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1. Introduction

Drought is commonly characterized by the deficits of hydrologic budget variables (i.e. 

precipitation, soil moisture, groundwater, evapotranspiration and streamflow) from 

average conditions (Anderson et al., 2013; Kumar et al., 2014). Drought can develop into 

a natural disaster, depending on its severity, duration and frequency, which leads to an 

increased need for drought monitoring and water resource management systems (Anderson 

et al., 2011, 2013). Under the East Asian monsoonal circulation, the Korean peninsula has 

been experiencing a 4-6-year cycle of extreme droughts at a nationwide scale since 1960 

(Kwon et al., 2016). South Korea recently faced a severe drought during 2014-2015 when 

the annual rainfall was less than half of the historical average for two consecutive years, 

which was regarded as the worst drought in the past 50 years (Kwon et al., 2016; Hong et 

al., 2016). That drought resulted in the lowest recorded water level of most multi-purpose 

dams and downstream reservoirs nearly depleted as a result of the decreased inflow in the 

Han River and Geum River basins over northern and western South Korea (Kwon et al., 

2016; Hong et al., 2016). The 2014-2015 drought also ruined ~60 km2 of agricultural area, 

including ~25 km2 of rice paddies equivalent to 0.3% of total rice paddy area (Hong et al., 

2016). Currently, the need for a national-level drought monitoring system has received 

considerable attention and efforts are being made to improve the early detection of drought 

and the efficiency of mitigation responses (Jang et al., 2018). The decision making for 

drought mitigation in South Korea has been mainly supported by a dense network of 

rainfall data in meteorological stations and water storage in agricultural reservoirs. The 

current actions and measures in the drought system have been carried out based on a 

meteorological drought index considering precipitation deficit, water supply and demand. 
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However, there has been no attempt to produce spatially distributed hydrological drought 

indices with the state-of-the-art land surface models, reporting an agricultural drought (i.e. 

deficit in soil moisture states) over South Korea. 

Soil moisture plays an important role in our understanding of the interaction between the 

atmosphere and Earth’s surface and reflects agricultural and hydrological drought 

conditions (Sheffield et al., 2007; Spennemann et al., 2015; Li et al., 2018). Compared to 

precipitation, soil moisture is more spatially heterogeneous and an excellent proxy 

indicator to represent local drought conditions controlled by topography and land cover 

(Chaney et al., 2015). Recently, in situ measurements and remote sensing products have 

provided soil moisture estimation, which can serve as important short-term drought 

(monthly to seasonal) indicators (Spennemann et al., 2015). But, long term (>30 years) 

records of soil moisture measurements in their spatial and temporal coverages are not 

available in many parts of the world to represent the average conditions and figure out the 

extremes (Anderson et al., 2011; Spennemann et al., 2015). Remote sensing instruments 

have been important to provide spatiotemporally continuous soil moisture for agricultural 

drought monitoring since the 1970s (Jackson et al., 2010; Pietroniro et al., 2002). But, their 

coarse spatial scales and limited operation period of these satellite sensors have prevented 

their widespread application in drought monitoring. For studying long term trend and 

variability of soil moisture, the European Space Agency Climate Change Initiative (ESA 

CCI) combined multiple passive and active microwave soil moisture satellite products 

along with a consistent climatology (Loew et al., 2013; Dorigo et al., 2015). 
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Several studies have demonstrated that the use of land surface models (LSMs) driven by 

observed meteorological forcing datasets produce spatially and temporally continuous 

estimation of agricultural drought across scales. At a global scale, the Global Land Data 

Assimilation System (GLDAS) provides products related to soil moisture and drought 

conditions in near real time from multiple LSMs and different meteorological forcing 

datasets at 1 resolution for version 1 and 0.25 resolutions for version 2 products (Rodell 

et al., 2004). Other studies focused on agricultural droughts in South America (e.g. 

Spennemann et al., 2015) and China (e.g. Yuan et al., 2015) from GLDAS, the United 

States (e.g. Kumar et al., 2014) from the North American Land Data Assimilation System 

(NLDAS; Mitchell et al., 2004), and Africa (e.g. McNally et al., 2016) from the Famine 

Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) 

(McNally et al., 2017). However, few studies have attempted to use LSMs and investigate 

agricultural drought over South Korea where high resolution soil moisture data are 

necessary to identify detailed spatial drought conditions due to complex topography and 

heterogenous soil moisture texture types (Park et al., 2017). For instance, though GLDAS 

version 2 products can represent most inland areas in South Korea with an intermediate 

spatial resolution (~25 km) , GLDAS version 1 products (including simulations of multiple 

LSMs) and passive microwave products (i.e. SMMR, SSM/I and TMI) with a coarse spatial 

resolution (60-100 km) are limited to capture the complete coverage of South Korea, 

excluding most coastal regions of the Korean Peninsula. 

Model-based soil moisture has not been fully served as an agricultural drought index in 

South Korea where rice paddy agriculture is an important sector as a major source of 
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livelihood similar to South and Southeast Asian countries. Most of the agricultural drought 

analysis in South Korea have been carried out using remote sensing data and re-analysis 

data without a modeling framework (e.g. Ryu et al., 2019; Yoon et al., 2020; Park et al., 

2017; Sur et al., 2016). Therefore, this study (1) establishes the Korea Land Data 

Assimilation System (KLDAS) with the added value of local precipitation forcing dataset 

and soil texture maps to produce soil moisture estimates and their drought estimates at a 1-

km spatial resolution; (2) evaluates soil moisture estimates and drought estimates from 

KLDAS against in situ measurements for 2013-2015 and the one month standardized 

precipitation index (SPI-1) for 1982-2016; (3) compares KLDAS products with two 

benchmark LDAS products (GLDAS version 2 and FLDAS) and one remote sensing 

product (ESA CCI); and (4) examines the performance of KLDAS agricultural drought 

area percentages in the four major river basins of South Korea. The focus here is to evaluate 

surface soil moisture estimates due to the data availability of the remote sensing product 

and in situ measurements, though agriculture drought is more related to shortages of root 

zone soil moisture. This study serves to support the use of KLDAS as an agricultural 

drought indicator to facilitate continuous regional high resolution soil moisture monitoring 

for the analysis of droughts over South Korea. The findings of this study serves as an 

important baseline and support for the upcoming KLDAS development driven by a broad 

range of improved local meteorological forcing datasets. 

2. Data and Methods

2.1. Study Area 
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The study area covers the southern part of the Korean peninsula between 33.8° N to 39° N 

and 124.5° E to 130° E. Climatologically, this domain represents the Asian monsoon region, 

which has a wet summer season from June to August when nearly half of the annual 

precipitation of 1350 mm falls with summer typhoons and heavy rains (Jang et al., 2018; 

Sur et al., 2015). The country frequently experiences droughts during crop growing seasons 

between April and October due to absolute shortage of rainfall (Park et al., 2017). Over 60% 

of the domain consists of mixed forest, deciduous broadleaf forest, and woody savanna 

whereas cropland covers 30% mainly over the western and southwestern regions (Sur et 

al., 2015). The agriculture area of South Korea is ~16,000 km2 (MARFA, 2017). 

Agricultural reservoirs (~17,000), groundwater pumping stations (~7,000), irrigation 

canals (~120,000 km2) serve to offer water to the cropland (Ryu et al., 2019; MARFA, 

2017). This study focuses on the four major river basins which current national drought 

management framework has been mainly oriented to: Han River basin (~26,000 km2) over 

north, Geum River basin (~10,000 km2) over west, Nakdong River basin (~24,000 km2) 

over southeast, and Yeongsan River basin (~8,000 km2) over southwest of South Korea 

(~100,000 km2). 

2.2. KLDAS 

KLDAS was established using the Noah land surface model with Multi-Parameterization, 

version 3.6 (Noah-MP; Cai et al., 2014) at a 0.01° spatial resolution grid with a 15-min 

timestep to generate daily energy and water balance variables. The KLDAS domain covers 

the Korean peninsula, including North and South Korea, between 33° N to 44° N and 124° 

E to 132° E. Noah-MP was selected because of its ability to explicitly represent 
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groundwater, dynamic vegetation phenology, and a multilayer snowpack. In this study, we 

used the modified International Geosphere Biosphere Programme 20-category landuse data 

from the Moderate Resolution Imaging Spectroradiometer (MODIS; Friedl et al., 2002), 

monthly climatologies of leaf area index (LAI) and greenness fraction from the NOAA 

Advanced Very High Resolution Radiometer (AVHRR; Gutman et al., 1998). For model 

physical processes, we used the simple groundwater model (SIMGM) runoff and 

groundwater option, monthly LAI with constant shade fraction for vegetation model and 

the Ball-Berry for canopy stomatal resistance (Niu et al., 2007). We ran the simulation 

from 1980 to 2016 and reinitialized it in 1980 for the LSM variables to reach equilibrium. 

Soil moisture estimates from the first soil layer (0-10 cm) out of four soil layers were 

extracted for our analysis. The choice of the soil depth was matched with the average soil 

layer depth of in situ measurements used in this study as well as GLDAS and FLDAS 

products. 

The Modern-Era Retrospective analysis for Research and Applications, version 2 

(MERRA-2; Reichle et al., 2017) datasets were used to force the model. MERRA-2 is 

available globally at the hourly time step and horizontal resolution of 2/3° longitude by 

1/2° latitude. Specifically, precipitation observations from 101 Automated Synoptic 

Observing System (ASOS) stations of Korean Meteorological Administration (KMA) in 

South Korea and 27 Global Telecommunication System (GTS) stations in North Korea 

were processed into 12 hourly and 0.01° gridded data using inverse distance weighting. 

Locations of the ASOS stations used in this study are shown in Figure 1a. The combined 

ASOS and GTS precipitation dataset replaced the MERRA-2 precipitation fields. The 
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elevation data from the Shuttle Radar Topography Mission (SRTM; Rodriguez et al., 2005) 

was used to derive the topography datasets of elevation, slope, and aspect. Other 

meteorological inputs (i.e. air temperature, humidity, pressure, winds, radiation) from 

MERRA-2 were adjusted for the elevation differences through lapse-rate and slope-aspect 

correction methods (Kumar et al., 2013) and downscaled to 0.01° gridded data. Instead of 

employing global soil texture datasets, 16-category soil texture maps at a 30-meter spatial 

resolution grid over South Korea, combined with 8-category soil texture maps at a scale of 

1:500,000 for the border between North and South Korea, from the Korea Water Resources 

Corporation (K-water; more details can be found in Jung et al., 2017), were rescaled into 

0.01° gridded data as inputs to the KLDAS. Over 70% of the soil type consists of sand and 

loam which are more dominant than clay and silt in the study area.  

2.3. Comparison Datasets

2.3.1. GLDAS

The soil moisture products from GLDAS, version 2.0 (1948-2010) and version 2.1 (2000-

present) datasets from the Noah version 3.3 model on a 0.25° gridded data were used in 

this study (Rodell et al., 2004). In contrast to the same LSM used in the two versions, 

GLDAS-2.0 was entirely forced with the Princeton meteorological forcing data on a 1° 

gridded data (Sheffield et al., 2006) whereas GLDAS-2.1 was forced with a combination 

of National Center for Environmental Prediction’s Global Data Assimilation System 

(GDAS) atmospheric analysis fields on a 0.2° gridded data (Derber et al., 1991) and Global 

Precipitation Climatology Project (GPCP) precipitation field on a 1° gridded data (Adler 

et al., 2003). GLDAS version 2.1 starts in January 2000, so the bias-corrected GLDAS 
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version 2.0 for years 1982-1999 are merged into GLDAS version 2.1 to match the long 

term KLDAS outputs for 1982-2016. We used the mean and standard deviation of the two 

version datasets during the overlapped years 2000-2010 to correct the bias between the two 

products. The soil texture maps were derived from 5 minute resolution global soil datasets 

with 16-category soil texture of Food and Agriculture Organization of the United Nations 

(FAO; more details can be found in Reynolds et al., 2000; Rodell et al., 2004). The global 

soil texture map shows a constant class of loam in the study area.   

2.3.2. FLDAS

FLDAS recently released global monthly products in 0.10° resolution from the Noah 

version 3.6.1 model, ranging from January 1982 to present (McNally et al., 2017). The soil 

moisture estimates in the first layer (0-10 cm) from the FLDAS products were used for this 

study. The simulation was forced by a combination of the MERRA-2 data and Climate 

Hazards Group InfraRed Precipitation with Station (CHIRPS; Funk et al., 2015) 6-hourly 

rainfall data. Note that compared to spatial resolution differences amongst the three LDAS 

products, the FAO’s global soil texture maps (used in GLDAS) and the MERRA-2 

meteorological forcing dataset (used in KLDAS) were rescaling into 0.10° gridded data to 

inputs to the FLDAS.

2.3.3 ESA CCI

The ESA CCI surface soil moisture dataset version 4.2 from November 1978 to December 

2016 was used in this study (Dorigo et al., 2015). The global product combined satellite 

soil moisture retrievals from four passive (i.e. the Nimbus 7 Scanning Multi-channel 
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Microwave Radiometer (SMMR), the Special Sensor Microwave Imagers (SSM/I) of the 

defense meteorological satellite program, the Tropical Rainfall Measuring Mission 

Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer-Earth 

Observing System (AMSR-E) sensor on NASA's Aqua satellite) and two active (the 

European Remote Sensing Satellites 1 and 2 Active Microwave Instrument (AMI) wind 

scatterometer and the Advanced Scatterometer (ASCAT) onboard the meteorological 

operational platform). The active products were merged into a combined dataset since 

August 1991. This long term product enables climate studies and drought analysis, which 

is available daily on a 0.25° spatial resolution on a global coverage. 

2.4. Evaluation Procedure

We evaluate KLDAS soil moisture estimates for the use of drought monitoring during the 

crop growing seasons from April to October. Also, we employ GLDAS, FLDAS and ESA 

CCI as benchmark datasets and intercompare them with KLDAS. These benchmark 

products were downscaled into 0.01° using nearest liner interpolation for our evaluation 

and comparison. 

First, precipitation datasets GPCP (used to force GLDAS) and CHIRPS (used to force 

FLDAS) were evaluated against the ASOS gridded dataset (used in KLDAS) for years 

1982-2016. Since precipitation is the most important input data into the LSMs to estimate 

soil moisture, we calculated their spatial distribution maps of annual rates, the average 

monthly rates, and the cumulative distribution functions (CDF) for monthly precipitation 

during crop growing seasons.
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Second, soil moisture estimates were evaluated against 78 in situ observations for short 

term 3 years, 2013-2015. There are 17 stations used for evaluation in the Han River basin, 

19 in the Geum River basin, 13 in the Nakdong River basin, and 9 in the Yeongsan River 

basin. Daily soil moisture observations were obtained from the Korea Meteorological 

Administration (KMA) and Rural Development Administration (RDA) and were 

aggregated into monthly values for the evaluation (more details can be found in Jung et al., 

2017). At the stations, soil moisture was measured using Time Domain Reflectometry 

(TDR) at an average depth of 10 cm. Though the sensing depth of satellite data (e.g. ESA 

CCI) is only a few centimeters, surface soil moisture is closely related to soil moisture in 

the upper 10 cm (Albergel et al., 2008), which is the depth of the first soil layer for our 

selected LSMs in this study. Considering that there are large biases between the model and 

satellite soil moisture datasets (Koster et al., 2009), we computed anomalies for all soil 

moisture values. The Pearson correlation coefficient (R) and the root-mean-squared-error 

(RMSE) of the soil moisture anomalies were calculated to investigate the similarity 

between the soil moisture products and ground observations.

Third, for evaluation of long term soil moisture estimates, soil moisture datasets were 

converted into Standardized Soil Moisture Index (SSMI) and were evaluated against the 1 

month Standardized Precipitation Index (SPI-1; McKee et al., 1993) using 35 years of 

historical data measured at 101 ASOS stations for 1982-2016. In this study, the SPI-1 was 

used because of limited soil moisture measurements for a long period of records. The SPI 

on a time scale of 1-3 months gives the highest correlation with surface soil moisture 
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whereas deeper soil layers show better correlation with longer time scales (Sims et al., 

2002). Previous studies (Sur et al., 2015; Choi et al., 2013) demonstrated that the short term 

SPI shows similar spatial and temporal patterns as SSMI and can be used as a drought 

index in South Korea. Also, the short term SPI has been used to quantify agricultural 

droughts in other regions such as South America (Spennemann et al., 2015) and china (Li 

et al., 2018; Yuan et al., 2015). 

Finally, probability of detection (POD), false alarm rate (FAR), and equitable threat score 

(ETS) were calculated to evaluate drought estimates from four soil moisture products 

against SPI-1 drought area from the gridded ASOS dataset (Wilks et al., 2011). Surface 

soil moisture is so responsive to precipitation that the precipitation based index can be used 

as independent dourght evaluation. The drought condition is defined as the monthly SSMI 

and SPI-1 less than -0.8 (Yuan et al., 2015). This has the highest applicability in South 

Korea and corresponds to moderate drought (percentile less than 20%) classified in the 

U.S. Drought Monitor (USDM; Svoboda et al., 2002). Also, we calculate the yearly 

drought area percentages for years 1982-2016 and compare the four soil moisture products 

at a basin scale.  

3. Results and Discussion

3.1. Evaluation of Precipitation Datasets

The GPCP and CHIRPS datasets are evaluated against the observation based precipitation 

ASOS dataset (OBS) in Figure 1. In terms of the average annual precipitation rates for 

years 1982-2016, GPCP (1193 mm/yr) is lower than OBS (1268 mm/yr), but shows the 
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similar spatial pattern as the OBS. CHIRPS shows the highest annual precipitation rates 

(1316 mm/yr) and represents higher rates particularly over southern and mid-eastern 

regions. Both domain-averaged temporal correlation coefficients of OBSvGPCP and 

OBSvCHIRPS are 0.95, but their spatial distributions are different (see Figures 1d, 1e). 

The correlation coefficient map between ASOS and GPCP presents pointwise local 

patterns with lower values in areas near to ASOS precipitation stations (i.e. the “bulls-eye” 

features) due to its coarser resolution compared to CHIRPS. In terms of the average 

monthly precipitation rates, there are larger differences during wet seasons from July to 

August with almost half of the annual precipitation rates. The cumulative distribution 

functions (CDF) of three precipitation products (in Figures 1g, 1h, 1i) are similar during 

spring (April to June), but shows the discrepancies during late summer (July to August) 

and early autumn (September to October). As a result, GLDAS forced by GPCP is likely 

to underestimate soil moisture whereas FLDAS forced by CHIRPS may overestimate soil 

moisture over the study area. This suggests that bias correction of the global precipitation 

datasets could improve their forced LSMs or hydrological models, particularly during wet 

season in South Korea. 

3.2. Evaluation of Soil Moisture Estimates

Soil moisture estimates from KLDAS, GLDAS, FLDAS, and ESA CCI are evaluated 

against 78 in situ observations between April and October during 2013-2015 in Figure 2. 

Overall, KLDAS shows the best performance for all river basins in terms of anomaly R 

and anomaly RMSE metrics. The order of the evaluation metrics from highest to lowest is 

KLDAS, ESA CCI, GLDAS, and FLDAS. This supports that KLDAS at 0.01° spatial 
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resolution better represents in situ soil moisture measurements than GLDAS at 0.25° 

resolution, FLDAS at 0.1° resolution, and ESA CCI at 0.25° resolution with the added 

value of local precipitation forcing dataset and soil texture maps. They provide more 

accurate and higher resolution datasets compared to the corresponding inputs to the other 

LDAS products. For example, soil texture maps from K-water accommodate more detailed 

categories of sandy loam (73%), clay loam (14%), and silty clay loam (5%) whereas the 

FAO’s global soil texture maps occupy dominantly loam (96%). 

Three additional Noah-MP experiments at 0.01° spatial resolution were carried out to 

separate out the effect of precipitation, soil texture, and downscaled meteorological forcing 

datasets on the KLDAS soil moisture estimates. Table 1 shows that an experiment without 

local precipitation and soil texture map (i.e. Ex3) outperforms the other LDAS soil 

moisture estimates by downscaling MERRA-2 meteorological forcing datasets through 

lapse-rate and slope-aspect correction methods and running the LSM at higher spatial 

resolution. Also, the local precipitation effect is larger than the local soil texture map when 

comparing the evaluation metric R and ubRMSE values of these experiments. The KLDAS 

forced by both local precipitation and soil texture map shows the highest domain-averaged 

R value whereas the lowest domain-averaged ubRMSE value occurs in an experiment 

using only local precipitation dataset. 

At a basin scale, the Nakdong River basin shows the highest R and lowest RMSE values 

than the other river basins except for RMSE in ESA CCI. This is related to the fact that, 

compared to the Nakdong River basin, the Han River basin is located over mixed forests 
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and built-up areas and shows more spatial heterogeneity in soil moisture estimates. The 

Geum and Yeongsan River basins are mostly composed of cropland (i.e. rice paddy 

agriculture) where irrigated areas may not be well modeled for their regional irrigation 

rates. The KLDAS, GLDAS, and FLDAS products used in this study do not consider 

irrigation modules in the modeling framework to generate their hydrological variables. 

3.3. Evaluation of Standardized Soil Moisture Index

Monthly SSMI maps from the four soil moisture products are evaluated against monthly 

SPI-1 from the ASOS precipitation dataset for 1982-2016 in South Korea where long term 

records of in situ soil moisture measurements are limited. Figure 3 represents the spatial 

distribution maps of the SSMI and SPI-1 values for a recent May 2015 drought event in 

South Korea. Overall, SSMI maps show dry status with negative values in northern South 

Korea and relatively wet status in southern South Korea. The SPI-1 maps from the ASOS 

observations, GPCP, and CHIRPS were expected to show the similar spatial pattern of the 

SSMI maps from KLDAS, GLDAS, and FLDAS, respectively. This supports that despite 

the similar LSMs (used in the three LDAS products) and the same MERRA-2 forcing 

dataset (used in the two LDAS products), changes in precipitation can serve as the main 

driver of the modeled soil moisture variability. It is noteworthy that most products show 

the May 2015 drought condition in the central region, but the GLDAS and ESA CCI 

products present mild conditions. Compared to GLDAS and ESA CCI, FLDAS seems to 

better capture the May 2015 drought with the similar spatial pattern as the KLDAS map. 
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Figure 4 shows the correlation coefficients between the ASOS SPI-1 and each of the four 

monthly SSMIs for 1982-2016. The order of the evaluation metric from highest to lowest 

is KLDAS, GLDAS, FLDAS, and ESA CCI. KLDAS shows the best result, which is in 

agreement with evaluation of soil moisture estimates in Figure 2. But, the lowest 

performance is found in ESA CCI with the second best in Figure 2. This indicates that 

though ESA CCI better captures recent soil moisture behavior, it is not feasible to detect 

historical drought conditions. This can be related to the fact that the quality of ESA CCI 

product depends on the quality of the data used in its algorithm. The ESA CCI products 

with more recent satellite observations can provide improved soil moisture estimates along 

with an increase of the spatio-temporal coverages. Note that only a single passive 

microwave retrieval was used to produce soil moisture estimates in the early period  (1979-

1991) of the ESA CCI merged product (Dorigo et al., 2015; McNally et al., 2016). 

Interestingly, KLDAS presents more detailed spatial patterns due to higher resolution soil 

texture maps as the model inputs. The border between North and South Korea at latitudes 

38-39° appears with a coarser spatial scale as a result of the coarser soil texture maps and 

lower precipitation sampling rates compared to the domain of South Korea. GLDAS and 

EAS CCI show the lowest performance in the midwestern region, particularly with the 

“bulls-eye” pattern in GLDAS. This localized lower performance is found in the Seoul 

metropolitan area, a location with heterogeneous land cover. This can be also explained by 

the fact that these two coarser global products are limited to capture local scale 

spatiotemporal variability of hydrological variables. At a basin scale, the Yeongsan River 

basin shows the highest R values in KLDAS and ESA CCI, but the lowest values in 

GLDAS product, which is similar to the results in Figure 2. 
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The correlation coefficients between the ASOS SPI-1 and each of the four monthly SSMIs 

are calculated by months from April to October in Figure 5. Overall, all soil moisture 

products show similar R values in both dry and wet seasons. KLDAS shows higher R 

values (>0.6) during all crop growing seasons with lower standard deviations than the other 

soil moisture products. This supports that their agricultural drought estimates have little 

seasonal variation and bias, which can be useful to monitor droughts during all crop 

growing seasons between April and October.  

3.4. Evaluation of Drought Estimates

The spatial maps of probability of detection (POD), false alarm rate (FAR), and equitable 

threat score (ETS) for monthly agricultural drought estimates are calculated in Figure 6. 

Monthly agricultural droughts (SSMI less than -0.8) detect ~50% of monthly precipitation 

droughts (SPI-1 less than -0.8) over South Korea with an average POD of 0.45–0.67 and 

ETS of 0.19-0.43 in the four major river basins except for ESA CCI. The order of 

evaluation metrics POD and ETS from highest to lowest is KLDAS, GLDAS, FLDAS, and 

ESA CCI, which follows the same order of the SSMI evaluation in Figure 4. It is 

noteworthy that GLDAS outperforms EAS CCI products with the same spatial resolution 

and shows the similar performance as FLDAS at a higher spatial resolution in evaluation 

of drought estimates. Compared to FAR, both POD and ETS show more similar spatial 

patterns at a basin scale. The order of basins from highest to lowest in evaluation of drought 

estimates are different from the results in Figures 2 and 4. This can be explained by the 

fact that the evaluations of soil moistures estimates and their SSMI indices include the 



18

whole range of values, but this evaluation of drought estimates consider only a range of the 

lowest values.  

Time series of the drought area percentages are calculated for each of the four river basins 

for 1982-2016 in Figure 7. The drought area percentages from the four soil moisture 

products are evaluated against the ASOS SPI-1 in terms of R and RMSE values. As 

expected, KLDAS shows the best performance in all river basins. The order of evaluation 

metrics R and RMSE from highest to lowest is the similar order as both evaluations in 

Figures 4 and 6, but FLDAS slightly outperforms GLDAS except in the Geum River basin. 

Overall, KLDAS and FLDAS provide higher R (>0.63) and lower RMSE (<17%) values 

in all four river basins. It is interesting to note that overestimation of the agricultural 

drought areas is found in the Nakdong River and Yeongsan River basins during 1982-200 

in the GLDAS products, which leads to produce lower performance than the other Han 

River and Geum River basins. 

All four major river basins also appear to experience periodic droughts, related to the 

impact of regional monsoon circulation over the East Asia. SSMI from KLDAS shows that 

these basins have wet status with lower drought area percentages (<20%) for years 1983-

1987, 1990-1991, 1993, 1998-1999, 2002-2007, 2010-2011, 2013 and dry status with 

higher drought area percentages (>40%) for years 1982, 1988, 1994, 2001, 2015. In Figure 

7, the most recent 2015 drought event leads to the highest drought area percentage 74% of 

the Han River basin and 69% of the Geum River basin in the past 35 years for our study 

period. 
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4. Conclusions

Regional land surface models are required to facilitate continuous hydrological monitoring 

for the analysis of droughts and their characteristics of spatial variation, intensity and 

frequency under climate change. But, model-based soil moisture has not been fully served 

as an agricultural drought index to monitor long term drought conditions in South Korea. 

In this study, we describe the development of a 0.01° resolution LDAS using the Noah-MP 

model with the added value of local precipitation forcing dataset and high-resolution soil 

texture maps in South Korea where rugged topography and heterogeneous land covers 

make coarse resolution LSM and satellite retrieval difficult to capture agricultural droughts. 

This study examines the potential of KLDAS soil moisture estimates for long term drought 

monitoring during crop growing seasons for 1982-2016. The KLDAS soil moisture 

estimates are evaluated using two reference datasets: 3-year in situ soil moisture 

measurements and 35-year observed precipitation-based SPI-1. Also, we employ GLDAS, 

FLDAS and ESA CCI as benchmark datasets and intercompare them with KLDAS because 

these soil moisture products have been investigated for good quality drought monitoring in 

other regions. These datasets are the only available resource to provide long term soil 

moisture estimates over South Korea.

KLDAS outperforms the benchmark soil moisture estimates and their drought estimates in 

South Korea. For drought detectability, KLDAS has higher POD and ETS than the other 

LDAS and satellite retrieval products in all four major river basins. The GPCP (used to 

force GLDAS) and CHIRPS (used to force FLDAS) datasets are under- and overestimated 
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than the observation based ASOS dataset in South Korea for 1982-2016, particularly during 

wet seasons. The GLDAS and ESA CCI products show the lowest performance in the 

metropolitan area with heterogeneous land covers. This work suggests that improved 

precipitation, soil texture maps, and model spatial resolution are crucial for agricultural 

drought estimation over South Korea. ESA CCI shows the second best in the recent soil 

moisture estimates against in situ measurements for a shorter period of time (2013-2015). 

But, our results indicate that the ESA CCI products are not feasible for long term drought 

monitoring over South Korea due to lower data quality for early periods (1979-1991) of 

the ESA CCI merged product. From a basin scale perspective, the Nakdong River basin in 

the southeast of South Korea shows the best results in the soil moisture estimation for 2013-

2015 because the mid-eastern region is high in elevation with rugged topography and the 

western and southern regions are more occupied with cropland where irrigation modules 

need to be considered, but were not included by any of these LDAS products. 

Improved forcing datasets and additional model development can meet the full potential of 

the KLDAS as agricultural drought monitoring tools. Currently, the other ASOS 

meteorological forcing datasets (i.e. wind, air temperature, pressure, humidity) than the 

precipitation are being processed into a 0.01° gridded data and are set to force high 

resolution KLDAS coupled with a river routing scheme (Getirana et al., 2012, 2017). 

Assimilating land surface data into LSMs can improve poorly represented processes over 

irrigated and vegetation-covered areas (Kumar et al., 2015; Jung et al., 2019), which cannot 

be supported by simpler models and ground observation-based SPI and SSMI approaches. 

In addition to the enhanced drought monitoring system, KLDAS is expected to provide 
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important information on water resources as a valuable tool for key stakeholders to manage 

natural resources and develop water supply guidelines and best practices in South Korea. 

Acknowledgments

This research was supported by Korea Environment Industry and technology Institute 

through Water Management Research Program, funded by Korea Ministry of Environment 

(grant number: 79622). Computing was supported by the resources at the NASA Center 

for Climate Simulation (NCCS). The GLDAS and FLDAS data were provided by NASA’s 

Earth Science Division and distributed by the Goddard Earth Sciences (GES) Data and 

Information Services Center (DISC) (https://disc.gsfc.nasa.gov). The CCI SM products 

were made available from ESA CCI website (https://www.esa-soilmoisture-cci.org).

References

Adler, R.F. et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly 

precipitation analysis (1979–present). J. Hydrometeor. 2003, 4, 1147–1167.

Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.C.; Fritz, N.; Froissard, F.; Suquia, D.;  

Petitpa, A.; Piguet, B.; Martin, E. From near-surface to root-zone soil moisture using 

an exponential filter: An assessment of the method based on in-situ observations and 

model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337.

Anderson, M.C.; Hain, C.; Otkin, J.; Zhan, Z. et al. An Intercomparison of Drought 

Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. 

Drought Monitor Classifications. J. Hydrometeorol. 2013, 14, 1035-1056.



22

Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. 

Evaluation of Drought Indices Based on Thermal Remote Sensing of 

Evapotranspiration over the Continental United States. J. Hydrometeorol. 2011, 24, 

2025-2044.

Cai, X.; Yang, Z.-L.; David, C.H.; Niu, G.-Y.; Rodell, M. Hydrological evaluation of the 

Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos. 

2014, 119, 23–38.

Chaney, N.W.; Roundy, J.K.; Herrera-Estrada, J.E.; Wood, E.F. High-resolution modeling 

of the spatial heterogeneity of soil moisture: Applications in network design, Water 

Resour. Res., 2015, 51, 619–638.

Choi, M.; Jacobs, J.M.; Anderson, M.C.; Bosch, D.D. Evaluation of Drought Indices via 

Remotely Sensed Data with Hydrological Variables. J. Hydrolo. 2013, 476: 265–273.

Derber, J.C.; Parrish, D.F.; Lord, S.J. The new global operational analysis system at the 

National Meteorological Center. Wea. Forecasting, 1991, 6, 538–547.

Dorigo, W. A.; Gruber, A.; de Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Kidd, R. 

Evaluation of the ESA CCI soil moisture product using ground-based 

observations. Remote Sensing of Environment. 2015, 162, 380-395.

Friedl, M.; McIver, D.; Hodges, J.; Zhang, X.; Muchoney, D.; Strahler, A. et al. Global 

land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 

2002, 83, 287–302. 

Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; 

Rowland, J.; Harrison, L.; Hoell, A. et al. The climate hazards infrared precipitation 



23

with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 

2, 150066.

Getirana, A.C.V.; Boone, A.; Yamazaki, D.; Decharme, B.; Papa, F.; Mognard, N. The 

hydrological modeling and analysis platform (HyMAP): evaluation in the Amazon 

basin. J. Hydrometeorol. 2012, 13, 1641–1665.

Getirana, A.; Peters-Lidard, C.; Rodell, M.; Bates, P.D. Trade-off between cost and 

accuracy in large-scale surface water dynamic modeling. Water Resour. Res. 2017, 53, 

4942–4955.

Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from 

NOAA/AVHRR data for use in numerical weather prediction models, International 

Journal of Remote Sensing, 1998, 19, 1533-1543.

Hong, I.; Lee, J.H.; Cho, H.S. National drought management framework for drought 

preparedness in Korea (lessons from the 2014–2015 drought). Water Policy. 2016, 18, 

89-106.

Jackson, T.J.; Cosh, M.H. et al. Validation of Advanced Microwave Scanning Radiometer 

soil moisture products. IEEE Trans. Geosci. Remote Sens., 2010, 48, 4256–4272.

Jang, D. Assessment of Meteorological Drought Indices in Korea Using RCP 8.5 Scenario. 

Water, 2018, 10, 283; doi:10.3390/w10030283.

Jung, H.C.; Getirana, A.; Arsenault, K.R.; Sujay, K.; Maigary, I. Improving Surface Soil 

Moisture Estimates in West Africa through GRACE Data Assimilation. J. Hydrol. 2019, 

2575, 192-201.



24

Jung, C.; Lee, Y; Cho, Y; Kim, S. A study of spatial soil moisture estimation using a 

multiple linear regression model and MODIS land surface temperature data corrected 

by conditional merging. Remote Sens. 2017, 9, doi:10.3390/rs9080870.

Koster, R.D.; Guo, Z.; Yang, R.; Dirmeyer, P.; Mitchell, K.; Puma, M.J. On the nature of 

soil moisture in land surface models. J. Clim. 2009, 22, 4322–4335.

Kumar, S.V.; Peters-Lidard, C.D.; Mocko, D. et al. Assimilation of remotely sensed soil 

moisture and snow depth retrievals for drought estimation. J. Hydrometeorol. 2014, 15, 

2446-2469.

Kumar, S.V.; Peters-Lidard, C.D.; Mocko, D.; Tian, Y. Multiscale evaluation of the 

improvements in surface snow simulation through terrain adjustments to radiation. J. 

Hydrometeor. 2013, 14, 220–232.

Kumar, S.V.; Peters-Lidard, C.D.; Santanello, J.A. et al. Evaluating the utility of satellite 

soil moisture retrievals over irrigated areas and the ability of land data assimilation 

methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 2015, 19, 4463–

4478.

Kwon, H.H.; Lall, U.; Kim, S.J. The unusual 2013–2015 drought in South Korea in the 

context of a multicentury precipitation record: Inferences from a nonstationary, 

multivariate, Bayesian copula model, Geophys. Res. Lett., 2016, 43, 8534–8544, 

doi:10.1002/2016GL070270.

Li, Y.; Li Y.; Yuan, X.; Zhang, L.; Sha, S. Evaluation of Model-Based Soil Moisture 

Drought Monitoring over Three Key Regions in China. J. Appl. Meteor. Climatol. 2018, 

57, 1989-2004.



25

Loew, A.; Stacke, T.; Dorigo, W.; de Jeu, R.; Hagemann, S. Potential and limitations 

ofmultidecadal satellite soil moisture observations for selected climate model 

evaluation studies. Hydrol. Earth Syst. Sci., 2013, 17, 3523–3542.

McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration 

to time scales. Preprints, in Eighth Conf. on Applied Climatology, 1993, 179–184, Am. 

Meteorol. Soc., Anaheim, Calif.

McNally, A. et al. Evaluating ESA CCI soil moisture in East Africa. International Journal 

of Applied Earth Observation and Geoinformation, 2016,  48, 96–109.

McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; 

Peters-Lidard, C.D.; Verdin. J.P. A land data assimilation system for sub-Saharan 

Africa food and water security applications. Scientific Data. 2017, 4, 

doi: 10.1038/sdata.2017.12.

Ministry of Agriculture, Food and Rural Affairs (MAFRA), Statistical yearbook of land 

and water development for agriculture 2016, Korea Rural Community Corporation, 

Rural Research Institute, 2017, Ansan, Korea. 

Mitchell, K. E. et al. The multi-institution North American Land Data Assimilation System 

(NLDAS): Utilizing multiple GCIP products and partners in a continental distributed 

hydrological modeling system. J. Geophys. Res., 2004, 190, D07S90, 

doi:10.1029/2003JD003823.

Niu, G.-Y.; Yang, Z.-L.; Dickinson, R. E.; Gulden, L.E.; Su, H. Development of a simple 

groundwater model for use in climate models and evaluation with Gravity Recovery 

and Climate Experiment data. J. Geophys. Res., 2007, 112, D07103, 

https://doi.org/10.1029/2006JD007522.



26

Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture 

through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and 

Forest Meteorology. 2017, 257-269.

Pietroniro, A.; Prowse, T.D. Applications of remote sensing in hydrology. Hydrol. Process. 

2002, 16, 1537–1541.

Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.P.; Partyka, G.S. Land 

surface precipitation in MERRA-2. J. Clim. 2017, 30, 1643–1664.

Reynolds, C.A.; Jackson, T.J.; Rawls, W.J. Estimating soil water-holding capacities by 

linking the food and agriculture organization soil map of the world with global pedon 

databases and continuous pedotransfer functions. Water Resour. Res. 2000, 36, 3653–

3662.

Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.;  Arsenault, 

K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; Entin, J.K.; Walker, J.P.;  Lohmann, 

D.; Toll, D. The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc. 2004, 

85, 381-394.

Rodriguez, E.; Morris, C.; Belz, J.; Chapin, E.; Martin, J.; Daffer, W. et al. An assessment 

of the SRTM topographic products. Technical Report JPL, 2005, D-31639, Jet 

Propulsion Laboratory, Pasadena, CA. 

Ryu, J.H.; Han, K.S.; Lee, Y.W.; Park, N.W.; Hong, S.; Chung, C.Y.; Cho, J. Different 

agricultural responses to extreme drought events in neighboring counties of South and 

North Korea, Remote Sens. 2019, 11, 1773, doi:10.3390/rs11151773.



27

Sheffield, J.; Wood, E.F. Characteristics of global and regional drought, 1950–2000: 

Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic 

cycle. J. Geophys. Res., 2007, 112, D17115, https://doi.org/10.1029/2006JD008288.

Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global 

dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–

3111.

Sims, A.P.; Niyogi, D.S.; Raman, S. Adopting drought indices for estimating soil moisture: 

A North Carolina case stuty. Geophys. Res. Lett. 2002, 29, 1183, 

doi:10.101029/2001GL013343.

Spennemann, P.C.; Rivera, J.A.; Saulo, A.C.; Penalba, O.C. A comparison of GLDAS soil 

moisture anomalies against standardized precipitation index and multisatellite 

estimations over South America. J. Hydrometeorol. 2015, 16, 158-171.

Sur, C.; Hur, J.; Kim, K.; Choi, W.; Choi, M. An evaluation of satellite-based drought 

indices on a regional scale, International Journal of Remote Sensing. 2015, 36, 5593-

5612.

Svoboda, M.; Coauthors.. The Drought Monitor. Bull. Amer. Meteor. Soc., 2002, 83, 1181–

1190.

Wilks, D.S. Statistical Methods in the Atmospheric Sciences, Int. Geophys. Ser., 2011, 100, 

676 , Academic Press, San Diego, Calif.

Yoon, D.H.; Nam, W.H.; Lee, H.J.; Hong, E.M.; Feng, S.; Wardlow, F.B.; Tadesse, T.; 

Svoboda, M.D.; Hayes, M.J.; Kim, D.E. Agricultural drought assessment in East Asia 

using satellite-based indices, Remote Sens. 2020, 12, 444, doi:10.3390/rs12030444.



28

Yuan, X.; Ma, Z.; Pan, M.; Shi, C. Microwave remote sensing of short-term droughts 

during crop growing seasons. Geophys. Res. Lett. 2015, 4394-4401.



29

Tables

Table 1. Comparison of evaluation metrics R and ubRMSE for four experiments at 0.01° 

spatial resolution against in-situ soil moisture observations for years 2013-2015. The best 

results in each region are in boldface. 

Experiments
KLDAS*

- rainfall (ASOS)
- Soil (K-water)

Ex1
- rainfall (ASOS)

- Soil (FAO)

Ex2
- rainfall (MERRA-2)

- Soil (K-water)

Ex3
- rainfall (MERRA-2)

- Soil (FAO)

Evaluation 
metrics

R ubRMSE R ubRMSE R ubRMSE R ubRMSE

Domain-avg. 0.81 0.023 0.79 0.021 0.77 0.025 0.72 0.023

Han R. 0.55 0.023 0.54 0.018 0.46 0.026 0.47 0.020

Geum R. 0.81 0.024 0.79 0.023 0.75 0.028 0.66 0.026

Nakdong R. 0.88 0.014 0.92 0.015 0.83 0.016 0.93 0.016

Yeongsan R. 0.81 0.022 0.80 0.023 0.78 0.023 0.72 0.026

*Results are shown in Figures 2a, 2e.
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Figures

Figure 1. Spatial distribution maps of (a) ASOS observation (OBS), (b) GPCP, and (c) 

CHIRPS annual precipitation (mm/year) for the period 1982-2016. (a) Black dots indicate 

locations of the precipitation measurement sites. Temporal correlation coefficients (R) of 
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(d) OBSvGPCP and (e) OBSvCHIRPS. (f) Average monthly precipitation rates of each of 

three precipitation datasets. Cumulative distribution function (CDF) for monthly 

precipitation rates from (g) April to June, (h) July to August, and (i) September to October. 

Figure 2. Evaluation of soil moisture estimates from (a,e) KLDAS, (b,f) GLDAS, (c,g) 

FLDAS, and (d,h) ESC CCI against 78 in-situ observations for years 2013-2015. Black 

values are the domain-averaged anomaly R and anomaly RMSE metrics. Red, cyan, green 

and blue values and lines represent evaluation metrics and borders for each of four river 

basins, Han River basin over north, Geum River basin over west, Nakdong River basin 

over southeast, Yeongsan River basin over southwest of South Korea, respectively.
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Figure 3. A recent drought event over South Korea in May 2015. (a-d) Monthly 

standardized soil moisture indices (SSMI), (e-g) one month standardized precipitation 

indices (SPI-1). 

Figure 4. The spatial maps of correlation coefficients between monthly standardized 

precipitation indices (SPI-1) and each of the four monthly standardized soil moisture 

indices (SSMI) for 1982-2016.
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Figure 5. Bar graphs of the correlation coefficients between SSMI and SPI-1 by month 

from April to October. Error bars indicate 1 standard deviation.

Figure 6. Probability of detection (POD), false alarm rate (FAR), and equitable threat score 

(ETS) for monthly agricultural droughts between April and October during 1982-2016.
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Figure 7. Time series of the drought area percentages for each of four river basins, (a) Han 

River basin over north, (b) Geum River basin over west, (c) Nakdong River basin over 

southeast, (d) Yeongsan River basin over southwest of South Korea. The values are 

correlation coefficient (R) and root-mean-square error (RMSE)  metrics between SPI-1 and 

SSMI based drought percentage areas.
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Highlights:

 High-resolution land surface modeling in South Korea has been built for years 1982-

2016. 

 The soil moisture estimates were evaluated for an agricultural drought monitoring 

system.  

 Drought events were analyzed by monthly standardized precipitation and soil moisture 

indices.
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