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A B S T R A C T   

For cyclic injection-extraction wells with various radial flow geometries, we study the transport and recovery of 
solute and heat. We derive analytical approximations for the recovery efficiency in closed-form elementary 
functions. The recovery efficiency increases as injection-extraction flow rates increase, dispersion decreases, and 
spatial dimensionality decreases. In most scenarios, recovery increases as cycle periods increase, but we show 
numerically and analytically that it varies non-monotonically with cycle period in three-dimensional flow fields, 
due to competing effects between diffusion and mechanical dispersion. This illustrates essential differences be
tween the spreading mechanisms, and reveals that for a single well it may be impossible to optimize recovery of 
both solute and heat simultaneously. Whether retardation increases or decreases recovery thus depends on 
aquifer geometry and the dominant dispersion process. As the dominant dispersion process heavily determines 
the sensitivity of the recovery efficiency to other parameters, we introduce the dimensionless kinetic dispersion 
factor ST , to distinguish whether diffusion or mechanical dispersion dominates. We also introduce the geometric 
dispersion factor G, which is derived from our full solution for the recovery efficiency and improves upon the 
concept of the area-to-volume ratio (A/V), often used in analysing well problems. Unlike A/V, G accounts for 
spatio-temporal interactions between dispersion and flow field geometry, and can be applied to determine re
covery efficiencies across a wider range of scenarios. It is found that A/V is a special case of G, describing the 
recovery efficiency only when mechanical dispersion with linear velocity dependence is the sole mechanism of 
spreading.   

1. Introduction 

Wells in geological porous media are used in cyclic injection- 
extraction processes, otherwise named push–pull processes, in many 
applications. These include Aquifer Thermal Energy Storage (ATES) 
(Lee, 2010), Aquifer Storage and Recovery (ASR) (Lowry and Anderson, 
2006), subsurface irrigation with excess moisture drainage (Narain-Ford 
et al., 2020), hydraulic fracturing (Penny et al., 1983), air sparging (van 
Dijke and van der Zee, 1998), aquifer characterization (Istok et al., 1997; 
Haggerty et al., 1998; Schroth et al., 2000; Gouze et al., 2008; Anderson, 
2005), the treatment of drinking water production aquifers (Van Halem 
et al., 2011), and gasoline spill remediation (van Dijke and van der Zee, 
1998). Natural forces also drive oscillatory environmental flows: coastal 
aquifers experience oscillatory flows due to tidal, seasonal and glacial 
cycles, resulting in the oscillatory transport of salinity (Pool et al., 2016) 
across freshwater lenses. Another example of oscillatory environmental 
flow is barometric pumping: subsurface gases and vapors are 

periodically drawn upwards and forced downwards due to seasonal 
variations in atmospheric pressure (Stauffer et al., 2019; Nilson et al., 
1991; Scotter and Raats, 1968). Oscillatory flows also result from a 
combination of human and natural factors. For example, soils in semi- 
arid regions receive sodium ions from capillary rise in the dry season, 
which are subsequently flushed downwards by infiltrating rain and 
irrigation (van de Craats et al., 2020; van der Zee et al., 2014). 

In many of these oscillatory flow problems, an interface separates 
two bodies of water of different quality, a classical example being the 
freshwater lens. With aquifer storage systems, the interface separates the 
injected freshwater or hot water from background groundwater. A 
chemical or thermal gradient, which undergoes transport due to 
advection and hydrodynamic dispersion, is responsible for the differ
ence in water quality across the interface. In light of the wide variety of 
applications, especially regarding water, environmental, and energy 
sustainability, fundamental research into the general behavior of solute 
and heat transport under oscillatory conditions has recently received a 
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significant amount of engagement (e.g. Laemmel et al., 2019; Stauffer 
et al., 2019; van Duijn and van der Zee, 2018; Dey and Sekhar, 2014; 
Pauw et al., 2016; Sanz-Prat et al., 2016; Cirkel et al., 2015; Eeman et al., 
2017; Wang and Chen, 2015; Lu et al., 2011). Amongst the various 
oscillatory flow scenarios, managed aquifer recharge systems such as 
ASR and ATES are unique in that they are concerned with not only the 
spreading of solutes and heat in the subsurface, but also the recovery of 
freshwater or heat. 

In this study, we characterize the performance of aquifer storage 
systems. A key performance metric of an injection-extraction system is 
the recovery efficiency of injected solutes or heat, which is the propor
tion of injected solute mass or thermal energy that can be recovered 
during the extraction phase. Solutes and heat spread around the injected 
water front due to hydrodynamic dispersion processes, that are partly 
advection velocity-dependent, such as mechanical pore-scale dispersion, 
and partly velocity-independent, such as molecular and thermal diffu
sion. The types of dispersion process that occur, the relative strengths of 
the dispersion processes, the strength of dispersion relative to advection, 
and a number of other factors such as flow field geometry and injection 
rate determine the recovery efficiency. We employ analytical methods to 
derive simple solutions for the recovery efficiency as a function of these 
parameters, and discuss the implications of well design, well operational 
parameters, and aquifer characteristics on the recovery efficiency. 

2. Literature review 

Many prior analytical characterizations of injection-extraction sys
tems make use of exact solutions (e.g. Yang et al., 2010; Yates, 1990; 
Chen, 1987; Veling, 2012; Aichi and Akitaya, 2018), and are valid for 
specific scenarios. For example, they might apply only to specific flow 
field geometries, or omit either mechanical dispersion or molecular 
diffusion. Some, giving non-closed form functions that require numeri
cal integration, may be somewhat less transparent for directly 
comparing different geometrical or dispersion properties. Furthermore, 
no exact analytical solutions are available for some scenarios such as 
wells modelled as point sources. Quite a number of analytical solutions 
are available, including studies with closed-form analytical solutions (e. 
g. Pophillat et al., 2020a; Gelhar and Collins, 1971), but they currently 
describe only the spatial distribution of concentration and temperature, 
but not the recovery efficiency. A large body of literature on direct nu
merical simulations of the recovery efficiency exists, (e.g. Doughty et al., 
1982; Sommer et al., 2013; Sommer et al., 2015; van Lopik et al., 2016; 
Bloemendal and Hartog, 2018; Pophillat et al., 2020a; Pophillat et al., 
2020b). However, such numerical studies are computationally intensive 
and specific to certain combinations of parameter values and aquifer 
geometry, which makes their findings difficult to generalize. To over
come these limitations, we turn to analytical approximations to describe 
the recovery efficiency with elementary mathematical functions. Such 
closed-form analytical approximations allow for straightforward sensi
tivity analysis, rapid evaluation of a vast parameter space, and identi
fication of suitable regions within parameter space for further in-depth 
investigation with more exact methods. They also give more insight in 
synergistic and antagonistic effects of different parameters, and they are 
fast to evaluate. 

The area-to-volume ratio (A/V) is a popular approximate method for 
estimating the recovery efficiency of radial transport systems (e.g. 
Sommer et al., 2015; Schout et al., 2014; Novo et al., 2010; Forkel and 
Daniels, 1995). It is based on a simple principle: in three spatial di
mensions “the volume of a storage unit increases as the cube of the 
characteristic dimension (i.e. storage radius), and its area for heat loss 
increases as the square, so increasing the size reduces the loss-to- 
capacity ratio” (Duffie and Beckman, 2013). Similar considerations 
apply to problems of any number of spatial dimensions. However, the A/ 
V is a purely geometric argument that does not consider other factors 
within the system, such as those previously described. These other as
pects of the system also interact with flow field geometry in determining 

the recovery efficiency, thus the validity of the A/V ratio in character
izing recovery efficiency hinges upon these other factors. For instance, 
the evolution of the A/V ratio with time depends on the flow field ge
ometry and injection rate at the well, and so does the Peclet number 
(Kim et al., 2010). While the A/V ratio might decrease over time as the 
storage radius increases and indicate a larger recovery efficiency, the 
magnitude of dispersion relative to advection might in some cases in
crease with the storage radius thereby suggesting a smaller recovery 
efficiency. Therefore, the A/V ratio as an indicator of recovery efficiency 
ignores aspects of complexity that are instrumental to the problem. 

Gelhar and Collins’ (1971) classical model of concentration profiles 
around injection wells remains instrumental today in characterizing 
aquifer-well systems (Pophillat et al., 2020a). Furthermore, Gelhar and 
Collins’ model for the concentration profiles continues to be applied and 
modified in recent years (e.g. Shi et al., 2020; Guimerà et al., 2007; 
Schroth and Istok, 2005). Hence, we derive approximate solutions for 
the recovery efficiency, taking into account the interactions between 
flow field geometry, hydrodynamic dispersion, and the recovery effi
ciency, that are ignored with the A/V ratio, by extending the model of 
Gelhar and Collins (1971), and validating our analytical results with 
numerical models. For notational convenience and brevity, we proceed 
with solute transport terminology. Under the assumption that density 
differences induced by chemical and thermal gradients are negligible, 
the analysis is mathematically analogous and fully applicable to heat 
transport (Lee, 1998). 

3. Methods 

In homogeneous aquifers with negligible background flow, flow 
fields around wells can be described as radially axisymmetric flow 
around a point source. Radial flow in one, two, and three dimensions 
implies a linear, disk-shaped, and spherical flow field, respectively. 
These three radial geometries correspond respectively to d = 1,2, 3 in 
the mathematical construct of a d-dimensional sphere. The radially 
axisymmetric advection–dispersion equation (ADE) describing conser
vative solute and heat transport in any number of dimensions is (Gelhar 
and Collins, 1971) 

∂c
∂t

= αv
∂2c
∂r2 − v

∂c
∂r

+Dm

(
∂2c
∂r2 −

1
v

∂v
∂r

∂c
∂r

)

, (1)  

where r is the radial positional coordinate, c is the dimensionless con
centration of the solute, t is time, v is the flow velocity, α is the longi
tudinal mechanical dispersivity, and Dm is the molecular (or thermal) 
diffusion coefficient. Chemical and thermal retardation is implicitly 
considered, as it implies only a linear re-scaling of time. 

The pore water velocity v(r), and therefore also the mechanical 
dispersion, is position-dependent for d > 1 in view of mass continuity, 
where d denotes dimensionality. For d-dimensional axisymmetric radial 
flow, 

v(r, d) =
Ad

rd− 1, (2)  

Ad =
Q
θ

⎡

⎢
⎢
⎣

2πd
2

Γ
(

d
2

)

⎤

⎥
⎥
⎦

− 1

, (3)  

where θ is the porosity, Q is the injection or extraction rate, Ad is the 
d-dependent shape constant, where the term in square brackets is the 
surface area of a d-dimensional sphere of unit radius, and Γ is the gamma 
function. Essentially, (2) and (3) force mass continuity by requiring that 
the rate of volumetric expansion (contraction) of the body of injected 
water is equal to the injection (extraction) rate. 

In practice, for injection/extraction in groundwater aquifers, the d =

2 situation of a fully penetrating well seems to be quite common. The 
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confining layers below and on top of the aquifer may affect the flow 
pattern somewhat if they are not completely impermeable. For leaky 
aquifers or wells that do not penetrate fully, a d = 3 point injection may 
be a more appropriate limiting case. The one-dimensional d = 1 case 
reflects an infinite row of fully penetrating wells, in which case the flow 
of injected water occurs rectilinearly along one dimension (e.g. Molinari 
and Peaudeceff, 1977; Sauty, 1977). A graphic illustration of these flow 
field geometries is presented in Fig. 1. Note that although Fig. 1 illus
trates 3D rectangular and cylindrical flow fields for the 1D and 2D cases 
respectively for the sake of visualization, these cases are identical to 1D 
line and 2D disk flow fields under the assumption that no dispersion or 
flow occurs into the confining layers. 

Substituting the hydrodynamic dispersion coefficient 

D(r) = Dm +αv(r), (4)  

into the ADE (1) allows us to rewrite the ADE in a simpler form: 

∂c
∂t

= D(r)
∂2c
∂r2 +

[

(d − 1)
Dm

r
− v(r)

]
∂c
∂r
. (5) 

In the base model scenario, at the well, a duration T of injection rate 
Q alternates with the same duration T of extraction rate − Q, in a step- 
cyclic manner in a d-dimensional infinite domain. We henceforth refer 
to this base scenario as the standard cycle. The standard cycle consists of 
equal volumes of injected and extracted water during each phase, Vin =

Vex. Later, we also investigate the effects of varying the ratio of 
extraction to injection volume. The flow field achieves steady-state 
instantaneously upon switching between injection or extraction. The 
well injects a total mass M = c0QT of solute, and recovers Mr(i), over the 
i-th injection period. Therefore, the recoverable proportion Fr of solute 
over the i-th injection-extraction cycle is 

Fr(i) =
Mr(i)

M
. (6) 

The cumulative solute recovery efficiency after n cycles, Fc, is 

Fc(n) =
1
n

∑n

i=1

Mr(i)
M

=
1
n

∑n

i=1
Fr(i). (7) 

The initial and boundary conditions that describe this problem are 

c(r, 0) = 0, (8)  

c(0, t)in = c0, (9)  

∂c
∂r
(0, t)ex = 0, (10)  

where subscripts in and ex refer to the injection and extraction phases 
respectively. For analytical tractability, we disregard heterogeneity and 
interactions with the overlying or underlying low hydraulic conductivity 
layers and flow driven by density gradients, and comment on these 
simplifications at the end. We also disregard storage periods, where the 
injection and extraction phases are separated by a period where neither 
occurs. 

Numerical simulations were performed using MODFLOW-2005 
(Harbaugh, 2005) and MT3DMS (Langevin and Guo, 2006), for flow 
and solute transport, respectively. For the computation of the flow field, 
the initial hydraulic head in the entire domain was set to a uniform 
value. The boundaries of the numerical domain are set as uniform 
constant-head boundaries, which imply an absence of background flow. 
The geometry of the numerical domains are identical to that of the flow 
field being modelled (i.e. line-, disc-, and sphere-shaped domains for 1D, 

Fig. 1. Conceptual image of (left) 1D, (middle) 2D, and (right) 3D radial flow in 
a horizontal aquifer. 

Table 1 
List of variables. The symbols L, T and M under units represent units of length, 
time and mass respectively.  

Symbol Units Description 

Ad  [LdT− 1] Shape constant 
b  Varies Placeholder in equation 22 
c  [ML− d] Solute concentration 
c0  [ML− d] Injected solute concentration 
ccrit  [ML− d] Critical solute concentration 
d  [–] Dimensionality 
D  [L2T− 1] Hydrodynamic dispersion coefficient 
Dm  [L2T− 1] Molecular diffusion coefficient 
Fc  [–] Cumulative recovery efficiency 
Feff  [–] Effective recovery efficiency 
Fr  [–] Recovery efficiency 
G  [LxdTy− x] Geometric dispersion factor 
i  [–] i-th cycle 
m  [M] Solute mass lost by the end of the injection phase 
mc  [M] Solute mass lost by the end of a cycle 
M  [M] Injected solute mass 
Mr  [M] Recovered solute mass 
n  [–] Number of cycles 
Q  [LdT− 1] Injection rate 
r  [L] Radial coordinate 
r’  [L] Hydraulic front position 
rm  [L] Storage radius 
ST  [–] Kinetic dispersion factor 
t  [T] Time 
T  [T] Injection duration 
Tm  [T] Injection duration that optimizes Fr in 3D flow fields  
v  [LT− 1] Flow velocity 
V  [Ld] Volume of a d-dimensional sphere 
Vin  [Ld] Injected water volume 
Vex  [Ld] Extracted water volume 
x  [–] Exponent for computing Fr andG  
y  [–] Exponent for computing Fr andG  
z  [–] Exponent for computingFr  

α  [L] Mechanical dispersivity 
Δ  [–] Placeholder in equation (35) 
ζ  Varies Placeholder in equation (35) 
η  [–] Exponent of power-law mechanical dispersion 
θ  [–] Saturation 
ω  [–] Sub-function for the calculation of concentration profiles  
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2D, and 3D, respectively). The solute boundary condition at the edge of 
the domain is 

∂c
∂r

= 0, (11)  

to preserve the continuity of c(r) and minimize dispersive spreading 
caused by the boundary. To minimize the influence of numerical edge 
effects on the transport of water and solutes in a semi-infinite domain 
0 ≤ r < ∞, we placed the boundary sufficiently distant from the source, 
as checked in pilot simulations. Parameter values used in examples 
validated with numerical simulations are, unless otherwise specified, 
Q = 2d, T = 16, α = 0.1, Dm = 0.1, n = 50. An overview of the model 
parameters is presented in Table 1. 

4. Theory 

4.1. Frontal spreading 

The volume of injected water at time t is Vin(t) = Qt, and the position 
of the injected water front (i.e. hydraulic front), is given by 

r’ = (dAdt)
1
d, (t ≤ T)

r’ = (dAd(2T − t) )
1
d. (t > T)

(12)  

where the expression takes on a different form for t > T as injection 
switches to extraction. 

Gelhar and Collins (1971) showed the expression for c(r, t) to be 

c(r, r’(t)) =
1
2
c0erfc

[
rd − r’d

dAd
̅̅̅̅̅̅̅̅̅
4αω

√

]

, (13)  

ω =

∫ r’

0

v(r) + Dm/α
v3(r)

dr. (14) 

The solution for the concentration during the injection phase t ≤ T, 
found by substituting (2), (12) and (14) into (13), is 

c(r, t) =
1
2
c0erfc

⎡

⎢
⎣

(rd − (dAdt) )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4d2α(dAdt)
2d− 1

d

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(3d − 2)(2d − 1)αAd

(3d − 2)αAd + (2d − 1)Dm(dAdt)
d− 1

d

√
⎤

⎥
⎦

(15) 

Expansions of (15) for specific scenarios are given in Table 2. 

4.2. Recovery efficiency 

The dispersion processes ensure that all solute mass or thermal en

ergy that has escaped beyond the hydraulic front is irrecoverable in a 
standard cycle. Let m be this irrecoverable solute mass or thermal en
ergy, at the time when the front is at r’. To quantify m outside r’ during 
the injection phase t ≤ T, we integrate the concentration (15) beyond 
the hydraulic front, as follows: 

m(t) =
∫ V(r=∞)

V(r’)

c(r, t)dV =

∫ ∞

r’
c(r, t)

dV(r)
dr

dr, (16)  

where V(r) is the volume of a d-dimensional sphere of radius r. Inte
grating over r the area of a d-dimensional sphere (see Eq. (3)) gives 

V(r) =
2πd

2

d∙Γ
(

d
2

)rd (17) 

Substituting t = T into (16) yields the total solute mass lost at the end 
of the injection phase:   

Let the storage radius 

rm = r’(T) = (dAdT)
1
d (19)  

be the furthest position of the hydraulic front attained during a cycle. 
Recall that the flow field is modelled as a sequence of successive steady 
states. Since ω is a path integral over the travel history of the hydraulic 
front, and since the indefinite integral in ω during the extraction phase is 
negative of that during the injection phase (Gelhar and Collins, 1971), ω 
for the complete cycle is: 

ω =

∫ rm

0

v(r) + Dm/α
v(r)3 dr −

∫ 0

rm

v(r) + Dm/α
v(r)3 dr = 2

∫ rm

0

v(r) + Dm/α
v(r)3 dr.

(20) 

Repeating the steps from (13) to (18), and using (20) for ω, yields the 
total solute mass that disperses out of the hydraulic front by the end of a 
complete cycle, mc =

̅̅̅
2

√
m. 

The recovery efficiency over a cycle, which is the ratio of mass not 
lost to dispersion, to the total solute or thermal mass injected M, is 
Fr(Q,T) = 1 − mc

M , which yields   

Expansions of (21) for specific scenarios are presented in Table 3. 
We plotted (21) together with the numerical results for the recovery 

efficiency of the first cycle in Fig. 2a and b. The solutions agree excel
lently with the numerical results for all cases, but deviate moderately for 
3D flow fields when molecular diffusion dominates at larger T. In this 

m(t = T) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

(3d − 2)(2d − 1)π

√

(Ad)
− 3

2Qc0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3d − 2)α(Ad)
3d− 1

d (Td)
2d− 1

d + (2d − 1)Dm(Ad)
3d− 2

d (Td)
3d− 2

d

√

(18)   

Fr(Q,T) = 1 −

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

(3d − 2)(2d − 1)π

√

(Ad)
− 3

2T − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3d − 2)α(Ad)
3d− 1

d (Td)
2d− 1

d + (2d − 1)Dm(Ad)
3d− 2

d (Td)
3d− 2

d

√
⎤

⎦ (21)   
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case, (21) is not a proper expression for Fr, because expression (21) 
becomes negative at large T, which is physically impossible. This devi
ation occurs because the approximation (15) is appropriate only when 
the scale of transport due to hydrodynamic dispersion is not larger than 
that of advection (Gelhar and Collins, 1971). In 3D, advective transport 
scales with r’∝t1/3 (see Eq. (12)), and thus so does mechanical disper
sion. In contrast, displacement due to molecular diffusion scale with t1/2 

regardless of dimensionality (Woess, 2000). Therefore, (15) and (21) are 
accurate in all modelled scenarios except in 3D if molecular diffusion is 

dominant. 
Several important characteristics of the system are revealed in (21): 

Fr increases monotonically as Q increases, and as D decreases. 
Remarkably, if α ∕= 0 and Dm ∕= 0, in 1D and 2D Fr increases mono
tonically as T increases, but varies non-monotonically in 3D with a 
maximum. These observations can be explained in further detail, by 
considering the following scenarios, which we will refer to as limiting 
scenarios. 

Notice that the rightmost root term (21) contains the sum of a me
chanical dispersive and a diffusive component. In limiting cases where 

Table 2 
Table of functions describing some limiting cases of transport.  

Limiting 
scenario 

Shape 
constantAd  

Concentration profilec(r, t) Flow 
exponentx  

Period 
exponenty  

Area-to-volume ratio A/ 
V 

Geometric dispersion factorG =

QxTy  

1D 
D = α|v|

A1 =
Q
2θ  

1
2
c0erfc

[
(r − A1t)

̅̅̅̅̅̅̅̅̅̅̅̅̅
4αA1t

√

]

−
1
2  

−
1
2  

2θ(QT)− 1  Q− 1/2T− 1/2  

1D 
D = Dm  

1
2
c0erfc

[
(r − A1t)

̅̅̅̅̅̅̅̅̅̅̅
4Dmt

√

]
− 1  Q− 1T− 1/2  

1D 
D = α

⃒
⃒v2

⃒
⃒ 1

2
c0erfc

⎡

⎢
⎣
(r − A1t)

̅̅̅̅̅̅̅̅̅̅̅̅̅

4αA2
1t

√

⎤

⎥
⎦

0  T− 1/2  

2D 
D = α|v|

A2 =
Q

2πθ  
1
2
c0erfc

[(
r2 − 2A2t

)

(2A2t)3/4

̅̅̅̅̅̅̅̅̅
3

16α

√ ]

−
1
4  

−
1
4  

2
̅̅̅̅̅
πθ

√
(QT)− 1/2  Q− 1/4T− 1/4  

2D 
D = Dm  

1
2
c0erfc

[(
r2 − 2A2t

)

4A2t

̅̅̅̅̅̅̅

A2

Dm

√ ]

−
1
2  

0  Q− 1/2  

2D 
D = α

⃒
⃒v2

⃒
⃒ 1

2
c0erfc

⎡

⎢
⎣

(
r2 − (2A2t)

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

16αA2
2t

√

⎤

⎥
⎦

0  
−

1
2  

T− 1/2  

3D 
D = α|v|

A3 =
Q

4πθ  
1
2
c0erfc

[(
r3 − 3A3t

)

(3A3t)5/6

̅̅̅̅̅̅̅̅̅
5

36α

√ ]

−
1
6  

−
1
6  3

(
4πθ
3

)1
3
(QT)− 1/3  

Q− 1/6T− 1/6  

3D 
D = Dm  

1
2
c0erfc

[(
r3 − 3A3t

)

(3A3t)7/6

̅̅̅̅̅̅̅̅̅̅̅̅

7A3

36Dm

√ ]

−
1
3  

1
6  

Q− 1/3T1/6  

3D 
D = α

⃒
⃒v2

⃒
⃒ 1

2
c0erfc

⎡

⎢
⎣

(
r3 − (3A3t)

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

36αA2
3t

√

⎤

⎥
⎦

0  
−

1
2  

T− 1/2   

Table 3 
Expansions of Fr and ST for various scenarios.  

Scenario Single cycle recovery efficiencyFr(Q,T) Kinetic dispersion 
factorST  

d-dimensions 
D = Dm +

α|v|
1 −

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

(3d − 2)(2d − 1)π

√

(Ad)
−
3
2T− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3d − 2)α(Ad)

3d − 1
d (Td)

2d − 1
d + (2d − 1)Dm(Ad)

3d − 2
d (Td)

3d − 2
d

√
⎤

⎦

(3d − 2)αv
(2d − 1)Dm  

1D 
D = Dm +

α|v|
1 −

⎡

⎣

̅̅̅
2
π

√ (
2θ
Q

)3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α
(

Q
2θ

)2
T− 1 + Dm

Q
2θ

T− 1

√ ⎤

⎦

Qα
2θDm  

2D 
D = Dm +

α|v|
1 −

⎡

⎣

̅̅̅̅̅̅̅̅
2

12π

√ (
2πθ
Q

)3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2α
(

Q
πθ

)5
2T− 1/2 + 3Dm

(
Q
πθ

)2

√
√
√
√

⎤

⎦
4α

3Dm

(
Q

4πθT

)1
2  

3D 
D = Dm +

α|v| 1 −

[ ̅̅̅̅̅̅̅̅
2

35π

√ (
4πθ
Q

)3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

7
3

α
(

3Q
4πθ

)8
3T− 1/3 + 5Dm

(
3Q
4πθ

)7
3T1/3

√
√
√
√
√

] 7α
5Dm

(
Q

36πθT2

)1
3  

d-dimensions 
D = Dm +

α
⃒
⃒v2

⃒
⃒

1 −

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

(3d − 2)π

√

(Ad)
−
3
2T− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3d − 2)α(Ad)
3T + Dm(Ad)

3d − 2
d (Td)

3d − 2
d

√
⎤

⎦

(3d − 2)αv2

(d)Dm  

1D 
D = Dm +

α
⃒
⃒v2

⃒
⃒

1 −

⎡

⎣

̅̅̅
2
π

√ (
2θ
Q

)3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α
(

Q
2θ

)3
T− 1 + Dm

Q
2θ

T− 1

√ ⎤

⎦

Q2α
4θ2Dm  

2D 
D = Dm +

α
⃒
⃒v2

⃒
⃒

1 −

⎡

⎣

̅̅̅̅̅̅
2
8π

√ (
2πθ
Q

)3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α
(

Q
πθ

)3
T− 1 + 4Dm

(
Q
πθ

)2
√ ⎤

⎦

α
Dm

(
Q

4πθT

)

3D 
D = Dm +

α
⃒
⃒v2

⃒
⃒

1 −

⎡

⎣

̅̅̅̅̅̅̅̅
2

21π

√ (
4πθ
Q

)3
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

7
9

α
(

3Q
4πθ

)3
T− 1 + 3Dm

(
3Q
4πθ

)7
3T1/3

√
√
√
√

⎤

⎦
7α

3Dm

(
Q

36πθT2

)2
3  

d-dimensions 
D = Dm +

α|vη|
1 −

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

(3d − 2)(3d − 2 + η − ηd)π

√

(Ad)
−
3
2T− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3d − 2)α(Ad)

3d − 2 + η
d (Td)

3d − 2 + η − ηd
d + (3d − 2 + η − ηd)Dm(Ad)

3d − 2
d (Td)

3d − 2
d

√
⎤

⎦

(3d − 2)αvη

(3d − 2 + η − ηd)Dm   
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one hydrodynamic dispersion process completely dominates (i.e. either 
D = α|v| or D = Dm), then (21) simplifies to 

Fr(Q,T) = 1 −
[
b

̅̅̅
α

√
|Qx|Ty ], (22a)  

x = −
1

2d
, (22b)  

y = −
1

2d
, (22c)  

for D = α|v|, and 

Fr(Q,T) = 1 −
[
b

̅̅̅̅̅̅̅
Dm

√
|Qx|Ty

]
, (23a)  

x = −
2

2d
, (23b)  

y =
d − 2

2d
, (23c)  

for D = Dm, where all terms in (21) not explicitly written in (22a) and 
(23a) are lumped into b for brevity. Essentially, b is a function of 
dimensionality, and the identity (but not magnitude) of the dominant 

Fig. 2. Dashed lines with markers are numerical results, while solid lines are analytical solutions. (a) First cycle Fr(T) using (21). (b) First cycle Fr(Q) using (21). (c) 
First cycle Fr(T) extrapolated using (24), (d) Fc(T) after 50 cycles extrapolated using (24). Extrapolations use T0 = 1 as reference. 
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dispersion process. Values of x and y in scenarios of all spatial di
mensions are included in Table 2. In all limiting cases, 1 − Fr∝

̅̅̅
α

√
or 

1 − Fr∝
̅̅̅̅̅̅̅
Dm

√
, regardless of dimensionality. Note however that when both 

α and Dm are non-zero, the relationship 1 − Fr∝
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αQ + Dm

√
does not hold. 

As follows from the above equations, the period exponent y and flow 
exponent x are crucial in determining how both concentration profile 
and dispersive loss are affected by T and Q. In the limiting cases 
described by (22)–(23), Fr(d = 2,D = Dm) is independent of T, and 
Fr(d = 3,D = Dm) decreases as T increases. In all other limiting cases, Fr 
increases as T increases and as Q increases. The fact that Fr(d = 3,D =

Dm) decreases as T increases, whereas Fr(d = 3,D = α|v|) increases as T 
increases, explains why Fr(d = 3,D = α|v| + Dm) varies non- 
monotonically with T. Many problems in practice can be reduced to 
such limiting cases. For example, thermal diffusion typically dominates 
heat transport (Anderson, 2005; Vandenbohede et al., 2009), while 
mechanical dispersion typically dominates solute transport (Anderson, 
1984). 

Direct estimation with (21) is inaccurate if the hydrodynamic 
dispersion coefficient is sufficiently large to result in a single cycle Fr 
smaller than 0.7. The reason is that in scenarios with smaller Fr, the scale 
of dispersive transport becomes large relative to advection. Neverthe
less, in practice aquifer storage systems typically have recovery effi
ciencies of 0.7 or higher (Drijver et al., 2012) except for systems with 
very large concentration or thermal gradients where density effects play 
a significant role in transport (Schout et al., 2016), thus (21) remains 
applicable to real systems. (21) is also inaccurate in predicting the cu
mulative recovery efficiency Fc if the number of cycles is larger than 1. In 
these two cases, it is possible to gain insight on Fr(Q,T) and the cumu
lative recovery efficiency Fc(Q,T) by extrapolation, even if α and Dm are 
unknown, provided it is a limiting case where either mechanical 
dispersion or molecular diffusion completely dominates. If Fr(Q0,T0) or 
Fc(Q0,T0) of some reference injection rate Q0 and injection period T0 is 
known, then the recovery efficiency for any Q,T can be approximated 
using 

Fr(Q,T) = 1 − [1 − Fr(Q0,T0) ]

(
Q
Q0

)x(T
T0

)y

. (24a)  

Fc(Q,T) = 1 − [1 − Fc(Q0,T0) ]

(
Q
Q0

)x(T
T0

)y

. (24b) 

Fig. 2c shows a good agreement for the single cycle recovery effi
ciency Fr, and Fig. 2d for the cumulative recovery efficiency Fc after 50 
cycles. A comparison of Fig. 2c and d suggests that the accuracy of the 
extrapolation improves as the number of elapsed cycles increases. Here 
too, the solution is inaccurate in 3D scenarios where molecular diffusion 
dominate, but (24) nevertheless reveals the qualitatively valid outcome 
that Fr decreases as T increases. 

A retardation factor representing linear adsorption implies a linear 
re-scaling of time. Thus, for a fixed injection duration T, an increase in 
the retardation factor implies a decrease in recovery for scenarios where 
y < 0, and vice versa. This means that the linear retardation of diffusion- 
dominated transport hinders recovery in 1D flow fields, has no effect in 
2D flow fields, and enhances recovery in 3D flow fields. 

4.3. Multiple cycles 

Consider a scenario in which the total operational duration of the 
injection-extraction well is prescribed, whereas the total number of cy
cles N is a variable. Assume that one standard cycle operated with an 
injection duration of T0 results in a total solute mass loss of mc(T = T0,

N = 1) = m0,0. In the low frequency multiple cycle scenario (T = nT0,

N = 1), where n > 1 is an arbitrary integer, the total solute mass loss is 
mn,0 = nym0,0. The high frequency multiple cycle case is (T = T0,N = n), 
and has an identical total duration as the low frequency multiple cycle 
case. We approach the high frequency case by first assuming that m0,n =

(n)zm0,0, where z is a constant. Then, the upper bound of the cycle 
exponent z can be inferred by assuming that c(r) = 0 at the onset of each 
new cycle, whereupon m0,n = nm0,0 exactly, and z = 1. If this assump

Fig. 3. Recovery efficiency Fr as a function of the n-th cycle, fitted to (25) after (a,c) 5 cycles and (b,d) 50 cycles, showing the effect of (a,b) spatial dimensionality 
and (c,d) dispersion parameters in a 2D scenario. 

D.W.S. Tang, S.E.A.T.M. van der Zee                                                                                                                                                                                                      



Journal of Hydrology 602 (2021) 126713

8

tion is omitted, then m0,n < (n)zm0,0, thus we can conclude z < 1. 
A lower bound for z is found if after the first injection phase, the 

boundary condition at the well is 
(

∂c
∂r (0, t) = 0

)

instead of (c(0, t) = c0), 

so that previously extracted water is re-injected, without mixing in the 
well. In this case, multiplying the number of cycles by n implies that ω is 
also multiplied by n, which yields m0,n =

̅̅̅
n

√
m0,0, or z = 1/2. Under the 

original boundary condition (c(0, t) = c0), new solute is injected into the 
system, therefore z > 1/2 necessarily. 

In summary, we have found for the cycle exponent that 1
2 < z ≤ 1. 

Using m0,n = nzm0,0, we obtain the recovery efficiency of the n-th cycle 

Fr(h) = 1 −
m0,0nz

M0,0n
= 1 −

(
1 − Fr,0

)
nz− 1, (25)  

where Fr,0 is the recovery efficiency of the first cycle. Numerical results 
using empirically fitted z agree excellently with (25) (Fig. 3), and fitted z 
values fall within the bounds predicted 12 ≤ z ≤ 1. Fig. 3 also shows that 
although the fitted value of z increases slightly with the number of cy
cles, the difference is small even when data from 5 and 50 cycles is 
compared. This shows the added value that only a minimal amount of 
data is required to empirically calibrate z. 

The manner by which the upper and lower bounds for the cycle 
exponent z have been derived, suggest that z can be interpreted as a 
measure of how much the recovery efficiency of a cycle is affected by all 
preceding cycles. The larger the value of z, the smaller this memory 
effect. Fig. 3a,b illustrates this, showing that z increases as the spatial 
dimensionality increases. This occurs because in each subsequent cycle, 
the ambient chemical gradient enveloping the new injection water front 
dissipates more rapidly when the spatial dimensionality is large, thus 
weakening the memory effect. Similarly, Fig. 3c,d shows that a larger 
dispersion coefficient D = Dm +αv leads to faster dissipation of ambient 
solute, resulting in a larger z. Comparing all the scenarios shown in 
Fig. 3 reveals that z is inversely related to Fr of the first cycle; this is 
logical in that a complete recovery implies no memory effect, and vice- 
versa. 

Combining (24) and (25), Fr(Q,T, n) can be extrapolated from a 
reference operation with known Fr(Q0,T0, n0), by using 

Fr(Q,T, n) = 1 − [1 − Fr(Q0,T0, n0) ]

(
Q
Q0

)x(T
T0

)y( n
n0

)z− 1

. (26) 

From (26), we can deduce how cycle frequency affects dispersive 
losses. If y > z − 1, then high frequency operations under a prescribed 
total time result in larger Fr, and vice-versa. Since z > 1/2, it means that 
in 1D where y = 1/2, more dispersive losses occur for high than for low 
frequencies (Fig. 4a). Since z ≤ 1, it follows that for y ≥ 1, more 
dispersive losses occur in low than for high frequencies. Therefore, for 
D = Dm in 2D (y = 1) (Fig. 4b) and 3D (y = 7/6) (Fig. 4c), Fc decreases as 
T increases in the case of a fixed total time. This is in contrast with the 
case of D = Dm for a fixed T, where Fc is independent of T in 2D, and 
decreases as T increases in 3D. If y ≈ z − 1, then recovery is roughly 
independent of frequency; this is most likely to occur in general in 2D, 
where − 1

4 ≤ y ≤ 0 and − 1
2 ≤ z − 1 ≤ 0, and the ranges of y and z − 1 

overlap closely (e.g. curves for D = α|v| in Fig. 4b). 

4.4. Kinetic dispersion factor 

In d = 1, the velocity and hence hydrodynamic dispersion coefficient 
is the same everywhere. For d > 1, since R∝T1/d, the cycle period in
fluences the relative lengths of time for which dispersive loss is primarily 
controlled by either mechanical dispersion or molecular diffusion. The 
relative contribution from mechanical dispersion α|v| to the dispersion 
coefficient D = Dm +α|v| decreases with R and T1/d as distance increases, 
because |v| decreases with distance. Therefore, in d > 1, the dominant 
process of spreading of solutes around the plume front increasingly shifts 

towards molecular diffusion, with distance from the well. Field evidence 
has shown that thermal breakthrough curves are highly sensitive to 
mechanical dispersivity at early times of the injection phase, due to the 
large v(R) associated with small plume volumes (Vandenbohede et al., 
2011). This means that some ATES systems are controlled by mechanical 
disperson (Lin et al., 2019) although heat transport is predominantly 
controlled by thermal diffusion in uniform flow fields. Hence, it is 

Fig. 4. Numerical results for the variation of the cumulative recovery efficiency 
Fc against cycle period for fixed total time with 2nT = 512 after 50 cycles, in a 
(a) 1D, (b) 2D, and (c) 3D homogeneous medium. 
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important to be able to determine the relative strengths of diffusion and 
mechanical dispersion as a function of well operational parameters. 

Dispersive losses attributable to α|v|, relative to Dm, can be obtained 
by taking the ratio of their contributions to Fr in (21), and yields 

̅̅̅̅̅
ST

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3d − 2)α(Ad)
3d− 1

d (Td)
2d− 1

d

(2d − 1)Dm(Ad)
3d− 2

d (Td)
3d− 2

d

√
√
√
√ . (27)  

where we introduce the dimensionless kinetic dispersion factor ST. 
Writing this in terms of v(R) yields 

ST =
(3d − 2)αv(R)
(2d − 1)Dm

. (28)  

which is a weighted form of the ratio αv(R)
Dm 

of the components of D(r) =

Dm + αv(R). The unweighted ratio omits the contribution of the term 
(d − 1) Dm

r
∂c
∂r to the ADE (5). In 1D, (d − 1) Dm

r
∂c
∂r vanishes and the weighted 

ratio becomes equal to the unweighted ratio. As spatial dimensionality 
increases, so does ST , which suggests that the effects of velocity- 
dependent and velocity-independent dispersion are increasingly 
different in higher dimensional spaces. Expansions of ST are presented in 
Table 3. Concepts similar to ST have been used in prior studies to 
determine relative contributions of the dispersion processes in radial 
flow. Hoopes and Harleman (1967) obtained a weighted ratio, 4αv(R)

3Dm
, 

which is (28) with d = 2 specifically, while Bloemendal and Hartog 
(2018) applied the unweighted ratio αv(R)/Dm to a two-dimensional 
radial problem, which underestimates the contribution of mechanical 
dispersion. 

In 3D scenarios, Fr(T) increases monotonically for D = α|v|, yet de
creases monotonically for D = Dm. Thus, a logical reason for the non- 
monotonicity of Fr(T) in 3D (Fig. 5a) is that the relative strengths of α|
v| and Dm at the hydraulic front change with T. Solving ∂Fr(T)

∂T = 0 in (21) 
yields ST = 1; this agrees with the numerical results for Fr (Fig. 5b). 
Therefore, the optimum period Tm that corresponds to the maximum 
Fr(T) can be found by solving substituting T = Tm, d = 3, and ST = 1 in 
(27), and solving for Tm: 

Tm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

7α
5Dm

)3 Q
36πθ

√

. (29) 

(29) agrees excellently with numerical results for the first cycle 
(Fig. 6). Empirically, we observe that Fc after 50 cycles also peaks close 
to ST = 1 (Fig. 5c). However, the presence of ambient solute in the 
aquifer causes (29) to overestimate Tm for multiple cycles (Fig. 6), as 
only the first cycle recovery efficiency was considered in deriving (29). 

Nevertheless, Fig. 6 shows that the proportional relationship Tm∝ 
(

α
Dm

)3/2 

remains valid even after 50 cycles. 

4.5. Geometric dispersion factor 

Recall that Ad∝Q. The area-to-volume ratio (A/V), which was pre
viously discussed in the introduction, is 

A
V
=

d

(dAdT)
1
d
∝(QT)−

1
d, (30)  

which suggests that either Q or T should be maximized, to minimize 
losses through the surface area. 

While A/V is identical for any combination of Q and T that yield 
identical QT, the recovery efficiency can significantly differ for different 
combinations of Q and T. Doughty et al (1982) found that when the total 
solute mass injected c0QT was kept constant, in a system with D = Dm, 
the recovery efficiency was higher under large Q small T operation, than 
under small Q large T operation. Bloemendal and Hartog (2018) 
investigated heat storage in a system with a 2D flow field. They 
concluded from sensitivity analyses of Q that 1 − Fr∝A/V approximately 
when thermal diffusion dominates, which agrees superficially with our 
findings for 2D flow fields that 1 − Fr∝Q− 1

2T0 (Equation 23), because 
A/V∝(QT)−

1
2. Since T was not tested, framing the solution in terms of A/ 

V might lead to ambiguity in interpretation. The principle behind A/V 
does not consider that the rate of velocity dependent and independent 
dispersive loss depend differently on plume area and volume, and flow 
field dimensionality. 

The recovery efficiency can be expressed as a function of Q and T in 
the limiting cases previously discussed where a single dispersion process 
dominates, namely 1 − Fr∝QxTy (22 – 23), which is similar in form to 
A/V∝(QT)−

1
d. Therefore, as an alternative to A/V, we propose the geo

metric dispersion factor G: 

G = QxTy, (31) 
Fig. 5. The relationship between (a) T and Fr for the first cycle, (b) ST and Fr 

for the first cycle, and (c) ST and Fc after 50 cycles, for 3D injection-extraction 
from a point source; Dm = 0.1. 
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The curves in Fig. 2a and b for scenarios with a single dominant 
dispersion process illustrate the dependence of G on T and Q respec
tively. Unlike A/V, the exponents of Q and T in G are not necessarily 
identical. Essentially, G generalizes A/V, by considering spatio-temporal 
(as opposed to solely spatial) interactions between plume geometry and 
hydrodynamic dispersion. Table 2 shows that G is a function of A/V, 
namely G∝

̅̅̅̅̅̅̅̅̅
A/V

√
, only when the velocity-independent dispersion pro

cess is omitted. Hence, G should replace A/V in the characterization of 
aquifer-well systems, as it provides deeper insight into how recovery 
varies with well operation parameters. 

4.6. Production and recovery 

By substituting (12) into (13), and using the form of ω appropriate 
for the extraction phase (Gelhar and Collins, 1971), 

ω =

∫ rm

0

v(r) + Dm/α
v(r)3 dr +

∫ r’

rm

v(r) + Dm/α
− v(r)3 dr (32)  

the production concentration or temperature at the well during the 
extraction phase c(r = 0, t > T) is found to be   

In order to analyze the production concentration and recovery effi
ciency in non-standard cycles where Vex

Vin
∕= 1 we seek to express (33) as a 

function of Vin = QT and Vex = Q∙(t − T), where Q in (33) originates 
from Ad. This yields, for limiting case where D = αv, 

c(r = 0, t > T) =
1
2
c0erfc

⎡

⎢
⎢
⎢
⎣

(
Vex

Vin

− 1
)

⎡

⎢
⎢
⎣

VinΓ
(

d
2

)

d

2θπd
2

⎤

⎥
⎥
⎦

1
2d ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2d − 1)

4d2α
[

2 −

⃒
⃒
⃒
⃒1 − Vex

Vin

⃒
⃒
⃒
⃒

d− 1
d
(

1 − Vex
Vin

)]

√
√
√
√
√
√

⎤

⎥
⎥
⎥
⎦

(34a)  

where the absolute function ensures that c(r = 0, t > T) remains real and 
continuous for Vex ≥ Vin. For the opposite limiting case, when D = Dm, 

Fig. 6. The numerically obtained and analytically approximated (Eq. (35)) optimum cycle period Tm, corresponding to (crosses) maximum Fr for the first 1 cycle, and 
(circles) maximum Fc after 50 cycles. 

c =
1
2
c0erfc

[
− [2T − t]

̅̅̅̅̅̅̅̅̅̅
4d2α

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(3d − 2)(2d − 1)αAd

(3d − 2)αAd(dAd)
− 1
d
{

2T2d− 1
d − [2T − t]

2d− 1
d
}
+ (2d − 1)Dm(dAd)

d− 2
d
{

2T 3d− 2
d − [2T − t]

3d− 2
d
}

√ ]

(33)   
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(r = 0, t > T)

=
1
2
c0erfc

⎡

⎢
⎢
⎢
⎣

(
Vex

Vin

− 1
)

⎡

⎢
⎢
⎣

VinΓ
(

d
2

)

d

2θπd
2

⎤

⎥
⎥
⎦

2− d
2d ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3d − 2)Ad

4d2Dm

{

2 −

⃒
⃒
⃒
⃒1 − Vex

Vin

⃒
⃒
⃒
⃒

2d− 2
d
(

1 − Vex
Vin

)}

√
√
√
√
√
√

⎤

⎥
⎥
⎥
⎦

(34b) 

We can rewrite the production concentrations of the two limiting 
cases (34) in the form 

c
(

r = 0,
Vex

Vin

)

=
1
2
c0erfc

⎡

⎢
⎢
⎢
⎢
⎣

ζ

(
Vex
Vin

− 1
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅{

2 −

⃒
⃒
⃒
⃒1 − Vex

Vin

⃒
⃒
⃒
⃒

Δ(

1 − Vex
Vin

)}√

⎤

⎥
⎥
⎥
⎥
⎦
, (35)  

where the exponent Δ ranges from 0 ≤ Δ ≤ 4
3 depending on the spatial 

dimensionality and dominant hydrodynamic dispersion process, and the 
other terms are lumped into the constant ζ for readability. Fig. 7a shows 
that for a fixed value of ζ, the influence of varying the exponent Δ on the 
production concentration is negligible. Therefore, Vex

Vin 
is effectively the 

only independent variable in (35) if ζ is fixed. Physically, this implies 
that at any given production concentration, the marginal effect on the 
production concentration of increasing Vex

Vin 
is almost independent of flow 

field dimensionality and the dominant hydrodynamic dispersion pro
cess. Therefore, the recovery efficiency as a function of Vex

Vin 
can be ob

tained by numerically integrating (35) with respect to Vex
Vin

, the outcomes 
of which for Δ = 1

2 are shown in Fig. 7b. 
The concavity of the curves in Fig. 7b implies that the marginal 

benefit to Fr of increasing Vex
Vin

, has diminishing returns in all cases. Where 
ζ is small (e.g. 3D scenarios, or scenarios with large D), Fr of a symmetric 
cycle Vex

Vin
= 1 is small. In these cases, using a longer extraction period 

Vex
Vin

> 1 can increase Fr significantly (Fig. 7b), because there remains 
relatively large amounts of solute mass deposited immediately outside 
the hydraulic front. However, where ζ is large, the marginal benefit to Fr 

is small when Vex
Vin 

is increased beyond 1. This agrees with Sauty et al’s 
(1982) conclusion that symmetric cycles yield an optimum balance be
tween cost (Vex) and benefit (Fr). 

In some applications, the recovered hot water in ATES is too cold for 
heating, or in ASR is of marginal quality for drinking or irrigation, if the 
production concentration or temperature falls below a critical value ccrit. 
Hence, we may define the effective recovery efficiency as 

Feff =

∫
[c(r = 0) − ccrit ]dVex

(c0 − ccrit)Vin
. (36) 

An example Feff as a function of Vex
Vin

, solved numerically, is presented 
in Fig. 7c, with Δ = 1

2 and ccrit = 1
4c0. If Vex

Vin
= 1, then Feff is simply equal to 

Fr − (ccrit/c0)
1− (ccrit/c0)

. Once c(r = 0, t > T) < ccrit, extraction should cease, because 
the remaining water is unusable and the marginal benefit of increasing 
Vex
Vin 

becomes negative. Extraction of additional water beyond this point 
will degrade the quality of the earlier extracted water, if they mix. The 
marginal benefit to Feff , of increasing Vex

Vin
, becomes smaller for larger ccrit, 

because [c(r = 0) − ccrit ] monotonically decreases as ccrit increases. These 
diminishing returns can become negative returns if ccrit is non-zero, as 
illustrated in Fig. 7c. 

Fig. 7. (a) Production concentration c(r = 0) against the extraction ratio Vex
Vin 

when ζ = 2. (b) Recovery efficiency Fr against Vex
Vin

, for Δ = 1
2. (c) Effective 

recovery efficiency Feff against Vex
Vin 

for ccrit = 1
4c0. 
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4.7. Generalizations 

Since all derived expressions (i.e. Fr, ST , G) can be written as func
tions of d, the preceding analyses can be generalized to non-integer di
mensions. Non-integer dimensions are primarily used to describe porous 
media with fractal pore-scale geometry. Dispersive transport in fractal 
geometry is a distinct aspect of research into pore-scale connectivity and 
percolation (Bouchaud and Georges, 1990), fractured porous media 
(Sahimi, 2011), and multi-phase transport (Hunt et al., 2014). Fig. 8a 
shows that if all other parameters are kept constant, the recovery effi
ciency mostly decreases monotonically as dimensionality increases. 
Interestingly however, in the range of small d and small Q, Fr(d) is non- 
monotonic, with a maximum. Whether this non-monotonicity, and non- 
integer dimensional radial flow in general, describe meaningful physical 
phenomena, or are mathematical artefacts, remains to be investigated. 
Fig. 8b shows that curves of Fr(d) for different T intersect at some point 

at d > 2. This implies that Fr(T) can be non-monotonic in any d > 2; 
amongst all model parameters, such behavior is unique to T. In Section 
4.2, we discussed d = 3, a specific instance of this. 

Analyses under other definitions of hydrodynamic dispersion are 
also possible, using the methods we have presented. For example, 

power-law mechanical dispersion α|vη|, with 0 ≤ η ≤ 2 not necessarily 
an integer. Molecular diffusion corresponds to η = 0, and standard 
mechanical dispersion to η = 1. Other suggested values of η include 
η 1.2 for Peclet numbers 5 < Pe < 300 (Sahimi, 1993), η 1.25 when 
large spatial variances exist in the pore-scale velocity field, (Salles et al., 
1993), and η = 2 in media with solute particle traps (Bouchaud and 
Georges, 1990), Taylor dispersion (Taylor, 1953), or large tortuosities or 
low saturations (de Gennes, 1983). Salles et al (1993) also found that η 
varies continuously with porosity. 

The generalized radially axisymmetric ADE for D = Dm +α|vη| is (see 
Appendix A for derivation) 

∂c
∂t

= D(r)
∂2c
∂r2 +

[
(d − 1)

r
[Dm − (η − 1)αvη ] − v(r)

]
∂c
∂r
. (37) 

Then, applying the same steps as in Section 3 and Section 4.1, with 

ω =
∫ r’

0
vη(r)+Dm/α

v3(r) dr, results in 

If η = 2,Dm = 0 is substituted into (38), the solutions for c(r, t) in 1D, 
2D and 3D found by Philip (1994) are recovered (see Table 2), with two 
differences. Philip’s exact solutions include an additional term that 
vanishes for large Q or t, and Philip imposed Robin boundary conditions 
at the well, whereas we use Dirichlet boundary conditions. Differences 

Fig. 8. Recovery as a function of d when (a) Q, α,Dm is varied, and (b) T is varied. Recovery as a function of η, when (c) α is varied, and (d) Q is varied. Unless 
otherwise specified, η = 1, d = 1, T = 1, Q = 1, α = 0.1, Dm = 0.1. 

c(r, t) =
1
2
c0erfc

⎡

⎢
⎣

(rd − (dAdt) )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4d2α(dAdt)
2d− 1

d

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(3d − 2)(3d − 2 + η − ηd)αAd

(3d − 2)αAη
d(dAdt)

η+d− 1− ηd
d + (3d − 2 + η − ηd)Dm(dAdt)

d− 1
d

√
⎤

⎥
⎦ (38)   
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in outcomes originating from different boundary conditions also vanish 
rapidly as t (Philip, 1994; Chen, 1987) or Q (Aichi and Akitaya, 2018) 
increases. 

The generalized exponents in the geometric dispersion factor G =

QxTy are 

x = [η − 2]
(

1
2d

)

, (39)  

y =
(d − 1)[1 − η] − 1

2d
. (40) 

Full expansions of Fr(η = 2) and Fr(d, η) and the corresponding ki
netic dispersion factors, derived from (38) in the same manner as in 
Sections 4.1 and 4.2, are available in Table 3. Fig. 8c and d illustrate the 
behavior of Fr(η) when α and Q respectively are varied. Remarkably, 
when η = 2 and D = α|vη|, 1 − Fr∝T− 1/2 regardless of spatial dimen
sionality, and recovery is independent of the injection rate. Comparing 
(39) and (40) reveals an additional limitation of the area-to-volume 
ratio: Fr is a function of A/V (i.e. x = y) only when D = α|v|, and 
never for D = α|vη| with any η ∕= 1. Furthermore, when D = α|vη| with 
d =

2− η
1− η, then 1 − Fr∝Q

η− 2
2d , and recovery is independent of the injection 

period. In Section 4.2, we discussed a specific instance of this, namely 
d = 2,η = 0. 

5. Discussion 

Our more general results agree with specific scenarios discussed in 
the literature. Several numerical studies (e.g. Bakker, 2010; Lu et al., 
2011; Chen, 2014; Barker et al., 2016; Majumdar et al., 2021) showed 
that in 2D and with Dm = 0, the recovery efficiency can be increased by 
increasing the injection period, or the injection rate, which agrees with 
the exponents we found for the geometric dispersion factor G. The fact 
that the recovery efficiency increases as Q or T increases for d = 2 has 
also been observed in practice (e.g. Bloemendal and Hartog, 2018; 
Kastner et al., 2017). Bakker (2010) modelled an ASR system in a 2D 
cylindrical flow field in a homogeneous medium, and investigated how 
varying the injection and storage duration affected the recovery effi
ciency of freshwater. They demonstrated that the recovery efficiency 
increases sub-linearly with the number of cycles. The sub-linear increase 
of the recovery efficiency with cycle number was also observed in 
practice (Bakr et al., 2013; Kastner et al., 2017) and in other numerical 
studies (Sommer et al., 2013; Zeghici et al., 2015; Lu et al., 2011; 
Majumdar et al., 2021). These findings in the literature agree with the 
bounds we derived for the cycle exponent, 12 ≤ z ≤ 1. 

It is possible for a single well to function both as an ATES (heat 
storage) and ASR (freshwater storage in a brackish aquifer) system 
simultaneously (Miotliński and Dillon, 2015). Given that, as previously 
elaborated, heat spreading is primarily controlled by thermal conduc
tion while solute spreading depends mostly on mechanical dispersion, 
the optimal operational parameters of the well for recovering heat and 
solutes will differ. When spreading occurs in three dimensions, 
increasing T might increase the recovery efficiency of freshwater, but 
decrease that of heat. Therefore, it is impossible to optimize for the re
covery efficiency for both heat and solutes simultaneously. 

Single well push–pull tracer tests are often used to determine various 
hydrogeological properties of aquifers, such as porosity (Hall et al., 
1991), in-situ microbial activity (Istok et al., 1997), fracture geometry 
(Klepikova et al., 2016), and geochemical reaction rates (Haggerty et al., 
1998), by interpreting breakthrough data at the well during the 
extraction phase (Schroth et al., 2000). Eqs. (33) and (35) may be used 
to interpret data from push-pull tests using the methodology of Schroth 
and Istok (2005). Schroth and Istok’s results pertain only to solute 
transport in 2D and 3D radial flow fields with a more limited model of 
dispersion, defined as D = α|v|, whereas our results apply to a wider 
range of dispersion models, and also in the presence of multiple 

coexisting dispersion mechanisms (e.g. D = Dm + α|v|). 
In this study, to enable an analytical approach, we omitted several 

aspects. These include heterogeneity in aquifer physical properties, 
background regional flow, diffusion of heat and solute into confining 
layers, density driven convection. Nevertheless, these omissions do not 
negatively affect the ability of simple approximate analyses like that 
discussed in this study from accurately predicting the behavior of well- 
aquifer systems under a wide range of realistic conditions (Pophillat 
et al., 2020a). The assumption of homogeneity has been found to be 
appropriate for aquifers where the log-conductivity field is autocorre
lated and has a variance smaller than 0.25 (Wang et al., 2018). In some 
systems, the injection and extraction regimes are separated by a stand 
still storage phase, thus some adaptation may be needed if the velocity- 
independent component of hydrodynamic dispersion is significant and if 
the storage phase is long. With low or no regional groundwater flow, the 
storage period reduces the recovery efficiency by only around 0.5 per
centage points per month (Majumdar et al., 2021), and thus has minimal 
impact. All of these omitted factors would cause a decrease in the re
covery efficiency, if they were accounted for. Therefore, our analysis 
forms a theoretical upper bound of the recovery efficiency of some real 
applications. 

Witt et al (2021) presented injection-extraction experiments of 
density driven flow with several fully-penetrating and partially- 
penetrating well configurations, where freshwater was injected into a 
laboratory-scale brackish aquifer. Experimentally, doubling the 
injection-extraction rate and halving the injection-extraction duration 
(maintaining the total volume) led to an increase in recovery efficiency. 
For three well shapes that create 2D radial flow fields, the recovery ef
ficiency increases they observed were from 0.39 to 0.55, 0.40 to 0.61, 
and 0.55 to 0.69. They calibrated the hydrogeological parameters based 
on experimental data, yielding Dm = 8.8∙10− 8 m/min and α =

7∙10− 3 m. With injection rates around 2∙10− 6 m3/min to 
5∙10− 6m3/min, and injection durations of around 60 min, we obtain 
ST = 28. This value suggests that mechanical dispersion dominates over 
molecular diffusion. However, they also noted that density driven con
vection dominated over hydrodynamic mixing in the transport of the 
salinity gradient. Hence the effect of hydrodynamic dispersion was 
weaker than that of density driven convection. When we insert their 
hydrogeological parameters into our equation (26), and set x = − 1/2, 
y = 0 to account for velocity-independent spreading in 2D, the calcu
lated increases in recovery efficiency would be from 0.39 to 0.57, 0.40 to 
0.58, and 0.55 to 0.69, which agrees almost exactly with their experi
mental results. Our power-law relationship between number of cycles 
and recovery efficiency also agrees well with their results, which show 
diminishing marginal returns as the number of cycles increases 
(compare out Fig. 3 with Witt et al’s Figure 9). The agreement between 
our results for spreading under molecular diffusion, and their results for 
density driven convection, suggests that the effects of density driven 
convection on recovery efficiencies, might be similar to the effects of 
molecular diffusion in some idealized problems. This is possibly because 
density driven convection is a form of velocity-independent spreading 
(at these low viscosities) that results in a radial plume shape (i.e. conical 
shape, see Witt et al’s Fig. 2h). 

The modelled flow field geometries often arise as small or large time 
limiting cases in other flow field geometries. For example, a point source 
in a typical vertically confined aquifer generates a 3D spherical solute 
plume at small times, and a 2D spherical solute plume (i.e. cylindrical) at 
large times when the size of the plume has grown large (e.g. Schroth and 
Istok, 2005). From field data, Bloemendal and Hartog (2018) found that 
when the outlet screen height of a fully penetrating well in a confined 
aquifer is reduced, the recovery efficiency of heat decreases. This is 
because the flow field of a non-fully-penetrating well is three- 
dimensional at small times, and that losses are larger when spatial 
dimensionality d increases (see Eq. (21)). For space-use efficiency, often 
multiple wells are spatially distributed in a single large aquifer, such as 
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with zonation patterns (e.g. Sommer et al., 2015). In such imple
mentations, the dimensionality of the flow field essentially depends on 
whether the neighboring wells mutually interfere (Kandelous et al., 
2011), thus a transitional time scale also exists for such systems. 

During transitional regimes when solute plumes transition from, for 
example, a 3D to 2D geometry, the dispersive behavior is bounded by 
the solutions for 2D and 3D systems. This is because the radial velocity of 
the plume front, which affects the plume size, surface area, and me
chanical dispersion, is bounded from above by the 2D solution, and from 
below by the 3D solution. Consequently, it appears plausible that a 
mathematical description of dispersion and recovery during transitional 
times can be obtained by setting 2 < d < 3 in the analysis (see Section 
4.7), and is a topic for further research. If and only if d > 2, the recovery 
efficiency varies non-monotonically with well parameters, and retar
dation may increase the recovery efficiency instead of decreasing it. 
Hence, systems that undergo transitional regimes experience profound 
differences in parameter sensitivity across the small, transitional, and 
large time scales. 

6. Conclusions 

In our analysis, we approximated solute and heat transport, towards 
the recovery efficiency of injected solute and heat in 1D, 2D, and 3D 
homogeneous aquifers under cyclic radial flow. These new analytical 
solutions are broadly applicable in sensitivity analyses, as they comprise 
simple closed-form expressions. These expressions enable to determine 
the effect on the recovery efficiency of varying the: (i) mechanical 
dispersion and diffusion parameters, (ii) aquifer hydrogeological pa
rameters, (iii) injection and extraction duration, (iv) injection and 
extraction rate, (v) flow field geometry, (vi) number of operating cycles 
and (vii) extraction volume relative to injection volume. Hence, a first- 
order assessment of aquifer-well systems can be conducted with minimal 
computational demand, e.g. to pave the way for further focussed eval
uations with numerical modelling or exact analyses, by enabling the 
identification of interesting regions in parameter space. As discussed, 
our solutions are in broad agreement with various analytical, experi
mental, and numerical modelling studies in the literature. 

Key factors that determine the recovery efficiency are the flow field 
geometry, and whether mechanical dispersion or diffusion dominates. 
Whereas in 1D and 2D flow fields, recovery efficiency is a non- 
decreasing function of the injection-extraction duration and rate, in 
3D flow fields, it increases with the duration of the cycle when velocity- 
dependent mechanical dispersion dominates, but decreases if velocity- 
independent diffusion dominates. Consequently, if velocity-dependent 

and independent dispersion are of comparable magnitude in 3D 
spreading, recovery varies with cycle duration non-monotonically, 
peaking at a maximum. Therefore, as solute and heat injection/extrac
tion are dominated by different dispersion processes, it may be impos
sible to optimize for the recovery efficiency of both simultaneously. 
Another consequence is that when diffusion dominates over mechanical 
dispersion, chemical or thermal retardation leads to decreased recovery 
in 1D and 2D flow fields, but increased recovery in 3D flow fields. We 
generalized this to non-integer dimensional flow fields, and for me
chanical dispersion processes that have an arbitrary power-law depen
dence on advection velocity. 

As the sensitivity of the recovery efficiency to parameters is highly 
dependent on the dominant dispersion process, we introduce the kinetic 
dispersion factor, for identifying the dominant dispersion process. We 
also introduce the geometric dispersion factor, a simplified form of our 
full solution for recovery efficiency, that applies if the spreading of 
solutes or heat may be described by a single dispersion process. We show 
that the classical Area-to-Volume ratio is a special case of the geometric 
dispersion factor that characterizes the recovery efficiency only in the 
specific scenario where mechanical dispersion with linear velocity 
dependence is the sole mechanism of spreading. 
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Appendix A. Derivation of the Advection-Dispersion Equation for nonlinear mechanical dispersion 

To derive the ADE for the generalized power-law dispersion case D(r) = Dm + αvη(r), we begin from a modified form of Eqs. (3) and (4) of Gelhar 
and Collins (1971): 

∂c
∂t

+ v
∂c
∂r

=
α

h2h3

∂
∂r

[

h2h3vη∂c
∂r

]

+
Dm

h2h3

∂
∂r

[

h2h3
∂c
∂r

]

, (A1)  

1
h2h3

∂
∂r

[h2h3v] = 0, (A2)  

where h2 and h3 are scale factors of the curvilinear coordinates orthogonal to the primary coordinate r, and the condition (A2) implies the incom
pressibility of water. 

Rewriting (A1) in the following form 

∂c
∂t

+ v
∂c
∂r

=
α

h2h3

∂
∂r

[

h2h3vvη− 1∂c
∂r

]

+
Dm

h2h3

∂
∂r

[

h2h3v
1
v

∂c
∂r

]

(A3)  

and substituting (A2) into (A3) yields 
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∂c
∂t

+ v
∂c
∂r

= αv
∂
∂r

[

vη− 1∂c
∂r

]

+Dmv
∂
∂r

[
1
v

∂c
∂r

]

, (A4) 

which can be fully expanded to 

∂c
∂t

+ v
∂c
∂r

= α(η − 1)v
∂c
∂r

∂v
∂r

vη− 2 +αvη∂2c
∂r2 +Dmv

[
1
v

∂2c
∂r2 −

1
v2

∂v
∂r

∂c
∂r

]

, (A5) 

Substituting the following into (A5) (see Section 3), 

v(r, d) =
Ad

rd− 1,

∂v
∂r

= (1 − d)
Ad

rd = (1 − d)
v
r
,

yields the general ADE (37): 

∂c
∂t

= D(r)
∂2c
∂r2 +

[
(d − 1)

r
[Dm − (η − 1)αvη ] − v(r)

]
∂c
∂r
. (A6) 

Setting η = 1 recovers the specific case described in (5), where D(r) = Dm + αv(r). 
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