year in log used in X-axis; ‘BoM (Urbanised – No WSUD)’ refers to the 417 

with no biofilter or wetland systems).   418 
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3.5 Stormwater harvesting reliability 419 

Figure 6 shows the storage-behaviour analysis results (plotted as reliability against tank size) 420 

estimated using both historical and future projections, and BoM rainfall. Different from treatment 421 

performance and flow reduction that have high similarity between historical and future conditions, 422 

simulated climate change always lead to slightly lower harvesting reliabilities (<3%) for all GCMs 423 

(see Figure 6), very likely due to drier conditions in the future. A clear difference in harvesting 424 

reliability between GCMs is observed, with higher reliability estimated for wetter GCMs. For 425 

example, for a 3 m3  rainwater tank, the estimated reliability in the future can vary from 45% (CMCC-426 

CMS) to 72% (MIRO-C5), indicating significant future uncertainties for harvesting reliability through 427 

rainwater tanks. The variation between simulations within each GCM is still minor (e.g. <3% for 10 428 

m3 tank) and large variation evidenced across GCMs. The resulting critical scenario for this case 429 

(CMCC-CMS) is different to that for treatment performance and flow frequency impact where the 430 

MIRO-C5 is the critical GCM (Figure 3; Figure 6). This may be attributed to the lower rainfall, 431 

greater dry period and less rainy days recorded for CMCC-CMS (Figure 1). 432 

(a) Historical and BoM (b) Future and BoM (c) Historical vs Future 

  
 

Figure 6: Storage behaviour curves illustrating the relationship between rainwater tank size and 433 

reliability under the different climate scenarios.  434 

4. Practical implications and limitations of the work 435 

Adapting to climate change will require rejecting basic assumptions about stationary conditions that 436 

have historically underpinned flood, water, and conservation management (Milly et al., 2008). Some 437 

argue that simply coping with present climate variability is enough of a challenge (Washington et al., 438 



  

21 

2006), however, with the understanding that infrastructure is generally less costly and disruptive if 439 

necessary measures to mitigate climate change are taken well in advance of anticipated changes.  440 

Given the complexity of global warming and climate uncertainty, which is well exemplified by 441 

distinctive statistical characteristics of each GCM in Figure 1, it is necessary to look beyond the 442 

notion of a singular “best model” and towards the use of an ensemble in order to provide assurance 443 

and robust assessment of system reliability under a wide range of potential conditions. The fact that 444 

there was no unambiguously superior model observed (i.e. downscaled historical GCM projections 445 

did not match perfectly with observations) and, most importantly, that the critical design scenario 446 

varied according to the performance indicators (i.e. treatment vs harvesting) supports this hypotheses 447 

that it is better to use less simulations and more models than less models and more simulations. It was 448 

found that using a large number of realisations from each downscaled GCM is not necessary if 449 

designers wish to most efficiently and comprehensively assess the reliability of their systems over the 450 

long term. In this study only 5 realisations were used, and the actual number for different cases shall 451 

be determined according to specific rainfall data, the study area and the objective criteria. 452 

The results in this paper suggest that the WSUD performance in pollutant removal and flow 453 

reductions under simulated future climates has minimal difference to that under simulated historical 454 

conditions. Stormwater harvesting systems are expected to have slightly lower reliabilities (<3%) 455 

under future climate. Significant uncertainties exist according to future rainfall projections across 456 

various GCMs; looking into these uncertainties can provide insights to the performance variabilities, 457 

and assisting the adaptation of WSUD systems into unknown future. The analysis reveals that while 458 

WSUD systems may stay resilient in providing treatment performance under the simulated future, 459 

they could be also sized bigger to account for future climate uncertainties. Notably, this analysis only 460 

considered impact of future rainfall in treatment performance, while in fact the stormwater pollution 461 

concentration may increase due to urbanisation (Wang et al., 2017), hence further studies are 462 

recommended to understand the impact of urbanisation on WSUD reliability. Moreover, peak flows 463 

(especially for return periods of < 3 months) based on BoM rainfall are often underestimated 464 

compared to the simulated future climate variability; this was probably due to the higher estimated 465 
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rainfall intensities from both historical and future projections compared to BoM observations. Larger 466 

rainwater tank sizes may be needed to provide same level of harvesting reliability considering future 467 

climate change scenarios projected from any GCM, e.g. to achieve 50% of reliability, 3 m3 tank size 468 

is typically enough at present according to BoM rainfall data, it however needs to be increased to at 469 

least 4.5 m3 to keep the same reliability under the future scenarios based on the CMCC-CMS (Figure 470 

6).  471 

It was noted that there were differences between downscaled historical data and observations, which 472 

may potentially influence the results (e.g. the underestimation of peak flows from BoM rainfall). 473 

Moreover, this study was limited to the results of just eight climate model projections at a single 474 

location, with only one CO2 emission scenario – RCP8.5 scenario form CMIP5 that represents no 475 

action in climate change mitigation. Further, the uncertainties in the models used have not been 476 

discussed. Therefore the findings from the current study should be taken as preliminary, future 477 

research should be directed towards replicating and expanding this study and reproducing these results 478 

for a larger database with more locations and models to further justify these claims. Also, studies can 479 

also be expanded to involve more WSUD technologies, e.g. ponds and swales; nevertheless, all these 480 

analysis indicate the necessity of considering future uncertainties when designing stormwater 481 

management systems; and the method in this study can be used to quantitatively design a conservative 482 

WSUD system to cope with future climate variability. 483 

5. Conclusion 484 

In this paper, a multiplicative cascade model (HiDRUS) was employed to generate high resolution 485 

rainfall projections at 1 km and 6 minute interval for an ensemble of General Circulation Models 486 

(GCMs) at Melbourne Regional Office to offer, for the first time, comprehensive insights into the 487 

adaptability of Water Sensitive Urban Design (WSUD) under a variety of future climate scenarios on 488 

a much fine scale. Four critical contributions and conclusions from this study were found:  489 

1. Downscaled rainfall projections from eight different GCM’s have been statistically 490 
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characterised; the results indicate the likelihood of a drier future with less rainfall events and 491 

longer dry periods;  492 

2. Despite their validity at the atmospheric level, rainfall projections do not necessary match the 493 

observed rain gauge data. Nevertheless, these discrepancies and uncertainties associated with 494 

their predictions should be embraced and propagated to WSUD reliability rather than discarded;  495 

3. Using an ensemble of GCMs is preferable over a “best model, many scenarios” approach to 496 

account for the variety of potential scenarios; it is found that for this location and setup only 5 497 

rainfall simulation scenarios (10 years in length) are needed to capture the variability of the 498 

downscaled rainfall simulations from each tested GCM; 499 

4. Minor differences of WSUD performance in removing pollutants, flow frequency reduction, 500 

and slightly lower harvesting reliability were observed when comparing simulated historical 501 

conditions with future scenarios; however high variabilities do exist and larger WSUD systems 502 

are suggested to cope with the high variabilities in the simulated future scenarios, in order to 503 

ensure that the treatment targets as well as harvesting reliability are still met.  504 
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26 

Highlights 621 

 High resolution catchment scale rainfall predictions were generated from 8 GCMs  622 

 Multiple GCMs is preferable over a best model to account for the future variability 623 

 Simulated climate change has limited impact on pollutant treatment performance 624 

 Larger WSUD systems are recommended to account for the future variability 625 

 Bigger rainwater tank is suggested for same harvesting reliability in the future 626 
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