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The estimation of numerical equivalent conductivity remains a crucial issue for the accuracy and stability
of the solution of the non-linear Richards’ equation (RE) when modeling variably saturated flow. In the
literature, it appears that this topic has been typically considered for one-dimensional discretization
despite the growing interest in multidimensional problems. After reviewing different possibilities of
equivalent hydraulic conductivity estimation, we evaluate their ability to yield monotonic results. Hence,
the monotonicity analysis provided by Forsyth and Kropinski (1997) has been generalized for the differ-
ent equivalent conductivity formulations. On one hand, the upstream mean is unconditionally stable but
is also known to overestimate the conductivity. On the other hand, other formulations, including Darcian
mean approximations, can be accurate and straightforward to adapt in multidimensional codes but do
not always provide monotonic solutions of the RE. An adaptive algorithm is presented, which adapts
the conductivity in function of the monotonicity condition, i.e., a variable criterion based on the conduc-
tivity at nodal points, the conductivity averaging technique and the piezometric head variation. The pro-
posed numerical method can be implemented in existing multidimensional codes. Numerical
investigations in steady state and time-varying conditions, 1D and 2D cases, and homogeneous and het-
erogeneous media confirm the interest in the proposed algorithm.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Modeling water flow in variably saturated soils is of great inter-
est to many scientific research and engineering applications in-
volved in the management of water resources. Richards’ equation
(1931) (RE) has been described as a valuable model to predict
water movement in variably saturated media and to provide inputs
for contaminant transport models (Šimůnek and Bradford, 2008).
The development of robust and fast numerical simulators for
unsaturated flow remains a challenging research subject of re-
search (Crevoisier et al., 2009; Kuráž et al., 2010; Wu, 2010; An
et al., 2011; Zadeh, 2011; Lott et al., 2012; Zambra et al., 2012).
In fact, when simulating unsaturated flow in porous media, numer-
ical oscillations may occur when the spatial distribution or tempo-
ral evolution of the pressure head or water content fluctuate
around the correct value. Traditionally, the issue of oscillation is
typically raised for methods based on variational formulation, such
as finite element (FE) (Neuman, 1972; Sandhu et al., 1977; Ver-
meer and Verruijt, 1981; Milly, 1985; Celia et al., 1990; Pan
et al., 1996; Wood, 1996; Thomas and Zhou, 1997; Karthikeyan
et al., 2001). Many studies dealing with RE focus on the numerical
expression of the mass matrix for time-dependent problems and
conclude that the diagonalized (or lumped) form is preferred to
avoid oscillations (Neuman, 1972; Cooley, 1983; Milly, 1985; Celia
et al., 1990; Pan et al., 1996; Ju and Kung, 1997). In this context, the
M-matrix property (i.e., a non-singular matrix with positive diago-
nal and negative off-diagonal coefficients) is often used to establish
conditions that ensure consideration of the maximum principle
(Windisch, 1989; Wood, 1996; Thomas and Zhou, 1997; Hoteit
et al., 2002; Belfort and Lehmann, 2005; Younes et al., 2006). This
suitable mathematical property prevents unrealistic results in the
case of saturated flow but is not sufficient for unsaturated flow
(e.g., Forsyth and Kropinski, 1997).

However, the behavior of the solution is dependent on the
equivalent conductivity (Keq) used in the numerical method for
the spatial discretization of RE. Keq represents the mean value of
the hydraulic conductivity related to Darcy–Buckingham’s law
and is calculated between two cells or control volumes for finite
difference (FD) and finite volume (FV) methods (Haverkamp and
Vauclin, 1979; Schnabel and Richie, 1984; Warrick, 1991; Zaidel
and Russo, 1992; Baker, 1995; Romano et al., 1998; Gastó et al.,
2002; Brunone et al., 2003), or inside the element for finite element
(FE) and mixed hybrid finite element (MHFE) methods (Farthing
et al., 2003; Belfort and Lehmann, 2005). Previous studies consider
the relation between a formulation of equivalent conductivity and
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the accuracy of the numerical solution. In fact, studies have been
found whose authors recommended the use of the geometric mean
(e.g., Haverkamp and Vauclin, 1979), arithmetic mean (van Dam
and Feddes, 2000), harmonic mean (Oldenburg and Pruess, 1993),
upstream mean (Oldenburg and Pruess, 1993), integrated mean
(Pei et al., 2012), or more complex averages, such as the Darcian
mean (Warrick, 1991; Baker, 1995) or optimized algorithm (Szym-
kiewicz, 2009). A review on averaging approaches for the compu-
tation of inter-nodal permeabilities is given in the chapter 4 of
the book by Szymkiewicz (2013). Based on many studies on the
subject, it appears that a single simple average could never be
adapted for the various combinations of soil materials, spatial grid
sizes and water flow conditions. Additionally, the difficulty in
incorporating soil heterogeneity in the estimation of the hydraulic
conductivity has been studied, typically for the one-dimensional
FD method (e.g., Romano et al., 1998; Szymkiewicz and Helmig,
2011).

Only a few authors consider the Keq selection to avoid oscilla-
tions (Baker et al., 1999; Forsyth and Kropinski, 1997; van Dam
and Feddes, 2000; Baker, 2006; Szymkiewicz, 2009). Among the
different methods, it has been shown that the Darcian mean
approximations produce accurate results (Warrick, 1991; Baker,
2006; Szymkiewicz, 2009). However, Darcian mean approxima-
tions generally require numerical efforts to be implemented into
existing codes, cannot always accept specific relationships describ-
ing retention and conductivity and their extension to multidimen-
sional cases with complex geometries remains a challenging issue.

This study focuses on the numerical solution of water flow
problems described by the standard RE, i.e., rigid porous media
are considered and infinite air phase mobility is assumed. Because
monotonicity constitutes the central issue of the paper, other sig-
nificant research areas, such as linearization strategy (Lott et al.,
2012), non-equilibrium and dynamic effect (Schweizer, 2012) are
not investigated. Nonetheless, it should be noted that the results
obtained in the current study could be applied to a large variety
of numerical codes dealing with variably saturated flow problems.

The main objectives of this study are as follows: (1) review the
different estimations of equivalent conductivity, (2) analyze their
ability to yield monotonic results from a mathematical viewpoint,
(3) test a new switching algorithm for a multidimensional imple-
mentation and (4) study the efficiency of the different averaging
techniques by considering several 1D and 2D test cases.

2. Unsaturated flow modeling

The mathematical model used to describe the physical problem
of water flow in unsaturated soil is given by the combination of
Eqs. (1) and (2). Darcy–Buckingham’s law defines the water flux
in the domain as follows:

q ¼ �KðhÞ � $H ð1Þ

where q is the macroscopic fluid flux density [L T�1]; K is the
hydraulic conductivity [L T�1]; and H [L] and h [L] are the piezomet-
ric and pressure head, respectively, such that H = h + z, where z is
the depth with upward being positive [L]. The mass conservation
of water, under the assumption of incompressible media and fluid,
leads to the mixed form of RE as follows:

@h
@t
þ $ � q ¼ f ð2Þ

where h is the volumetric water content [L3 L�3]; t is the time [T]; f
is a source/sink term [T�1]; and q is the previously defined water
flux.

To solve the governing flow equations, initial and boundary
conditions should be specified. Moreover, the interdependencies
of h, h and K should be characterized using constitutive relations
(often exponential or power functions). Table 1 summarizes differ-
ent relative conductivity functions, such as K(h) = Ks � Kr(h), and
the referred effective saturation (Se) [–] is defined by Se ¼ h�hr

hs�hr
. Ks

is the saturated conductivity [L T�1], which in general may be a
tensor, and hs [L3 L�3] and hr [L3 L�3] are the saturated and residual
volumetric water contents, respectively.

As reported in literature and depending on the problem consid-
ered, specific storage coefficients can be included in the RE to ac-
count for fluid compressibility and solid matrix deformability.
Additionally, several forms of RE found with either the water con-
tent and/or pressure head as the main variable, requiring specific
attention when expressing the capillary capacity (Celia et al.,
1990; Rathfelder and Abriola, 1994). Because the main objective
of this study is not dependent upon the precise form of the RE, only
the mixed form (Eq. (2)) will be considered.
3. Numerical resolution of Richards’ equation

3.1. Presentation of numerical methods

When numerical methods are used to solve a physical problem
modeled by the RE, the differential equation is integrated over the
solution domain X, which is decomposed into a set of non-overlap-
ping smaller subdomains Xe (such as X =

S
Xe). The unknown

variables and dependent coefficient are generally approximated
at nodal points for FE or at the center of each control volume for
FD and FV. The MHFE method uses both cell, and nodal (1D)/edge
(2D) or face (3D) averaged values. Regardless of the method cho-
sen, the final matrix system has the form:

½A� � fHgx þ ½B� � h
�

� �
x

� fFgx ¼ f0g ð3Þ

where x is a node (FE), cell (FD, FV) or face/edge (lumped MHFE) in-
dice. Matrices [A] and [B] consist of the spatial and temporal
approximations obtained from the numerical approximation on
each subdomain, ½A� ¼

P
e½A

e� and ½B� ¼
P

e½B
e�, respectively. It

should be noted that {F} contains sink/source terms and boundary
conditions. The ith ordinary differential equation, referred to as gi,
is:

gi Hnþ1
i ;Hn

i ;H
nþ1
j ;Hn

j

� �
¼
X

j–i;j2gi

Anþ1
ij Hnþ1

j � Hnþ1
i

� �� �

þ 1
Dtnþ1

X
j2ri

Bij hnþ1
j � hn

j

� �� �
� Fnþ1

i ¼ 0

ð4Þ

where gi includes node i and the set of its neighboring nodes; and ri

represents the (set of) element(s) sharing node i. The expressions
for matrices [Aij] and [Bij] for different formulations of FE and MHFE
methods can be found in literature (e.g., Huyakorn et al., 1984; Cha-
vent and Roberts, 1991; Belfort et al., 2009). It should be noted that
for the FD/FV methods, the previous matrices are given by Eqs. (5)
and (6):

Aij ¼ Ks � Kr;ij � cij ð5Þ

where Kr,ij is the conductivity between cells i and j; and cij refers to
the interface area between i and j divided by the distance between
them.

Be
ij ¼ jVejdij ð6Þ

where jVej is the length (1D)/surface (2D)/volume (3D) of element
‘‘e’’; and dij is the Kronecker operator. The previous definition must
be modified in the case of non-orthogonal control volumes (Loudyi
et al., 2007).



Table 1
Effective saturation function and relative conductivity function.

References Formulation and condition Parameters

Brooks–Corey (1964) (BCM)

Se ¼ 1=ðajhjÞk

Kr ¼ SeLþ2þ2=k
ah < �1

a: inverse of the air-entry value
k: pore size index
L: pore connectivity parameter
(L = 0.5 following Mualem, 1976)
(L = 1 following Burdine, 1953)

Haverkamp et al. (1977) (HM)

Se ¼ B=ðBþ jhjbÞ
Kr ¼ A=ðAþ jhjaÞ

h < 0

A, B, a and b: empirical parameters

van Genuchten (1980) (vGM)

Se ¼ 1=½1þ ðajhjÞn�m

Kr ¼ SeL½1� ð1� Se1=mÞ
m
�
2 h < 0

m = 1 � 1/n (traditionally)
n and a: empirical constants
L: pore connectivity parameter
(L = 0.5 following Mualem, 1976)
(L = 1 following Burdine, 1953)

Gardner (1958), Russo (1988) (GRM)

Se ¼ eð�0:5�ajhjÞ � ½1þ 0:5� ajhj�
2

mþ2

Kr ¼ eð�ajhjÞ
h < 0

a: pore size distribution parameter
m: form parameter (tortuosity)

Srivastava and Yeh (1991) (ExpM)

Se ¼ eð�ajhjÞ

Kr ¼ eð�ajhjÞ h < 0

a: pore size distribution parameter

Fuentes et al. (1992) (vGBCM)

Se ¼ 1=½1þ ðajhjÞn�m

Kr ¼ SeL
h < 0

m = 1 � 2/n
a and L: empirical parameters

Modified van Genuchten Vogel et al. (2001)
and Ippisch et al. (2006) (mvGM)

Se ¼ 1= S�E½1þ ðajhjÞ
n�m

n o

Kr ¼ SL
e

1� 1� S�E Seð Þ1=m
� �m

1� 1�S�1=m
Eð Þm

� 	2 h < �he

S�E ¼ 1=½1þ ðaheÞn�
m

he: equivalent of the air entry value

When the pressure head condition is not satisfied, Se = 1 and Kr = 1
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3.2. Monotonicity conditions

The monotonicity analysis is typically performed by considering
the general form of the discretized RE (Eq. (4)). Following Forsyth
and Kropinski (1997), it is established that a monotone discretiza-
tion does not contain any local minima or maxima for all its inte-
rior homogeneous nodes:

Hmin
i 6 Hnþ1

i 6 Hmax
i ð7Þ

where Hmin
i ¼min Hnþ1

j ;Hn
i

� �
and Hmax

i ¼ max Hnþ1
j ;Hn

i

� �
ð8j 2 giÞ.

The monotonicity analysis can be achieved on the discretized
(but not linearized) system of Eq. (4), which is equivalent to the
opposing expression of Forsyth and Kropinski (1997). According
to these authors, a monotone solution is required to satisfy the fol-
lowing conditions for all interior nodes:

ða�Þ @gi

@Hn
i

6 0 and ðb�Þ @gi

@Hnþ1
j

6 0 and ðc�Þ @gi

@Hnþ1
i

> 0 ð8Þ

The different derivatives are given as follows:

@gi

@Hn
i

¼ � 1
Dtnþ1 Bii

@hn
i

@Hn
i

ð9Þ
@gi

@Hnþ1
j

¼
X

j–i;‘2gi

@Anþ1
i‘

@Hnþ1
j

Hnþ1
‘ �Hnþ1

i

� � !
þAnþ1

ij þ
1

Dtnþ1 Bij
@hnþ1

j

@Hnþ1
j

ð10Þ
@gi

@Hnþ1
i

¼
X

j–i;j2gi

@Anþ1
ij

@Hnþ1
i

Hnþ1
j �Hnþ1

i

� �
�Anþ1

ij

 !
þ 1

Dtnþ1 Bii
@hnþ1

i

@Hnþ1
i

� @Fnþ1
i

@Hnþ1
i

¼
X

j–i;j2gi

@Anþ1
ij

@Hnþ1
i

Hnþ1
j �Hnþ1

i

� � !
þAnþ1

ii þ
1

Dtnþ1 Bii
@hnþ1

i

@Hnþ1
i

� @Fnþ1
i

@Hnþ1
i

ð11Þ
3.3. Analysis of methods to ensure monotonicity

3.3.1. The issue of equivalent conductivity to avoid unphysical
oscillations

Despite the fact that FV and FD schemes satisfy the M-Matrix
property by definition (Forsyth and Kropinski, 1997), it was shown
that FD numerical solutions might exhibit unphysical oscillations
(Forsyth and Kropinski, 1997; Baker, 2006, Szymkiewicz, 2009).
Furthermore, in the case of unsaturated flow and condition (b) of
Eq. (8), the derivatives of the matrix [A] have to be considered,
yielding a condition dependent on the estimation of the
conductivity.

Interblock conductivity can be achieved using arithmetic, har-
monic, geometric or more complex means of the hydraulic conduc-
tivities at the two adjacent cells (Haverkamp and Vauclin, 1979;
Schnabel and Richie, 1984; Zaidel and Russo, 1992; Forsyth et al.,
1995; Romano et al., 1998; van Dam and Feddes, 2000; Gastó
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et al., 2002; Brunone et al., 2003). Table 2 summarizes the main
formulations of equivalent/interblock conductivity that have been
studied particularly for 1D flow problems. For the weighted mean
proposed by Gastó et al. (2002) a critical size (Dz 6 [a � (a10 + a11 -
log(N))]�1) should be considered to avoid negative values of the
conductivity, as is reported, for instance, by Szymkiewicz (2009)
for large internodal spaces. Additionally, it should be observed that
this weighted mean can be applied only for the van Genuchten
(1980) and Brooks and Corey (1964) hydraulic models. Darcian
mean approximations are preferred to avoid unphysical oscilla-
tions (Warrick, 1991; Baker, 1995; Baker et al., 1999; Baker,
2000, 2006). Table 3 provides the main formulas to compute the
Darcian integral mean for the different hydraulic models. An adap-
tation is proposed to handle the classical formulation of the van
Genuchten model rather than the simplified form used by Baker
(2000). The weighting coefficients wGASTO (Gastó et al., 2002) and
kDARC (see Table 3) are functions of the conductivity at the two
neighboring nodes. Notice that their expressions are not symmet-
ric. In addition, previous studies (Baker et al., 1999; Baker, 2000,
2006) have shown interest in changing the expression of the equiv-
alent conductivity (referred in Table 2 as Koptim) in function of the
ratio Dh/Dz. Due to the complex computation of Kdarcy, an alterna-
tive optimized algorithm has been recently developed to avoid
oscillations (Szymkiewicz, 2009). The algorithm has been repro-
duced and slightly adapted to take into account the orientation
of the vertical axis (see Appendice).

The purpose of the following paragraph is to complete the anal-
ysis proposed by Forsyth and Kropinski (1997), which showed that
Table 2
Formulations for the estimation of equivalent interblock conductivity for 1D discretization

Formulation Expression

Arithmetic mean

Karit ¼ 0:5½Ki þ Kiþ1�

Geometric mean

Kgeom ¼ ½Ki þ Kiþ1�0:5

Harmonic mean

Kharm ¼ 2 K�1
i þ K�1

iþ1

h i�1

Weighted mean

Kgasto ¼ w � Kupper þ ð1�wÞ � Klower

Upstream mean

Kup ¼
Ki if Hi P Hiþ1

Kiþ1 if Hi < Hiþ1

�

Integral mean

Kint ¼
½hiþ1 � hi��1 �

R hiþ1
hi

KðhÞ � dh if hi – h

Ki if hi ¼ h

(

Darcian integral mean

Kdarcy ¼ kdarcy � Kupper þ ð1� kdarcyÞ � KINT

Optimized algorithm

principle
KINT if Dh

Dz ! 	1
KUP if Dh

Dz ! 0 or Dh
Dz ! v

(

the centroidal approximation is conditionally stable and suggests
the use of upstream mean. For FD/FV methods and FE and MHFE
variational formulations based on a single point quadrature rule,
the relative hydraulic conductivity between nodes i and j, noted
Kr,eq, should be estimated according to the possible expressions
of Table 2. Hence, the expressions are obtained as follows:

@gi

@Hnþ1
j

¼ cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ Anþ1

ij þ 1
Dtnþ1 Bij

@hnþ1
j

@Hnþ1
j

ð12Þ
@gi

@Hnþ1
i

¼
X

j–i;j2gi

cijKs
@Kr;eq

@hnþ1
i

Hnþ1
j �Hnþ1

i

� �
�Anþ1

ij

 !
þ 1

Dtnþ1 Bii
@hnþ1

i

@Hnþ1
i

ð13Þ

According to Eqs. (12) and (13), the results of the monotonicity
analysis may depend on the relative conductivity estimation. Ta-
ble 4 contains the analytical developments of the spatial terms of
Eq. (12) for different equivalent conductivity estimations, and Ta-
ble 5 summarizes the results related to Eq. (13). Regardless of
the model chosen in Table 1 to describe the relationships between
the pressure head and the relative conductivity, Kr(h) is an increas-
ing function; therefore, the sign of its derivative remains positive.
The sign of the expressions depicted in Tables 4 and 5 is important
to determine if conditions (b) and (c) of Eq. (8) are satisfied. On one
hand, we remark that the M-matrix criterion applied for the
parameter cij is a necessary but not always sufficient condition.
On the other hand, the monotonicity of the different formulations
should be studied specifically as follows:
s, for FD/FV schemes or for FE/MHFE methods based on single point quadrature rule.

References – comments

(e.g., Celia et al., 1990; van Dam and Feddes, 2000)

(e.g., Haverkamp and Vauclin, 1979)

(e.g., Oldenburg and Pruess, 1993; Romano et al., 1998;
Manzini and Ferraris, 2004; Brunone et al., 2003) !
especially for heterogeneous domain

(e.g., Warrick, 1991; Gastó et al., 2002) Kupper (Klower) is
the conductivity of the upper (lower) node

(e.g., Fuentes et al., 1992; Oldenburg and Pruess, 1993)

iþ1

iþ1

(e.g., Schnabel and Richie, 1984; Warrick, 1991; Zaidel
and Russo, 1992)

(e.g., Baker, 1995; Baker et al., 1999; Baker, 2000); Kupper

is the conductivity of the upper node

(Baker, 2006; Szymkiewicz, 2009) see Appendix ! v
the cosine of the angle between the z axis and the
direction of the gravity force



Table 3
Expression of the weighting coefficient for the Darcian integral mean approximation.

Kdarcy = kdarcy � K2 + (1 � kdarcy) � Kint (node 2 corresponds to the upper node)

kdarcy ¼ ð1�e�uÞDKðu�rkÞþðK1 e�u�K2Þrk �u
ð1�e�uÞ½ðDK�K2 �rkÞu�DK�rkþK2 �r2

k
�

(see fortran code with all anticipated special conditions in Baker (2000))
DK = K1 � K2

rk = ln (K1/K2)
u ¼ d

Kr

@Kr
@h jheq with d = distance between two adjacent nodes: (i) and (j) for instance

heq ! KrðheqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 � K2

p
ðfor HM and BCMÞ

heq !
KrðheqÞ
SeLðheqÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1

SeL
1

K2

SeL
2

s
ðfor vGMÞ

BCM u ¼ nðLþ2þ2
nÞ�d

jheq j ¼ �a
m � d � ðK1K2Þ�m=2; m ¼ �½n� Lþ 2þ 2

n

� �
��1

and Kint ¼ m
mþ1

Kmþ1
2 �Kmþ1

1
Km

2 �Km
1

HM
u ¼ d�a�jheq ja�1

A�kðheqÞ 
 d � a � Að�1=aÞffiffiffiffiffiffiffiffi
k1 k2

p � 1ffiffiffiffiffiffiffiffi
k1 k2

p � 1
� 	 1�1

að Þ
and Kint by numerical integration

vGM

u 
 d � a � L � ðn� 1Þ � ðajheqjÞn�1 � Se1=m � 1þ 2�Se1=m �ð1�Se1=mÞ
m�1

L� kr1
Se1

kr2
Se2

h i1=4

2
64

3
75

and Kint by numerical integration

jheqj ¼ 1
a ½ 1� 1� kr1

SeL
1

kr2

SeL
2

� �1
4


 �1
m

 !�1

� 1�

1
n

vGBCM u 
 d � L � ðn� 2Þ � ðajheq jÞn

jheq j½1þðajheq jÞn �
and Kint by numerical integration

jheqj ¼ 1
a ½ðkr1kr2Þ�1=2Lm � 1�

1
n

GRM and ExpM u = a � d and Kint ¼ K1�K2
lnðK1=K2Þ
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� The analytical expressions corresponding to the arithmetic, geo-
metric, harmonic and weighted formulations show that the
monotonicity depends on the piezometric variation between
adjacent nodes weighted by a coefficient dependent on the rel-
ative conductivity and its derivative. A criterion that may guar-
antee the solution’s monotonicity in the general case cannot be
proposed.
� For the upstream mean, if the M-matrix criterion is satisfied,

conditions (b) and (c) of Eq. (8) are automatically fulfilled, as
can be seen in Tables 4 and 5. Despite this interesting property,
the upstream formulation is sometimes avoided because of its
overestimation of infiltration front.
� Assuming that the M-matrix criterion is satisfied and consider-

ing the expressions provided in Tables 4 and 5 for the integral
mean, one can deduce that monotonicity is always accounted
for horizontal flow processes. This fact corroborates the exper-
imental conclusion of Pei et al. (2012). For vertical discretiza-
tions, a limitation has to be added. When the pressure

gradient increases, i.e., the term Dhji

Dzji
! 	1, Tables 4 and 5 show

that the monotonicity conditions are reduced to the M-matrix
condition. However, when the pressure gradient decreases,
monotonicity difficulties appear to satisfy condition (c) of Eq.

(8) if jDhji j
Dzji
! 0þ and condition (b) if jDhji j

Dzji
! 0�. It should be noted

that the expressions of Tables 4 and 5 could be modified if the z
axis is not collinear to the gravity force by an angle u. In this
case, conditions (b) and (c) of Eq. (8) can be written as follows:
ðKr;int � Kr;iÞ
Dzji

Dhji
v


 �
� Kr;i 6 0 ð14Þ

ðKr;j � Kr;intÞ
Dzji

Dhji
v


 �
þ Kr;j > 0 ð15Þ
with v = cos (u). Because Kr,int is between Kr,iand Kr,j, when Dh
Dz ! v,

Eqs. (14) and (15) lead to conditions (16) that can never be satisfied
and are given as follows:
Kr;int 6 2Kr;i and Kr;int < 2Kr;j ð16Þ
Hence, our mathematical analysis demonstrates that the integral
formulation could produce unphysical oscillations. The analysis cor-
roborates previous studies of the flux approximation based on a
simple three-point grid (Baker, 2000, 2006; Szymkiewicz, 2009).
� The monotonicity of the optimized algorithm (Szymkiewicz,

2009) is more difficult to attest. Hence, we provide in appendix
an analytical analysis of monotonicity based on Eq. (8). The
main result is that the formulation used to estimate internodal
conductivity during infiltration is unconditionnaly stable. For
drainage, monotonicity has been demonstrated for the expres-
sion K1 based on the upper conductivity (see Eq. (A.2) in Appen-
dix). The heuristic formulation used for K2 is conditionnaly
monotonic. It should be noticed that the presence of relative
conductivity derivatives in the final expressions prevents any
general conclusions. Nonetheless, as stated by Szymkiewicz
(2009), oscillations in drainage problem are linked with overes-
timation of internodal conductivity. Since the minimum value
of (K1, K2) is chosen, monotonicity should be preserve. The com-
plex heuristic formulation of Keq used for capillary rise does not
allow us to conclude easily on monotonicity accordingly to the
criterion of Eq. (8).

3.3.2. Propositions of algorithm
To simplify the presentation, we suppose that the multidimen-

sional existing code uses a centroidal approximation for the evalu-
ation of the equivalent conductivity. Centroidal approximation
signifies that the conductivity over each element is computed from
a combination of the conductivities at the nodal points (edges/
faces). The arithmetic mean (e.g., Šimůnek et al., 2006) appears
as a particular and, nonetheless, currently used technique. Hence,
Eq. (10) is modified to hold this specific context:
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Development of the two right hand side terms of Eq. (12).
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where Eij refers to the element containing nodes i and j; Knþ1
r;eq

� �
Eij

is
the average conductivity over this element, and gi includes node i
and the set of its neighboring nodes. To obtain a monotonic solution
of the RE, we investigate two strategies presented in the following
paragraphs.

For all the interior and homogeneous nodes of the domain, the
monotonicity of the solution is tested at each time step.

With the first strategy (MS1), a subroutine tests the monotonic-
ity of the solution at each time step. When unphysical oscillations
are encountered, MS1 consists of stopping the iterative process,
imposing the upstream formulation (either at specific nodes or at
all nodes) and running the numerical code again for the problem-
atic time step. Then, the equivalent conductivity retrieves its origi-
nal formulation until oscillations reappear. The MS1 algorithm
only considers the elements without sink/source term and whose
neighbors are constituted of the same soil material.

In the second approach (MS2), the value of the equivalent con-
ductivity is adapted in function of condition (b) of Eq. (8). There-
fore, the algorithm is based on the following test:

8i and j 2 gE
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r;eq
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Eij
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Eij
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X
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‘
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6 0 ð18Þ

where gE
i refers to node i and the set of its neighboring nodes belong-

ing to element E. During the iterative process, either the equivalent
conductivity satisfies Eq. (18) or the upstream approximation, which
guaranties the monotonicity, is substituted. In fact, for a NE nodes
element, Eq. (18) represents a system of NE � (NE � 1) equations. It
should be noted that the coefficients cij depend only on the mesh
geometry and have been already computed for solving the matrix
system corresponding to Eq. (3). Only the derivative of Knþ1

r;eq , i.e., espe-
cially the derivative of the K(h) function, could necessitate additional
work. When the Newton–Raphson iteration is used, a subroutine is
typically implemented for the analytical evaluation of these deriva-
tives, which is required for the Jacobian matrix computation.

It should be noted that for different simulations, numerical
codes based on the mass-lumped MHFE method have been used.
4. Numerical simulations

The purpose of this section is to illustrate the theoretical mono-
tonicity assessments by computing the expressions of Table 4 for
different types of soil, mesh sizes and constitutive relationships
and investigate unsteady flow simulations showing the effect of
the equivalent conductivity and efficiency of the proposed algo-
rithm. The relative conductivity, water content and capillary capac-
ity are computed directly from the definitions provided in Table 1.
For the hydraulic models of van Genuchten (1980),Haverkamp
et al. (1977) and Fuentes et al. (1992), the integral formulation of
the equivalent conductivity is estimated with a Gauss-Legendre
numerical integration, whereas for the Brooks–Corey and the expo-
nential models, the analytical expressions have been implemented.
In addition, the derivatives in Table 4 are determined analytically,
except for the derivatives of the weighting coefficient occurring in
the weighted (wGASTO) and Darcian integral means (kDARC), which
are estimated with a perturbation method. For the weighted
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Development of the first right hand side term of Eq. (13).
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formulation of Gastó et al. (2002), when the mesh size increases, the
weighting coefficient can be negative. In this case, the upstream
mean can substituted to avoid numerical problems.

4.1. Accuracy assessment for steady state flow

In this section, the expressions of Table 4 are computed without
considering the coefficient cij, which depends on the numerical
scheme and mesh geometry. Due to the summation term and pres-
ence of mass variation for diagonal coefficients (see Eq. (13)), the
expressions depicted in Table 5 are not computed. Sixteen types
of soils covering different texture classes presented by Szymkie-
wicz (2009) have been selected. Five hydraulic models depicted
in Table 1 are used and the corresponding parameters are reported
in Table 6. We consider 25 � 104 possible values for the pressure
variation (hj � hi), and the nodal distance dij takes the values of
±1 cm, ±10 cm, ±100 cm or ±200 cm along the vertical direction.
As shown in Fig. 1, our numerical approach allows testing the
monotonicity of the different equivalent conductivity formulations
for various scenarios corresponding to infiltration, drainage or cap-
illary rise. The behavior of the different means has been largely de-
scribed in literature (Szymkiewicz, 2009) by comparing the
accuracy of each formulation when the nodal spacing increases.

The results of these numerous simulations for vertical flow are
summarized in Fig. 2. For each type of soil and nodal distance, we re-
port the percentage of positive value for the coefficients of Eq. (12).
As expected, the upstream mean always leads to positive values for
the coefficient of Eq. (12), and consequently, its results are not
shown on Fig. 2. Below a critical mesh size, the weighted formulation
of Gastó et al. (2002) has an approximately monotonic behavior. The
geometric, harmonic and integrated means appear to be extremely
sensitive to oscillation problems, especially for large grid size and
coarse-textured soils. The Darcian integral mean is more interesting
from this point of view. Contrary to the arithmetic mean, it remains
stable when the mesh size increases. Finally, it is worth noting that
Szymkiewicz’s algorithm produces montonic solution for the differ-
ent grid sizes and soils used for these steady state cases.

4.2. Numerical simulations of time varying unsaturated flow

In the current section, we propose to analyze the efficiency of our
monotonicity analysis by different test cases illustrating infiltration,
drainage and evaporation processes for both one and two-dimen-
sional problems. Both temporal and spatial unphysical oscillations
are considered. For one-dimensional problems, a FD numerical code
using the Thomas algorithm has been used to solve the mixed form
of RE. The time step size management is achieved by using a heuris-
tic method based on the number of iterations (Šimůnek et al., 2006).
It should be noted that more advanced time integration methods
(e.g., Miller et al., 1998) and/or time stepping techniques (Belfort
et al., 2007) could be used to improve the efficiency of the model.

Besides, in this section, only some averaging techniques were
selected either because of the performance obtained in the previ-
ous steady-state investigations and/or reported in literature (Kszym)
or because of their adaptability in multidimensionnels codes (Karit,
Kgeom). Hence, Kgasto, Kint and Kdarcy were not considered.

Statistical results are provided in Table 7 to illustrate the mono-
tonicity and efficiency of various averaging schemes and algo-
rithms for 1D problems. Hence, the root mean square error,

h� RMSEDz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NDz

PNDz
i¼1ðhi � href ;iÞ2

q
, the potential head gradient

and, the maximum pressure overshoot for infiltration have been
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reported. Fine grid solutions (Dz between 1 and 0.5 mm) have been
computed and serve as reference solutions (Oref) for error calcula-
tions. For two-dimensional problems, the new algorithm has been
implemented in a lumped MHFE numerical code. The linear system
is solved with the preconditioned conjugate gradient method, and
the time step size is heuristically adapted.
Fig. 1. Illustration of the various situations covered by the 25 � 104 couples of
values (hi, hj) for the grid size 100 cm.
4.2.1. Test problem 1: infiltration with constant head boundary
condition in a 1D domain

The first test case is selected from Baker et al. (1999) and dem-
onstrates the difficulties of arithmetic formulation to produce
physically admissible results. This case deals with infiltration in a
45-m-deep column, which contains moderately to coarsely tex-
tured soils. The soil hydraulic properties are characterized by Hav-
erkamp’s model (see Table 1), and the parameters are summarized
in Table 6 (soil no = 13). The media is initially dry, and h (z,
0) = hinit = �929.8 cm. This pressure head is maintained at the bot-
tom during the simulation, h (z = 450 cm, t) = hdown = �929.8 cm,
and the top boundary condition is h (z = 0 cm, t) = htop = �20.7 cm.
For the time step management, we adopt a minimum value of
10�3 s and maximum time step of 100 s. The simulation is per-
formed over 1.5 days.

Fig. 3 describes the evolution of the water content at the position
z = 1200 cm for a uniform mesh size of 150 cm. During the infiltra-
tion process, this type of profile should be monotone; however, large
oscillations are observed in Fig. 3. The temporal evolution of the ma-
trix coefficient corresponding to the modified Picard iteration meth-
od and the coefficient of Eq. (12) are also presented in Fig. 3. When
the oscillations occur, only the coefficient of Eq. (12) becomes posi-
tive. This result demonstrates the necessity to include the deriva-
tives in the monotonicity analysis. Comparisons between the
standard approach and MS1 or MS2 algorithms are shown in Fig. 4,
which depicts the profiles of water content after 30 h of infiltration.
On one hand, the arithmetic formulation exhibits large spatial oscil-
lations when the grid size increases from 10 cm to 150 cm (Table 7),
whereas the upstream approximation leads to an oscillation-free
solution corresponding to a faster than expected wetting front. On
the other hand, the Darcian mean approximation Kszym and the
new algorithms associated with the arithmetic or geometric means
produce physically admissible results. Statistical results presented
in Table 7 show that many extremum appear with a standard ap-
proach based on Kgeom or Karit. These failures correspond mainly to
pressure overshoots that have been reported in Table 7 for different
grid sizes. Indeed we provide the maximum value of the potential
head gradient (referred as max (Dh/Dz) in Table 7); for a problem
of infiltration, positive values indicate the presence of oscillation
Table 6
Hydraulic parameters of the soils used for the monotonicity illustration.

Soil no. Model a (cm�1) n, k ou b (–) m ou B (–) L ou A (–) hs

1 vGM 0.1449 2.68 0.627 0.5 0.
2 vGM 0.0752 1.89 0.471 0.5 0.
3 vGM 0.0200 1.41 0.291 0.5 0.
4 vGM 0.0050 1.09 0.083 0.5 0.

5 BCM 0.1389 0.592 – 0.5 0.
6 BCM 0.0680 0.322 – 0.5 0.
7 BCM 0.0483 0.211 – 0.5 0.
8 BCM 0.0292 0.127 – 0.5 0.

9 vGM 0.0260 2.23 0.552 �1.28
10 vGM 0.0408 1.19 0.160 �6.97
11 vGM 0.0249 1.507 0.336 �0.14 0.

12 vGBCM 0.0331 7 0.714 7
13 vGBCM 0.1613 2.97 0.327 5.05

14 HM 4.7400 3.96 1.611 � 106 1.18 � 106 0.

15 GRM 1.0000 – – –
16 GRM 0.0100 – – –
in the solution. On the contrary, Kszym and Kup do not produce any
oscillations and have not been combined with MS1 or MS2 algo-
rithms. We can observe in Table 7 that Kszym improves the accuracy
of the solution obtained with the upstream mean. Otherwise, the
MS2 algorithm detects many violations of the monotonicity crite-
rion that lead to a conductivity modification. The MS1 algorithm
avoids both the presence of oscillation in the solution and its prop-
agation in the profile. Stabilizing the solution at a given time is nec-
essary but not sufficient, and MS1 has to correct the conductivity
regularly during simulation. For this first test case of infiltration in
dry soil, the new algorithms maintain the precision of the results
achieved by the arithmetic formulation and avoid spurious oscilla-
tions as depicted in Table 7 and Fig. 4. The precision of the new algo-
rithm (MS1) is slightly better that the optimized algorithm (Kszym),
mainly with the geometric mean.

Notice that the Newton–Raphson iterative method (Lehmann
and Ackerer, 1998) and the Method of Lines (Miller et al., 1998) have
been implemented and tested (results not shown). Even if these
methods improve the convergence and rapidity of the computation,
we can observe similar unphysical oscillations in the solutions.
4.2.2. Test problem 2: drainage in 1D sand column
The second test problem, which has been investigated by Szym-

kiewicz (2009), studies the effects of other flow conditions. A 5-m-
deep sand column (soil no. 5) is considered with the following
(–) hr (–) Ks (cm s�1) Type References

430 0.045 8.25 � 10�3 Sand Carsel and Parrish (1988)
41 0.065 1.23 � 10�3 Sandy loam
45 0.067 1.25 � 10�4 Silty loam
38 0.068 5.56 � 10�5 Silty clay

430 0.045 5.83 � 10�3 Sand Rawls et al. (1982)
412 0.041 7.19 � 10�4 Sandy loam
486 0.015 3.67 � 10�4 Silty loam
423 0.056 2.5 � 10�5 Silty clay

Sand Schaap and Leij (2000)
Clay

43 0.01 2.03 � 10�4 Sand van Dam and Feddes (2000)

Sand Szymkiewicz et al. (2008)
Chernobil soil Lassabatere et al. (2006)

212 0.075 9.44 � 10�3 Haverkamp et al. (1977)



Fig. 2. Steady state tests: percentage of minimum value of the coefficient of Eq. (12) in vertical direction for different soils and mesh sizes (a�) Karit, Kgeom, Kharm; (b�) Kgasto, Kint,
Kdarcy, Kszym.
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properties: the media is quasi-saturated with a uniform pressure
head distribution, h (z, 0) = hinit = �7.5 cm, the lower boundary
pressure head remains at the same initial value while an imperme-
able boundary condition is imposed at the top of the column, and q
(z = 0 cm, t) = qtop = 0 cm s�1. The time step size varies automati-
cally between 3.6 � 10�6 s and 360 s according to the number of
iterations. The pressure head profiles after 30 h of drainage are
illustrated in Fig. 5 which are similar to those presented by Szym-
kiewicz (2009). The simple averaging methods, Kgeom and Karit, pro-
duce large oscillations in the solution. The methods based on the
Darcian mean produce oscillation-free solutions. The MS1 algo-
rithm allows removal of the unphysical oscillations from the solu-
tions obtained with the simple averaging techniques and conserves
the trend of the chosen equivalent conductivity. Hence, the accu-
racy of the algorithm is good and for coarse grid slightly better
than simple original formulations. As observed in Table 7, the
monotonicity test is so restrictive that the MS2 approach uses
many changes of the conductivity. Hence, the corresponding solu-
tions are similar to Kup and have not been drawn. The monotonicity
failures reported in Table 7 correspond to oscillations in the profile
at a given time. Contrary to the first test case, these numerical arti-
facts do not produce overshoot of the maximum pressure head but
the minimum value of the potential head gradient (referred as min
(Dh/Dz) in Table 7) should be positive or null. Postive values of this
gradient observed for Karit and Kgeom indicate spurious oscillations
in the drainage process.

4.2.3. Test problem 3: intensive rain at a 1D dry heterogeneous soil
This test case allows investigation of the behavior of the aver-

aged conductivity in the presence of soil heterogeneities. Two
equal adjacent zones are considered, which represent a 14-m-deep
one-dimensional domain. A rainfall rate of 0.25 m/day is applied
over 7.5 days to an initially dry porous media (hinit = �1000 cm).
The material properties correspond to a soil value of no. 1 in Ta-
ble 6, except that the modified van Genuchten model is used with
an air entry pressure of 2 cm. A simple heterogeneity has been gen-
erated by considering a saturated permeability of the lower zone
that is 10 times less than the original prescribed value in Table 6.
The time step can vary between 1 � 10�6 s and 100 s according
to a heuristic management. In this test case, spurious oscillations
occurring upstream of the permeability discontinuity are reported
in a few profiles of saturation (Fig. 6). From a physical point of
view, the relatively small contrast of permeability causes a natural
increase in saturation in the middle of the domain. When the arith-
metic average is selected, unphysical oscillations appear before the
wetting front reaches the lower zone, as depicted in Fig. 6a. Fine
grid solutions are depicted for the different observation times
(4.5d, 6d and 7.5d). Local extrema occurring in the interior part



Table 7
Statistical results for the 1D test cases.

Keq Karit Karit MS1 Karit MS2 Kgeom Kgeom MS1 Kgeom MS2 Kszym Kup

TEST 1 (t = 36 h) NTS150 1354 1347 1387 1642 1315 1354 1345 1350
NI150 9559 14,252 10,134 8818 10,286 10,475 7947 9461
NMF150 8039 1109 9621 10,085 994 10,474 0 0
h-RMSE150 4.63E�03 5.04E�03 6.42E�03 4.99E�02 3.90E�02 1.41E�02 1.14E�02 1.41E�02
MPO150 2.58E+00 0.00E+00 0.00E+00 5.27E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
max (Dh/Dz)150 3.70E�02 0.00E+00 0.00E+00 8.70E�01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
h-RMSE100 4.57E�02 4.51E�02 4.64E�02 2.89E�02 3.25E�02 4.74E�02 4.69E�02 7.09E�02
MPO100 3.49E+00 0.00E+00 0.00E+00 3.24E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
max (Dh/Dz)100 5.52E�02 0.00E+00 0.00E+00 6.92E�01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
h-RMSE50 4.72E�02 4.70E�02 4.75E�02 4.33E�02 4.30E�02 4.80E�02 4.76E�02 4.81E�02
MPO50 5.83E�01 0.00E+00 0.00E+00 9.52E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
max (Dh/Dz)50 2.51E�02 0.00E+00 0.00E+00 5.33E�01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
h-RMSE10 4.76E�02 4.76E�02 4.76E�02 4.73E�02 4.73E�02 NC 4.75E�02 4.78E�02
MPO10 0.00E+00 0.00E+00 0.00E+00 3.42E+00 0.00E+00 NC 0.00E+00 0.00E+00
max (Dh/Dz)10 0.00E+00 0.00E+00 0.00E+00 2.74E+00 0.00E+00 NC 0.00E+00 0.00E+00

TTEST 2 (t = 30 h) NTS50 550 660 510 533 688 510 511 510
NI50 2427 5405 2255 2374 5446 2255 2270 2255
NMF50 2218 455 2254 1948 431 2254 0 0
h-RMSE50 2.75E�02 6.43E�03 8.99E�03 2.33E�02 6.25E�03 8.99E�03 6.48E�03 8.99E�03
min (Dh/Dz)50 �6.88E�01 2.10E�02 2.00E�02 �3.95E�01 4.30E�03 2.00E�02 1.53E�02 2.00E�02
h-RMSE25 1.07E�02 2.70E�03 5.53E�03 7.14E�03 2.69E�03 5.49E�03 2.27E�03 5.64E�03
min (Dh/Dz)25 �4.47E�01 1.68E�02 1.84E�02 �2.80E�01 1.45E�02 1.84E�02 1.45E�02 1.84E�02
h-RMSE10 1.69E�03 1.73E�03 2.29E�03 9.24E�04 9.63E�04 9.27E�04 1.00E�03 2.86E�03
min (Dh/Dz)10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
h-RMSE1 1.25E�05 1.25E�05 1.25E�05 1.49E�05 1.49E�05 1.49E�05 1.13E�04 3.17E�04
min (Dh/Dz)1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

TEST 3 (t = 7.5 d) NTS 7104 6970 6970 NC NC 6972 6954 6972
NI 30,328 43,297 26,794 NC NC 26,637 27,059 26,637
NMF 46,969 4380 25,140 NC NC 26,561 0 0
h-RMSE50 4.14E�02 1.47E�02 1.17E�02 NC NC 1.55E�02 1.19E�02 1.55E�02
h-RMSE25 2.14E�02 2.09E�02 2.36E�02 NC NC 2.00E�02 1.98E�02 2.00E�02
h-RMSE10 1.44E�02 1.16E�02 9.17E�03 NC NC 1.27E�02 1.07E�02 1.27E�02

NTS (Number of time step); NI (Number of iteration); NMF (Number of monotonicity failure eventually before correction); NC (no convergence); MS1 (if local extremum,
algorithm uses Kup for all the cells); MS2 (if the monotonicity test is not verified, the algorithm uses Kup for all the cells); h-RMSEX (root mean square error on water content
for a grid size of x cm); MPOX (maximum pressure overshoot for a grid size of x cm).

Fig. 3. Test case 1: evolution of the water content, the matrix coefficient and the
coefficient of Eq. (12) at the location z = 1.2 m for the arithmetic mean.

Fig. 4. Test case 1: profiles of water content at t = 30 h for the arithmetic mean,
upstream mean, Darcian mean of Szymkiewicz (2009) and the new algorithms for a
mesh size Dz = 150 cm.
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of the upper zone decrease by reducing the nodal spacing. Other-
wise, numerical oscillations are removed with the optimized ap-
proach of Szymkiewicz or by using the proposed MS1 and MS2
algorithms (Fig. 6b). The geometric average suffers from conver-
gence difficulties. Its combination with the new technique pro-
vides satisfactory results. It should be noted that each average
provides a particular solution, and the new algorithm differentiates
itself from the upstream mean. Table 7 shows that Szymkievicz’s
algorithm performs well for the different grid block sizes; the pro-
posed algorithms give satisfactory results with comparable accu-
racy. According to Fig. 6a, arithmetic formulation exhibits large
unphysical oscillations in the upper part of the domain. Hence,
max (Dh/Dz) is positive for the different grid sizes.
4.2.4. Test problem 4: evaporation with variable boundary condition
In this section, the algorithm presented by van Dam and Feddes

(2000) has been implemented to manage the top boundary
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condition. For extreme events of evaporation (or infiltration), their
procedure takes into account the capacity of the soil to exfiltrate
(or infiltrate) water with a prescribed potential flux. Hence, to
avoid unphysical very large succion in case of prolonged dry
weather or soil conditions, a dirichlet pressure head condition is
imposed at the soil surface to govern the evaporation instead of
the prescribed flux. Similarly, in case of too wet weather or soil
conditions, the height of ponding is fixed and then regulates the
infiltration in the soil profile. For the test problem 4 a constant
evaporation rate of 0.5 cm/d is applied at the surface. When the
succion at the first node reaches 137 700 cm the pressure head is
maintained at this critical value. The lower pressure head bound-
ary condition is maintained at the initial value. Simulations are
performed during 5 days.

In a first time, the example of van Dam and Feddes (2000) has
been simulated. A sand soil corresponding to soil 11 in Table 6 is
selected and the initial condition corresponds to a uniform satura-
tion (h/hs) of 44.4%. The cumulative evaporation (Qev) and the time
to drying (td) are close to the results reported by Szymkiewicz
(2009). Then, a soil column of 500-cm-deep is considered. The soil
layer, the initial saturation condition and the mesh size are chan-
ged to test the monotonicity of the numerical method using differ-
ent conductivity averaging techniques. Hence, for the sand soil
used by van Dam and Feddes (2000) (soil no. = 11 in Table 6),
monotonic solutions are obtained except with the combinaison
of the arithmetic average, an initial pressure head of value hinit =
�11 cm and a nodal spacing of 50 cm. Initial saturations equal or
greater than 45% for the soil no. = 1 lead to unphysical oscillations
when using the arithmetic mean (with Dz P 5 cm) or geometric
mean (with Dz P 10 cm). For the sandy loam no. 2, the critical ini-
tial saturation is around 73%. For hini = �14 cm and Dz P 25 cm,
oscillations appear in the evaporation front both the arithmetic
and geometric averages. Fig. 7 depicts the profiles of water content
with a nodal spacing of 25 cm, an initial saturation of 45% and after
5 days of evaporation. Results differences due to the various con-
ductivity averaging techniques can be observed at the surface of
the column because of the variable boundary condition applied
and also at the lower part of the soil profile. Arithmetic and geo-
metric means exhibit large oscillations contrarily to the upstream
mean, the optimized algorithm of Szymkiewicz (2009) and the
switching algorithm MS1 which produce monotonic solutions. This
trend has been confirmed for the numerous simulations performed
with different types of soil, mesh sizes and initial condition. The
cumulative evaporation (Qev) and the time to drying (td) are
Fig. 5. Test case 2: pressure head profiles at time t = 30 h for the drainage process in
soil 5 obtained with different averaging methods and the proposed MS1 algorithm.
reported in Table 8. These results show that the switching algo-
rithm MS1 provides separate solutions of the upstream mean.

4.2.5. Test problem 5: 2D infiltration in an initially dry sand soil
For multidimensonnal problems, only a few studies have inves-

tigated the effect of the equivalent conductivity on the monotonic-
ity and/or accuracy (for instance, Forsyth and Kropinski, 1997;
Szymkiewicz and Burzyński, 2011). This problem is studied to eval-
uate the new algorithm in 2D. We consider a domain of 3 m wide
by 3 m deep constituted by sand (soil no. = 1 in Table 6) and char-
acterized by the modified van Genuchten model with an air entry
pressure of 2 cm. The medium is initially dry (hinit = �1000 cm) and
impermeable conditions are applied for all boundaries, except on
the top left hand corner (0 6 x 6 2 m and z = 0m) where the infil-
tration flux is fixed to Q = 2.5 m/day. The infiltration process occurs
over 7 days, and the time step size varies heuristically between
1 � 10�3 s and 360 s.

For discretization consisting in quadrangular elements, two
grids of 144 elements (25 cm � 25 cm) and 576 elements
(12.5 cm � 12.5 cm) respectively are used. A fine grid solution
has been computed by considering a 14,400-elements-mesh
(2.5 cm � 2.5 cm). For rectangular elements, the M-matrix prop-
erty cannot be verified (Belfort et al., 2009). Hence, this test case
allows testing the ability of the different averaging techniques to
produce monotonic results. For the computation of equivalent
conductivity with the algorithm of Szymkiewicz (2009), a vertical
Fig. 6. Test case 3: saturation profiles obtained (a�) at different times with the
standard averaging techniques and (b�) after 7.5 days of infiltration with the
standard methods and the new algorithms.



Fig. 7. Test case 4: water content profiles obtained after 5 days of evaporation
under variable upper boundary condition and with a nodal spacing of 25 cm.

Fig. 8. Test case 5: water content profiles (at the position x = 100 cm) after 1–4 and
7 days of infiltration for lumped MHFE formulations and various averages. (a�)
Refers to the grid of 576 elements and (b�) to the grid of 144 elements.
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conductivity is determined by using the one-dimensional opti-
mized formulation (see appendix) and a horizontal conductivity
is estimated with the integrated mean. These intermediate conduc-
tivities are computed with edges pressure head values. Since the
MHFE method involves a single approximation per cell, the
equivalent conductivity corresponds to the maximum of the two
intermediate conductivies. Fig. 8 illustrates the water content
profiles on a vertical segment located at x = 1 m at different times.
The arithmetic mean contains oscillations for both grid sizes at
time equal to 4 and 7 days. The new algorithm removes these
unphysical extremum. Additionally, it appears that the upstream
formulation and optimized approach of Szymkiewicz are both free
from oscillation. h-RMSE of the different solutions along the verti-
cal segment are given in Table 9 at different times. The adaptation
of the optimized algorithm runs and produces accurate results.
Switching algorithm MS1 improves the accuracy of the solutions
compared to upstream formulation and leads to specific solutions.
With the coarser grid, the solutions obtained with Karit MS1 and Kup
Table 8
Results of numerical simulations for test case 4 after 5 days of evaporation: Qev the
cumulative evaporation and td the time to drying.

Dz = 25 cm Dz = 50 cm

Qev (m) td (d) Qev (m) td (d)

Kup 2.385E�02 4.551E+00 2.500E�02 >5
Kszym 9.411E�03 1.895E+00 1.870E�02 3.760E+00
Kgeom MS1 1.762E�02 1.635E+00 2.485E�02 4.189E+00
Kgeom 8.099E�03 1.635E+00 1.520E�02 3.060E+00
Karit MS1 2.034E�02 3.518E+00 2.500E�02 >5
Karit 1.899E�02 3.441E+00 2.500E�02 >5

Dz = 5 cm Dz = 10 cm

Kup 8.951E�03 1.340E+00 1.341E�02 2.196E+00
Kszym 2.859E�03 4.921E�01 4.283E�03 8.019E�01
Kgeom MS1 2.470E�03 4.955E�01 6.043E�03 7.692E�01
Kgeom 2.470E�03 4.955E�01 3.845E�03 7.692E�01
Karit MS1 7.578E�03 1.132E+00 1.134E�02 1.758E+00
Karit 7.570E�03 1.132E+00 1.092E�02 1.758E+00

Dz = 1 mm Dz = 1 cm

Kup 3.429E�03 3.204E�01 4.757E�03 5.771E�01
Kszym 8.639E�04 2.156E�01 1.625E�03 3.117E�01
Kgeom MS1 7.088E�04 2.134E�01 1.465E�03 2.927E�01
Kgeom 7.088E�04 2.134E�01 1.465E�03 2.927E�01
Karit MS1 3.317E�03 3.023E�01 4.253E�03 5.092E�01
Karit 3.317E�03 3.023E�01 4.253E�03 5.107E�01

Table 9
Error computation for the 2D test case: h-RMSEDz along the vertical segment (x = 1 m)
for the different conductivity averaging methods and the switching algorithm MS1 at
different times during the simulation.

Dx = Dz = 12.5 cm

1 day 4 days 7 days

Karit 5.82E�03 6.14E�03 7.32E�03
Kszym 4.62E�03 4.73E�03 5.07E�03
Kup 8.07E�03 8.42E�03 8.25E�03
Karit MS1 5.74E�03 8.31E�03 8.24E�03

Dx = Dz = 25 cm

Karit 9.39E�03 1.01E�02 1.20E�02
Kszym 8.82E�03 8.89E�03 9.53E�03
Kup 1.12E�02 1.19E�02 1.22E�02
Karit MS1 9.76E�03 1.17E�02 1.22E�02
are close to each other, mainly at the finale time due to the
enlargement of the wetting front and the monotonicity difficulties.

The test case has also been solved with a discretization into tri-
angular elements. A mesh of 225 triangles allows us to study the
different formulations compared to a fine mesh solution obtained
with 7419 elements. The optimized algorithm is adapted on each
cell also by computing to intermediate conductivities. The first step
consists in selecting the two edges where the piezometric head is
maximum and minimum. Then, Szymkiewicz’s formulation is
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Fig. 9. Test case 5: isolines of water content obtained after 7 days of infiltration on
triangular meshes with the different averaging techniques.
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applied by considering the projection of these two points along the
vertical axis. The second intermediate conductivity is the inte-
grated mean constrained by both selected pressure head edge val-
ues. The maximum value is kept as the cell equivalent
conductivity. If the selected points have the same height, only
the second intermediate value is computed. Fig. 9 depicts isolines
results obtained after 7 days of infiltration. During the simulation
on the coarse grid, the arithmetic formulation provides oscillations
and then the upstream mean and the switching algorithm MS1
give rather similar results.

5. Summary and conclusions

This study focuses on the issue of monotonicity when solving
variably saturated flow problems modeled by the non-linear RE.
Instead of specifically considering the M-matrix property, the crite-
ria developed by Forsyth and Kropinski (1997) has been used to
investigate the monotonicity because it also takes into account
the conductivity-averaging method. In the first part of the article,
different estimations of Keq. have been presented, including the
Darcian mean approximation and optimized algorithm based on
the importance of the gravity force (Baker, 2006; Szymkiewicz,
2009). Then, we demonstrate that the integrated formulation re-
mains free from oscillation in the horizontal direction. This result
corroborates the conclusion of Pei et al. (2012). The criterion of
Forsyth and Kropinski (1997) shows that the upstream method
would be the unique unconditional monotonic formulation. We
demonstrate that the optimized algorithm developed by Szymkie-
wicz (2009) satisfy the monotonicity condition for infiltration. To
conclude the theoretical part of the study, two switching algo-
rithms are proposed. Both apply the upstream mean if a monoto-
nicity test is not fulfilled during the iterative process for the
solution produced by the chosen formulation. In the first approach
(MS1), we verify that no unphysical extremum appears in the inte-
rior homogeneous part of the domain (without sink/source term).
The second algorithm (MS2) adapts the conductivity in function
of Forsyth and Kropinski’s condition (Eq. (8) (b)).

Various numerical test cases using different material properties,
flow conditions and grid sizes are solved. The following concluding
remarks can be formulated:

� The M-matrix criterion is not sufficient to guaranty monotonic-
ity, and the derivatives of the final matrix system have to be
taken into account, which yields a condition dependent on the
estimation of the conductivity. This statement holds true for
all numerical methods and is not specific to finite volume
approach.
� Only the upstream formulation satisfies the monotonicity con-

dition for all tested situations. In fact, by comparing our two
algorithms, we show that the criterion of Forsyth and Kropinski
(1997) is sufficient but not necessary. On the one hand, the use
of the upstream mean is reduced with the first approach (MS1)
compared to the second one (MS2). On the other hand, punctual
applications of the upstream mean allow to ‘‘stabilize’’ the
solution.
� The deficiencies of traditional averaging techniques have been

observed mainly when the nodal spacing increases. Because
the upstream formulation is often considered as a diffusive
technique, our algorithms represent an alternative solution.
Szymkiewicz’s algorithm gives very efficient results; oscilla-
tion-free solutions have been obtained during the iterative pro-
cess and not only at selected printing times.
� MS1 algorithm has been implemented in a 2D lumped MHFE

method and tested on rectangular and triangular meshes. An
andaptation of the optimized algorithm for MHFE equivalent
conductivity has also been developed. Preliminar results are
satisfactory and avoid unphysical oscillations.

The optimized algorithm developed by Szymkiewicz (2009) is a
suitable technique to adapt automatically the conductivity in func-
tion of the considered 1D unsaturated flow problem. This tech-
nique prevents the development of unphysical oscillations in the
solutions of all the test cases performed. Nonetheless, a generaliza-
tion to different numerical methods in 2D and 3D can be challeng-
ing especially for complex/anisotropic geometries (Szymkiewicz,
2013). Beyond the interest of using our switching algorithm MS1
to investigate the issue of monotonicity and relativize the necessity
of satisfying the monotonicity criterion of Forsyth and Kropinski
(1997), its possible implementation in any numerical code makes
it a suitable safety subroutine to avoid oscillations.

Appendix A. Description and motonicity analysis of
Szymkiewicz’s algorithm

A.1. Presentation of the algorithm and modification

Szymkiewicz (2009) considers that the parameter v which rep-
resents the cosine of the angle between the z axis and the direction
of the gravity force is positive. It means that the angle should be
comprised between �p/2 and p/2. Hence, the algorithm has to
be modified to handle all the situations encountered when using
a computational code. For instance, a positive upward vertical z
axis would lead to numerical difficulties (see description in
Fig. 2) and the following modifications will be appreciated.

Notations: Dh = Dhji = hj � hi, Dz = Dzji = zj � zi, U (respectively
L) refers to upper (respectively lower) node.

Preliminary: variable ordering to identify upper and lower
nodes
if (vDz > 0) then

hU ¼ hi

hL ¼ hj
else
hU ¼ hj

hL ¼ hi
end if

KU = K (hU)
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Case 0: Horizontal flow
if (v = 0) then
if (Dh = 0) then

Keq ¼ KU
else Z

Keq ¼ ½hi � hj��1

:
hi

hj

KðhÞ:dh
end if
return
end if

Case 1: Uniform or hydrostatic distribution
if (Dh = 0 or Dh = vDz) then

Keq ¼ KU

Case 2: Downward flow

Situation 1: Infiltration
else if Dh
vDz < 0
� �

then

Keq ¼ maxðK1;K2Þ with

K1 ¼
½hU � hL��1 �

R hU
hL

KðhÞ � dh if hL – hU

KðhUÞ if hL ¼ hU

8>><
>>:

K2 ¼ vKU

v�Dh
Dz

8>>>>>><
>>>>>>:

ðA:1Þ
Situation 2: Drainage
else if Dh
vDz < 1
� �

then

Keq ¼ minðK1;K2Þ with
K1 ¼ vKU

v�Dh
Dz

K2 ¼ K hL � Dh2

jvDzj

� �
8<
: ðA:2Þ
Case 3: Upward flow (Capillary rise)

else

Keq ¼
jDzj � K1 � K2

½ðjDzj � Dz1Þ � K1 þ Dz1 � K2�
with
K1 ¼ ½ðhL � jvDzjÞ � hU ��1 �
Z hL�jvDzj

hU

KðhÞ � dh

K2 ¼ KðhL � jvDzjÞ

Dz1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dh2 þ 4� K2

K1
� 1

� �
� v� Dh� vDzð Þ � Dz

r
� jDhj

2� jvj � K2
K1
� 1

� �

end if
A.2. Monotonicity analysis

In this section, we consider that the upper node (subscript U)
can be either node j or node i and, to simplify the presentation,
we assume that the M-matrix criterion is fulfilled (cij 6 0).

For infiltration problem:
When using expression K2 of Eq. (1), we obtain Eq. (3) which is

always negative.
Notice that two expressions can be distinguished (subscripts U

and L identify the upper and lower nodes respectively):
if hj ¼ hL then cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ Anþ1

ij ¼ 0

if hj ¼ hU then cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ Anþ1

ij ¼ cijKsvDzij
@Kj

@hj

8>><
>>:

ðA:3Þ

Besides, expression K1 in Eq. (A.1) leads to the following expression:

cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ Anþ1

ij ¼ cijKs Kj �
vDzji

Dhji
ðKj � Kr;eqÞ

� 	
6 0

ðA:4Þ

Which is conditionally negative. Actually, monotonicity of this
expression would require:

Kj �
vDzji

Dhji
ðKj � Kr;eqÞ

� 	
P 0 ðA:5Þ

For infiltration, i.e. Dh
vDz < 0, Eq. (A.5) implies:

Kr;eq ¼
1

Dhji

Z hj

hi

KðhÞdh 6 Kj 1� Dhji

vDzji


 �
ðA:6Þ

If j corresponds to the lower node and for a large nodal spacing, the
integrated formulation can violate Eq. (A.6).

In Szymkiewicz (2009), since Keq corresponds to the maximum
of K1 and K2, we demonstrate that the monotonicity condition is
therefore fulfilled.

cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ Anþ1

ij ¼ cijKs Kj �
vDzji

Dhji
ðKj � Kr;eqÞ

� 	

Since the hydraulic interblock conductivity is computed from Eq.
(A.1), we expect:

Kr;eq P vKU

v�Dh
Dz

and then:

Ks
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ KsKr;eq P Ks Kj �

vDzji

Dhji
Kj �

vKU

v� Dh
Dz

 !" #

ðA:7Þ

Using KU P Kj in Eq. (A.7) leads to:

Ks
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ KsKr;eq P KsKj 1� vDzji

Dhji
1� v

v� Dh
Dz

 !" #

¼ KsKj 1þ 1
1� Dh

vDz

" #
ðA:8Þ

Since Dh
vDz < 0 then Eq. (A.8) gives:

cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j � Hnþ1

i

� �
þ Anþ1

ij < 0

Consequently, the expression of Eq. (A.1) should respect the mono-
tonicity condition of Eq. (8).

For drainage problem:
As mentioned for the infiltration case, using expression K2 of Eq.

(A.2) allows to satisfy the monotonicity condition.

If Kr;eq ¼ K hL � Dh2
LU

jvDzLU j

� �
¼ KðheqÞ, the following equation can be

deduced:

if hj ¼hL then

cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j �Hnþ1

i

� �
þAnþ1

ij ¼ cijKs Kr;eqþðDhji�vDzjiÞ 1�2 Dhji

jvDzji j

� �
@Kr
@h jheq

h i
if hj ¼hU then

cijKs
@Kr;eq

@hnþ1
j

Hnþ1
j �Hnþ1

i

� �
þAnþ1

ij ¼ cijKs Kr;eqþ2 Dhij

jvDzij j
ðDhji�vDzjiÞ@Kr

@h jheq

h i

8>>>>>>>><
>>>>>>>>:

ðA:9Þ
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For hj = hL, it appears that the sign of Eq. (A.9) depends on the values
of the conductivity and its derivative, specifically when
0 6 Dhji <

jvDzji j
2 .

Keq corresponds to the minimum of K1 and K2(Eq. (A.2)), but
contrarily to infiltration case, it is not possible to establish the
monotonicity of the scheme.

Hence, these theoretical developments are completed by
numerical investigations.
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Kuráž, M., Mayer, P., Lepš, M., Trpkošová, D., 2010. An adaptive time discretization
of the classical and the dual porosity model of Richards’ equation. J. Comput.
Appl. Math. 233 (12), 3167–3177.

Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I.,
Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through
infiltration experiments—BEST. Soil Sci. Soc. Am. J. 70 (2), 521–532.

Lehmann, F., Ackerer, Ph., 1998. Comparison of iterative methods for improved
solutions of the fluid flow equation in partially saturated porous media. Trans.
Porous Media 31 (3), 275–292.

Lott, P.A., Walker, H.F., Woodward, C.S., Yang, U.M., 2012. An accelerated Picard
method for nonlinear systems related to variably saturated flow. Adv. Water
Resour. 38, 92–101.

Loudyi, D., Falconer, R.A., Lin, B., 2007. Mathematical development and verification
of a non-orthogonal finite volume model for groundwater flow applications.
Adv. Water Resour. 30 (1), 29–42.

Manzini, G., Ferraris, S., 2004. Mass-conservative finite volume methods on 2-D
unstructured grids for the Richards’ equation. Adv. Water Resour. 27 (12),
1199–1215.

Miller, C.T., Williams, G.A., Kelley, C.T., Tocci, M.D., 1998. Robust solution of
Richards’ equation for nonuniform porous media. Water Resour. Res. 34 (10),
2599–2610.

Milly, P.C.D., 1985. A mass-conservative procedure for time-stepping models of
unsaturated flow. Adv. Water Resour. 8 (1), 32–36.

Neuman, S.P., 1972. Finite element computer programs for flow in saturated-
unsaturated porous media. Second annual report, A10-SWC-77, Hydraul. Eng.
Lab., Technion, Haïfa, Israël.

Oldenburg, C.M., Pruess, K., 1993. On numerical modeling of capillary barriers.
Water Resour. Res. 29 (4), 1045–1056.

Pan, L., Warrick, A.W., Wierenga, P.J., 1996. Finite element methods for modeling
water flow in variably saturated porous media: numerical oscillation and mass-
distributed schemes. Water Resour. Res. 32 (6), 1883–1889.

Pei, Y.S., Yang, Z.F., Zhang, K.J., Tian, B.H., 2012. Deficiency of approximate interblock
conductivities for simulation of horizontal unsaturated flow. Transp. Porous
Med. 91, 627–647.

Rathfelder, K., Abriola, L.M., 1994. Mass conservative numerical solutions of the
head-based Richards equation. Water Resour. Res. 30 (9), 2579–2586.

Rawls, W.J., Brakensiek, D.L., Saxton, K.E., 1982. Estimation of soil water properties.
Trans. ASAE 25 (5), 1316–1320.

Romano, N., Brunone, B., Santini, A., 1998. Numerical analysis of onedimensional
unsaturated flow in layered soils. Adv. Water Resour. 21 (4), 315–324.

Russo, D., 1988. Determining soil hydraulic properties by parameter estimation: On
the selection of a model for hydraulic properties. Water Resour. Res. 24 (3),
453–459.

Sandhu, R.S., Liu, H., Singh, K.J., 1977. Numerical performance of some finite
element schemes for analysis of seepage in porous elastic media. Int. J. Numer.
Anal. Methods Geomech. 1 (2), 177–194.

Schaap, M.G., Leij, F.J., 2000. Improved prediction of unsaturated hydraulic
conductivity with the Mualem–van Genuchten model. Soil Sci. Soc. Am. J. 64
(3), 843–851.

Schnabel, R.R., Richie, E.B., 1984. Calculation of internodal conductancess for
unsaturated flow simulations: a comparison. Soil Sci. Soc. Am. J. 48 (5), 1006–
1010.

Schweizer, B., 2012. The Richards equation with hysteresis and degenerate capillary
pressure. J. Differ. Equations 252 (10), 5594–5612.
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