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ABSTRACT 

Improved understanding of the water balance in the Blue Nile is of critical importance 

because of increasingly frequent hydroclimatic extremes under a changing climate. The 

intercomparison and evaluation of multiple land surface models (LSMs) associated with 

different meteorological forcing and precipitation datasets can offer a moderate range of 

water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) 

and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological 

Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce 

hydrological estimates over the region. The two LSMs were forced with different 

combinations of two reanalysis-based meteorological datasets from the Modern-Era 

Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and 

MERRA-2) and three observation-based precipitation datasets, generating a total of 16 

experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage 

estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, 

in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment 

(GRACE) products, respectively. Results show that CLSMF2.5 provided better 

representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe 

coefficient when considering all meteorological forcing datasets and precipitation 

datasets. The model experiments forced with observation-based products, the Climate 

Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall 

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform 

those run with MERRA-Land and MERRA-2 precipitation. The results presented in this 

paper would suggest that the Famine Early Warning Systems Network (FEWS NET) 
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Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to 

better represent the water balance in this region.  
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1. Introduction 

Water balance has been a critical issue throughout the Nile river basin, especially 

associated with intense hydroclimatic extremes and the impacts on natural and human 

systems (Senay et al., 2009; FAO, 2011; Bastiaanssen et al., 2014). Studying water 

budget variables, such as precipitation (P), evapotranspiration (ET), streamflow and 

terrestrial water storage (TWS), provides improved understanding of water resources 

under a changing climate system (Simane et al., 2012; Tekleab et al., 2013; Berhane et al., 

2014). In the Ethiopian portion of the Blue Nile basin (i.e. the upper Blue Nile), 

hydrological variability has had major implications for transboundary water supply (e.g. 

Mellander et al., 2013), periodic drought (e.g. Tadesse et al., 2014; Taye et al., 2015), 

regional food security (e.g. Shukla et al., 2014; Tadesse et al., 2015; McNally et al., 2016) 

and land use management (e.g. Gebrehiwot et al., 2011). 

 

Several studies have shown that the water balance in East Africa is likely to shift under a 

changing climate (Lyon and DeWitt, 2012; Williams and Funk, 2011). The upper Blue 

Nile basin is vulnerable to negative climate change impacts along with significant 

interannual climate variability, complex topography, land cover modification, and 

continued population growth (Taye et al., 2015; Zaitchik et al., 2012). Over the past 

century, Ethiopia has become warmer with an increasing temperature over time (0.37 

 /decade) and experienced periodic droughts (Simane et al., 2012; Funk et al., 2014). 

Thus, the application of enhanced land surface models (LSMs) has been motivated by the 

need to provide enhanced seasonal prediction of hydro-climatic extremes and support 
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adaptation strategies under evolving climate conditions (e.g. Simane et al., 2014; Tadesse 

et al., 2014). 

  

Previously, more streamflow and water balance studies in this region have been 

conducted relative to data sparse regions of Africa. The upper Blue Nile basin has two 

favorable conditions for hydrological modeling. First, the Ministry of Water and Energy 

of Ethiopia has been monitoring more than two dozen flow gauging stations and four 

dozen rainfall stations (Awulachew et al., 2008; Gebrehiwot et al., 2011; Taye et al., 

2015). Second, this basin’s local hydrology is less influenced by reservoirs when 

compared to the lower Blue Nile basin which includes Roseires Dam in Sudan, the White 

Nile basin which includes Lake Victoria, and the main Nile basin which includes Merowe 

Dam in Sudan and Aswan Dam in Egypt (FAO, 2011). Also, rain-fed agriculture is more 

dominant than irrigated cropland in the upper Blue Nile basin (Gebremichael et al., 2013). 

Therefore, incorporation of reservoir operation rules and irrigation impacts are less 

important for this regional hydrological modeling system.  

 

Intercomparing models and datasets is an effective way to identify strengths and 

weaknesses of LSMs and meteorological forcings in different regions of the globe and at 

different spatio-temporal scales. In that sense, numerous model intercomparison 

initiatives have been created in the past (e.g. Henderson-Sellers et al., 1995; Boone et al., 

2004, 2009a, 2009b; van den Hurk et al., 2011; Dirmeyer et al., 2006; Drobinski et al., 

2014), providing guidance to the development of future generations of LSMs and 

improvements for Earth observing systems. In particular, coupling LSMs with river 
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routing schemes allows us to use in situ streamflow observations to evaluate the water 

budget at the basin scale (e.g. Oki et al., 1999; Getirana et al., 2014a, 2014b, 2017; Li et 

al., 2015; Zubieta et al., 2015).  

 

However, little is known from comprehensive model intercomparisons and evaluations in 

the upper Blue Nile basin. Tekleab et al. (2011) calibrated a simple water balance model 

against observed streamflow time series and provided the water balances of twenty 

catchments in the upper Blue Nile basin. The catchment water balance was analyzed 

using an empirical relationship between the ratio of mean annual actual evaporation to 

mean annual rainfall and dryness index of the catchment. Bastiaanssen et al. (2014) 

calculated the annual water balance of 15 catchments in the Nile basin using rainfall data 

from Tropical Rainfall Measurement Mission (TRMM) and the National Oceanic and 

Atmospheric Administration (NOAA) Climate Prediction Center (CPC) RainFall 

Estimates (RFE) products in conjunction with actual evapotranspiration from the 

Operational Simplified Surface Energy Balance (SSEBop) and ETLook models. Also, 

Senay et al. (2009) estimated water balance components using annual satellite-derived 

variables such as runoff and evapotranspiration as a percent of rainfall albeit without 

model validation. Some studies focused on the small-scale water balance of the Lake 

Tana sub-basin in this region (e.g. Kebede et al., 2006; Setegne et al., 2008; 2010; Wale 

et al., 2009; Dessie et al., 2015). Other studies have provided parameter estimations for 

water balance models (e.g. Kim et al., 2008) and the analysis of runoff and sediment 

fluxes (e.g. Gebremicael et al., 2013; Steenhuis et al., 2009) in the upper Blue Nile.  
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The objectives of this study are to 1) identify the most suitable combination of LSMs, 

reanalysis and precipitation data for a water balance study in the upper Blue Nile basin; 

and 2) support the Famine Early Warning Systems Network (FEWS NET) Land Data 

Assimilation System (FLDAS; McNally et al., 2017) by evaluating water budget 

components to ensure high quality of drought monitoring products. This study provides 

comparisons of multi-model inputs (i.e. precipitation) and output estimates (i.e. 

streamflow, terrestrial water storage anomaly, evapotranspiration) and evaluation of the 

water budget variables using in-situ measurements and satellite-based products. We run 

retrospective simulations to offer baseline knowledge for an improved modeling 

framework such as data assimilation or ensemble streamflow prediction. This study relies 

on remotely sensed data and the NASA Land Information System (LIS; Kumar et al., 

2006).  

 

This paper is organized as follows. Section 2 briefly introduces the design of this study, 

including the study area, land surface models, meteorological forcing data sets, 

observation-based precipitation data, the river routing scheme, and model setup. Section 

3 describes how we evaluate our experiments using in-situ observations, satellite based 

measurements, and statistical indices. Section 4 presents results and discussion about the 

model intercomparison and evaluation. The last section summarizes our conclusions from 

this study.  

 

 

2. Models and datasets 
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2.1. Study area 

The Blue Nile River is the largest tributary of the main Nile River, and its upper part is 

fully located in Ethiopia (Fig. 1). The upper Blue Nile River basin contributes about 60% 

of the annual streamflow to the main Nile River (UNESCO, 2004; Conway, 2005; Senay 

et al., 2014). The size of the basin (i.e. a drainage area upstream of the El Diem gaging 

station) is about 175,000 km
2
 as compared to the whole Blue Nile basin area, which is 

about 325,000 km
2
. Over 95% of the land cover in the basin consists of rain-fed cropland, 

grassland, wooded grassland, wood land, shrubs and bushes (Gebremicael et al., 2013). 

The headwater starts at Lake Tana in the Ethiopian highlands, and most of the flow 

originates from a large number of downstream tributaries. The river has cut a deep 

canyon through the highlands and drains a large portion of western Ethiopia (Elshamy et 

al., 2009). Elevations range from ~4000 m in the Ethiopian highlands to ~500 m at the 

Ethiopia-Sudan border. The precipitation in the upper Blue Nile basin is highly seasonal 

and subject to a tropical highland monsoon. Its main rainy season (i.e. Kiremt) occurs 

from June to September, a short rainy season (i.e. Belg) from March to May, and a dry 

season from October to May (Taye et al., 2015; Mellander et al., 2013; Zaitchik et al., 

2012).  

 

2.2. Land surface models 

The NASA Land Information System (LIS; Kumar et al., 2006) was used as the modeling 

platform in order to simulate land surface processes in the upper Blue Nile basin. LIS 

employs the use of high performance terrestrial hydrologic modelling with development 

led by the Hydrological Sciences Laboratory at NASA Goddard Space Flight Center 
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(GSFC).  The LIS framework includes several community land surface models (LSMs) 

and supports their application at varying spatial and temporal scales over regional, 

continental and global domains. Two LSMs, the Noah land surface model, version 3.3, 

(Noah3.3) and Catchment Land Surface Model, version Fortuna 2.5 (CLSMF2.5), were 

used to drive the Hydrological Modeling and Analysis Platform (HyMAP; Getirana et al., 

2012) river routing scheme and to simulate the hydrological processes in this study area.  

 

The Noah LSM is maintained and released by the National Center for Atmospheric 

Research (NCAR) and applies finite difference spatial discretization methods and 

numerically solves the governing equations of the soil‐vegetation‐snowpack medium to 

simulate surface energy and water fluxes [more details can be found in Chen et al. (1996) 

and Ek et al. (2003)]. Noah is operationally used as the land model at the National 

Centers for Environmental Prediction (NCEP) for weather forecasts and the FLDAS 

simulation for use in hydro-climate studies and early warning applications.  

 

The Catchment land surface model (CLSM) has been developed by the NASA Global 

Modeling and Assimilation Office (GMAO) and is the land-surface component of the 

Goddard Earth Observing System Model, Version 5 (GEOS-5) General Circulation 

Model (GCM). In contrast to the traditional gridded delineation, CLSM divides areas into 

irregularly shaped topographic catchments, which each contain a saturated fraction, a 

sub-saturated fraction, and a wilting fraction. These fractions evolve over time, and are 

used to determine fluxes and soil states within the catchment [more details can be found 
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in Koster et al., 2000; Reichle et al., 2011; Houborg et al., 2012]. The soil profile depths 

were compiled from the FAO/UNESCO Soil Map of the World (Webb et al., 1991).  

 

While default values were used for most model parameters, some parameters were 

commonly used in both LSMs such as the NCEP monthly albedo, the NCEP monthly 

greenness, the combined Pennsylvania State University STATSGO and 

Food and Agriculture Organization of the United Nations (FAO) 16-category soil texture 

(Reynolds et al., 2000; Tegen et al., 2002), the Shuttle Radar Topography Mission 

(SRTM) topography elevation, and the Advanced Very High Resolution Radiometer 

(AVHRR) global land cover classification from the University of Maryland (Hansen et 

al., 2000).  

 

2.3. Meteorological and precipitation datasets 

LSMs require meteorological forcing datasets (e.g. temperature, humidity, downward 

shortwave and longwave radiation, wind, and surface pressure). The Modern-Era 

Retrospective analysis for Research and Applications (MERRA) data product is a NASA 

atmospheric reanalysis for the satellite era using the Goddard Earth Observing System 

model (GEOS-5) and its associated data assimilation system (Reichle et al., 2011; 

Reichle, 2012). Our experiments were forced with two different MERRA versions: 

MERRA-Land and MERRA-2. MERRA-Land is a supplemental land surface data 

product of MERRA. MERRA-2 is the second version of MERRA with several major 

upgrades, including observation-based precipitation corrections over Africa (Reichle et 

al., 2017). Both products are available globally at the hourly time step and horizontal 
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resolution of 2/3° longitude by 1/2° latitude. These products begin in 1980, but only 

MERRA-2 system continues to be produced after January, 2017. MERRA-2 is updated 

operationally with a latency of about one week.  

 

To examine the impact of observation-based precipitation products, three different 

satellite precipitation datasets were used as inputs to our simulations to compare with the 

MERRA-based precipitation reanalysis, generating several simulations. These observed 

products include: 1) the Climate Hazards group InfraRed Precipitation with Stations 

(CHIRPS), 2) the research-grade Tropical Rainfall Measuring Mission (TRMM) Multi-

Satellite Precipitation Analysis version 7 (TMPA; referred to here as TMPA3B42), and 3) 

the near real-time version of the TMPA3B42 product (TMPA3B42RT).  

 

CHIRPS is a quasi-global (50° S to 50° N) rainfall dataset based on infrared Cold Cloud 

Duration (CCD) observations, used for seasonal drought monitoring (Funk et al., 2015). 

The data is temporally disaggregated from daily to 6-hourly at 0.05° spatial resolution 

and from 1981 to present. CHIRPS incorporates station data with about a three week 

latency (Funk et al., 2015).  

 

TMPA3B42 is a quasi-global (50° S to 50° N) precipitation product at 0.25° spatial 

resolution and 3-hourly temporal resolution, using the multi-channel microwave and 

infrared observations obtained from satellites (Huffman et al., 2007; Wanders et al., 

2015). The TMPA3B42 algorithm uses infrared (IR) and passive microwave (PM) 

sensors and rescales the data based on gauge observations. TMPA3B42 is available from 
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1998 to present, usually with two months latency. TMPA3B42RT has spatial coverage 

(60° S to 60° N) and is available from 2000 to present. TMPA3B42RT is available with a 

latency of about 6 hours and without the gauge based adjustment. Dinku et al. (2007) 

showed that TMPA3B42RT in Ethiopia performs as well as TMPA3B42 in terms of 

correlation coefficient and mean error against gauge rainfall data. TMPA3B42RT even 

performs better than the NOAA Climate Prediction Center (CPC) African Rainfall 

Estimation Algorithm (RFE), version 2, which includes use of in-situ rainfall data from 

the Global Telecommunication System (GTS) stations.  

 

2.4. River routing scheme  

In this study, HyMAP is driven with both Noah3.3 and CLSMF2.5. Surface runoff and 

baseflow are converted into streamflow along the river network using a kinematic wave 

formulation, allowing the comparison against in-situ observations [more details can be 

found in Getirana et al., 2012]. In river routing schemes, channel geometry, floodplain 

topography, and roughness coefficient are an acknowledged source of uncertainty 

(Decharme et al., 2012; Yamazaki et al., 2011; Getirana et al., 2013; Luo et al., 2017). 

We implemented the HyMAP’s global standard parameters except for river width in this 

study. 

 

Generally, HyMAP defines river width for each grid cell based on an empirical 

relationship between river width and the mean annual discharge from the global runoff 

database (Cogley 2003). In this study, we modified the HyMAP-based river width with 

the Global Width Database for Large Rivers (GWD-LR) (Yamazaki et al., 2014). GWD-
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LR calculates effective bank-to-bank river width using the SRTM Water Body Database 

and the HydroSHEDS flow direction map (Lehner et al., 2008). While GWD-LR shows 

discontinuities of river width data in small tributaries, this data provides better estimates 

on the mainstem (greater than ~150 meter in river width) of our study area. Thus, we 

computed the ratio of GWD-LR to HyMAP defined river width on the mainstem, 

multiplied the HyMAP defined river width by the ratio, and updated river width input in 

the river routing scheme.  

 

2.5. Model setup  

Both Noah3.3 and CLSMF2.5 were each driven with the two MERRA-based 

meteorological forcing datasets. Additional model experiments were conducted with each 

of the three additional precipitation datasets (i.e. CHIRPS, TMPA3B42, and 

TMPA3B42RT), replacing the MERRA-Land and MERRA-2 precipitation fields but still 

retaining the other meteorological forcing fields (e.g. air temperature, wind fields, etc.). 

Table 1 lists the details of the 16 model experiments. The simulations were performed 

from 1981 to 2010. All experiments used a constant model time step of 15 minutes and 

produced on a 0.1° spatial resolution domain with daily-averaged output fields. Bilinear 

interpolation was applied to the coarser scale meteorological datasets to match the 0.1° 

resolution required by the LSMs. The first 25 years of simulation were used for model 

spinup for LSM variables to reach equilibrium (Rodell et al., 2005) and were not 

considered in the evaluation. The water budget evaluation was carried out for the 2006-

2010 period when evaluation datasets (i.e. ET, Q, TWS; see the details in section 3) are 

most available. The selected LSMs are physically-based models, meaning that the 
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accuracy of results will depend on the quality of input data. Model calibration is beyond 

the scope of this study.  

 

 

3. Evaluation approach 

3.1. Evapotranspiration 

Monthly model-based evapotranspiration estimates were compared and evaluated against 

the Atmosphere-Land Exchange Inverse (ALEXI) (Yilmaz et al., 2014) and the Global 

Land Evaporation Amsterdam Model (GLEAM) v3.0a (Martens et al., 2016). 

 

ALEXI was developed as a robust regional framework for a two-source (soil+vegetation) 

time-integrated model to evaluate the surface energy balance (Anderson et al., 1997). 

Yilmaz et al. (2014) demonstrated that ALEXI outperformed Noah LSM and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 ET product to 

estimate ET over the Nile river basin.  In this study, ALEXI ET rates are used as the 

reference for our evaluation. ALEXI is a daily product at 3 km spatial resolution and 

available from 2007 to 2012 in the Middle East and North Africa (MENA) region. 

 

GLEAM is currently the only global evaporation model driven by microwave remote 

sensing observations (Miralles et al., 2011). The GLEAM v3.0a used in this study is a 

global dataset available from 1980 to 2014, dedicated to providing terrestrial evaporation 

and soil moisture from reanalysis net radiation and air temperature, a combination of 

gauge-based reanalysis, satellite-based precipitation, and satellite-based vegetation 



  

15 
 

optical depth (Martens et al., 2016). GLEAM datasets are provided on a 0.25° spatial 

resolution grid and with a daily temporal resolution.  

 

3.2. Streamflow  

We evaluated monthly streamflow estimates from our LIS-HyMAP coupled modeling 

runs using available daily streamflow observations at the El Diem site (Fig. 1), monitored 

by the Ministry of Water and Energy of Ethiopia (Uhlenbrook et al., 2012; Gebrehiwot et 

al., 2011), where the station is located at the basin outlet of this study domain. More than 

three and half years of observations within 2006-2009 at this station are referenced to 

evaluate our model streamflow estimates. This study focuses on basin scale water budget 

variables, but the other streamflow gauges in the study area are mostly located at 

tributaries with small drainage areas (< 10
3
 km

2
) or do not have valid observations during 

the evaluation period.   

 

3.3. Terrestrial water storage anomaly 

The GRACE mission provides measurements of the spatiotemporal changes in Earth’s 

gravity field. We examined monthly basin-averaged TWS anomalies using three GRACE 

spherical harmonic products from the Center for Space Research at the University of 

Texas (CSR), the NASA Jet Propulsion Laboratory (JPL), and the German Research 

Centre for Geosciences (GFZ). We used the latest dataset release, RL05 from GFZ and 

CSR and RL05.1 from JPL. These products are available from April 2002 to end of 2016. 

In this study, the land grid scaling coefficients were applied to the GRACE data when 

generating the time series of TWS anomalies (Landerer and Swenson, 2012).  



  

16 
 

 

When analyzing GRACE data, there is a trade-off between spatial resolution and 

accuracy, such that the fundamental temporal and spatial resolution of the GRACE data is 

10 days and 400 km (Rowlands et al., 2005; Swenson et al., 2006). Our study area 

(~175,000 km
2
) is slightly greater than the approximate minimum area (~160,000 km

2
) 

that can be resolved before errors overwhelm the signal. TWS estimates were calculated 

using the continuity equation adapted for watersheds: 

 

                                                                (1) 

 

where   is the input precipitation and    is LSM-based evapotranspiration.   is derived 

from HyMAP at the basin outlet. We calculated both the GRACE and model-based TWS 

anomalies with a linear trend removal of years 2006-2010. The model performance 

statistics were computed against the mean of three GRACE spherical harmonic products. 

The mean absolute error of each of the GRACE products against the mean of the three is 

equivalent to 1 cm.   

 

3.4. Evaluation indices 

The performance of LIS-HyMAP simulations is assessed using commonly used statistical 

indices. For statistical goodness of fit between observed and simulated values, the Nash-

Sutcliffe (NS), the Pearson Correlation (r) coefficients, and the root-mean-square error 

(RMSE) are calculated as: 
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                                                  (2) 

 

  
                                 

                                      
                                          (3) 

 

                                                               (4) 

 

where      and      are, respectively, observed and simulated values at time step t, and 

          and           are averages of their respective time series. NS ranges from -∞ to 1, where 

1 is the optimal case and zero is when simulations are as accurate as the long-term 

average of the observed values. If NS is lower than zero, then the model provides less 

skill than using the observed mean as a predictor. NS is more sensitive to large 

differences between      and      rather than r, thus NS can be a better evaluation 

index to assess the timing of peak values in ET and Q hydrological variables. RMSE is 

calculated only for TWS and not for ET and Q estimates. 

 

For error assessment, relative error (  ) and the ratio of standard deviations (RSD) are 

calculated.  

 

   
         

    
                                                     (5) 

 

    
    

    
                                                            (6) 

 



  

18 
 

where   is standard deviation.    determines how      is under- or overestimated in 

comparison to      for the period studied. When used to evaluate simulated TWS,     

of simulated and GRACE-based TWS is calculated.      compares the amplitudes of the 

simulated TWS time series against GRACE-based estimates, where values above 1 

indicate that      overestimates the amplitude.  

 

 

4. Results and discussion 

4.1. Comparison of model precipitation estimates 

The spatial and temporal distributions of precipitation fields have important roles in the 

water budget. Fig. 2 shows total annual and mean monthly rates of basin-averaged 

precipitation from MERRA-Land (ML), MERRA-2 (M2), CHIRPS (CH), TMPA3B42 

(TM), and TMPA3B42RT (TR) datasets for years 2006-2010. In Fig. 2a, the mean 

annual rates vary from 1071 mm/yr for ML to 1426 mm/yr for M2. The standard 

deviations vary from 101 mm/yr for CH to 187 mm/yr for ML. While M2 appears to 

follow a similar annual trend in the time series as ML, M2 is 33% higher than ML during 

the years 2006-2010. It implies that when compared to ML, a merged satellite-gauge 

precipitation product M2 was improved by its precipitation correction algorithm (Reichle 

et al., 2017). The other three datasets CH, TM, and TR agree well with annual rates 

within the range of the two MERRA precipitation products. In Fig. 2b, mean monthly 

precipitation values are plotted for the years, 2006-2010. The mean monthly rates vary 

from 2.93 mm/day for ML to 3.91 mm/day for M2. A larger deviation among the 

different precipitation data sets is shown for the rainy months from May to August versus 
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the non-rainy months. The peak month of the precipitation datasets is July except TR in 

which August is slightly higher than July.  

 

Fig. 3 shows the spatial distribution of precipitation datasets, temporally averaged at each 

grid cell for years, 2006-2010. The order of mean daily rates from highest to lowest is M2, 

CH, TM, TR, and ML, which is similar to the order shown with Fig. 2. Though ML 

shows the highest standard deviation in the time series of annual rates among five 

precipitation datasets in Fig. 2a, ML has the lowest standard deviation in its spatial 

distribution. M2 seems to have a local effect at longitudes between 36° and 38°, showing 

higher rates than the other areas. Overall, the average precipitation rates decrease towards 

the northeast, which is consistent with isohyet lines that Mellander et al. (2013) estimated 

for the same region. The highest mean daily precipitation rates are found in the southern 

region of the study area. The maximum rates vary from 4.19 mm/day for ML to 5.95 

mm/day for M2.  

 

It is noteworthy in Figs. 2 and 3 that M2 and TM precipitation values increase when 

incorporating station-based observations compared to ML and TR, respectively. Modeled 

ET and total runoff present similar spatial distribution patterns (not shown) as those 

observed in the precipitation datasets. Thus, higher ET and total runoff rates usually 

occur in the southern region, coinciding with the higher precipitation rates described 

above. 

 

4.2. Evaluation of model evapotranspiration estimates 
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The 16 model-based monthly ET rates in the upper Blue Nile basin were evaluated from 

January 2007 to December 2010. This period is limited by the availability of the ALEXI 

ET data. Table 2 provides the summary of evaluation indices of NS, RE, and r for the 

model monthly ET analyses against the ALEXI ET rates. A comparison of just the ML 

and M2 forced experiments (without replacing their precipitation data with the 

observation-based datasets) showed better ET estimates, with lower RE and higher r 

values, for M2 (compare ML-ML and M2-M2 in Table 2). However, model experiments 

forced with M2 and the observation-based precipitation datasets (M2-CH, M2-TM, M2-

TR) did not make a significant improvement from those with ML (ML-CH, ML-TM, 

ML-TR) as much as an improvement between ML-ML and M2-M2. This indicates that 

the other meteorological variables (e.g. air temperature) of ML and M2, except for 

precipitation, had little influence on the performance of ET estimates (more detailed 

results and discussion are provided in section 4.5).  

 

Fig. 4 shows monthly modeled ET estimates from 8 simulations forced with the M2 

meteorological forcing dataset (i.e. see simulation numbers 5-8 for Noah3.3 and 13-16 

for CLSMF2.5 in Table 1). Overall, CLSMF2.5 is more consistent with ALEXI than 

Noah3.3, whereas GLEAM shows a distinct difference from the other datasets with 

overall lower values. All datasets show the highest ET values in September-October and 

the lowest ET values in February-March (Figs. 4b,e). The major difference between the 

two LSMs occurs during lowest period from December-March. CLSMF2.5 agrees well 

with ALEXI during both high and low periods, whereas Noah3.3 has decreased ET 

values, close to GLEAM values during those low periods. Yilmaz et al. (2014) also 
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demonstrated that Noah3.2 captures ET well during the rainy season, but it 

underestimated ET during the winter months over agricultural areas or regions with 

shallow ground water tables in the Nile Basin. In this sense, the Noah-MP LSM (Niu et 

al., 2011) may better represent ET values in this region due to being coupled with an 

underlying water table scheme, which is not supported in Noah3.3. On the other hand, ET 

estimates from CLSMF2.5 are close to ALEXI with high NS and r values. ET estimates 

from Noah3.3 show similarly high r values to CLSMF2.5, but low NS values (see Table 

2). This supports that CLSMF2.5 better captures the timing of the low season values in 

monthly ET variability than Noah3.3.  

 

Along with different precipitation datasets, CLSMF2.5 generates a wider range of ET 

estimates than Noah3.3. The rate of modeled ET from highest to lowest follows the same 

order of the precipitation rate as M2, CH, TM, and TR. Generally, Noah3.3 overestimates 

high values and underestimates low values with all precipitation datasets (Figs. 4b, 4c). 

CLSMF2.5 simulations when forced with M2 and CH generate higher ET estimates with 

positive RE values, whereas those with TM and TR generate lower ET estimates with 

negative RE values (Figs. 4e, 4f). 

 

The mean annual rates of Noah3.3-M2 averaged (Fig. 4a), CLSMF2.5-M2 averaged (Fig. 

4d), ALEXI, and GLEAM ET data are 909, 1010, 979, and 675 mm/yr, respectively, in 

the upper Blue Nile basin for 2007-2010. Previous ET studies in the Blue Nile basin have 

provided mean ET estimates at different periods. The Food and Agricultural Organization 

of the United Nations (FAO)-Nile program estimated mean ET as 863 mm/yr for 1960-



  

22 
 

1990 (Hilhorst et al., 2011). Bastiaanssen et al., (2014) estimated mean ET as 737 mm/yr 

for years, 2005-2010, using the adjusted Operational Simplified Surface Energy Balance 

(SSEBop) model. Senay et al. (2009) calculated mean ET as 500 mm/yr for 2001-2007, 

based on standard water balance principles in the upper Blue Nile basin.  

 

4.3. Evaluation of model streamflow estimates 

Monthly streamflow time series of the 16 model experiments were evaluated against 

gauge observations at the El Diem site (Fig. 5). NS, RE, and r have been calculated from 

January 2006 to September 2009, when observations are available (see Table 2). Overall, 

all modeled streamflow estimates are consistent with observations, resulting in high r 

values (>0.82). Similar to the ET evaluation, the choice of the other meteorological 

variables between ML and M2, except for precipitation, made little impact on the model 

Q estimates. 

 

The choice between Noah3.3 and CLSMF2.5, along with different precipitation data, has 

a significant influence on the accuracy of model streamflow estimates. Generally, 

Noah3.3 produced higher streamflow estimates with positive RE values, whereas 

CLSMF2.5 produced lower streamflow with negative RE values, except those when 

forced with TM. This is mostly explained by the fact that Noah3.3 generates lower ET 

rates and higher total runoff, resulting in higher streamflows than CLSMF.2.5. More 

specifically, though both LSMs underestimate low streamflow periods (see Figs. 5c, 5f), 

Noah3.3 simulations provide much higher peak flows, whereas those from CLSM2.5 

provide lower peak flows. Simulations from Noah3.3 show higher r values, whereas 
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simulations from CLSMF2.5 show higher NS values except those forced with TR. The 

high peaks of all 16 model experiments’ streamflow time series occur in August (Figs. 5b, 

5e), lagging by one month behind the high peaks of the precipitation rates, which occur in 

July (Fig. 2b).  

 

Interestingly, simulations from CLSMF2.5 show streamflow values rising earlier than 

those from Noah3.3 and the gauge observations (Fig. 5e). This is likely due to the fact 

that CLSMF2.5 produces little baseflow and makes the routing scheme convert most of 

the surface runoff to streamflow (Getirana et al., 2017). Baseflow corresponds to longer 

infiltration processes and slower runoff generation than surface runoff.  

 

In terms of amplitude (see RE values in Table 2), the order of modeled Q from highest to 

lowest is different between Noah3.3 (M2-TM-CH-TR) and CLSMF2.5 (TM-TR-CH-M2). 

M2 produces the highest Q with Noah3.3, but the lowest Q in CLSMF2.5. This can be 

explained by noting that the different spatial distributions of the precipitation datasets 

produced different ratios of total runoff. These differences are also LSM-dependent.  

 

4.4. Evaluation of model terrestrial water storage anomaly estimates 

The 16 different model TWS estimates were compared to GRACE data for January 2006 

to December 2010. Fig. 6 shows the 16 model basin-averaged TWS time series, and 

Table 2 highlights the evaluation indices when compared with the mean of the three 

GRACE spherical harmonic products. GRACE-based TWS time series show that the 

equivalent water height anomalies range ~±200 mm. If we convert this to storage change 
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by multiplying it by the basin area (~175,000 km
2
), we get approximately ~±35 km

3
 

which is stored and then leaves the upper Blue Nile basin every year. Generally, the 

model outputs agree with GRACE estimates with high NS (>0.71) and r (>0.85) as well 

as RSD being close to 1 (0.80 to 1.35). Similar to the ET and Q evaluations, the choice of 

the other meteorological variables between ML and M2, except for precipitation, made 

little impact on the model TWS estimates. 

 

For a comparison of the two LSMs, simulations from Noah3.3 show that the TWS 

anomalies peak in August one month earlier than those from CLSMF2.5 and GRACE. 

This is related to the fact that Noah3.3 underestimates ET during winter season and 

produces much high Q peak values. This leads to CLSMF2.5 having higher NS and r 

values than Noah3.3. Also, CLSMF2.5 shows higher RSD than Noah3.3 in the TWS 

anomaly evaluation. This implies that Noah3.3 produces higher streamflow values and 

results in lower amplitudes of TWS anomalies, despite lower ET rates than CLSMF2.5 

(see Eq. 1). 

 

The RMSE for TWS for all experiments, except for Noah3.3-ML-TR, are less than 61 

mm, which is the sum of the leakage error and the residual error in the scaled GRACE 

data for this region (Swenson and Wahr, 2002). 

 

4.5. A comparative analysis of water budget variables 

A comparative analysis of the three water budget variables (i.e. ET, Q, and TWS) was 

performed with the 16 LSM experiments and with the HyMAP routing scheme, and the 
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results are shown in Fig. 7.  The indicated values for each shaded bar in the graph 

represents the average of the three water budget variables and for each derived evaluation 

index and for each experiment. The NS and correlation (r) coefficients were calculated 

for all model water budget variables. While relative errors (RE) were calculated for both 

Q and ET, the ratio of standard deviations (RSD) was calculated for TWS anomaly. 

When averaging the RE and RSD evaluation indices together, we subtracted 1 from RSD 

and calculated the average of the rescaled index with RE.  

 

In terms of NS, CLSMF2.5 shows better performance than Noah3.3 in each evaluation 

index of the three water budget variables. CLSMF2.5 produces Q and TWS estimates 

with slightly higher NS values than Noah3.3. For ET estimates, CLSMF2.5 outperforms 

Noah3.3 because Noah3.3 underestimates ET rates during the winter months. When 

CLSMF2.5 was forced with the ML or M2 meteorological forcing dataset and CH, TM, 

TR precipitation datasets, the average of the three evaluation indices is about 0.8. 

CLSMF2.5 when forced with M2-M2 produces high NS values for Q and TWS, but 

shows lower NS than one for ET with the other precipitation datasets.  

 

In terms of RE or RSD-1, all experiments show the average values within +/- 0.06 except 

those when forced with ML-ML. In ET, all experiments show negative RE values except 

CLSMF2.5 when forced with CH and M2 precipitation datasets. Overall, Noah3.3 

provides lower RE in ET, higher RE in Q, and lower RSD values in TWS than 

CLSMF2.5.  
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In terms of r, all experiments show high average r (> 0.88) values. CLSMF2.5 when 

forced with TR precipitation shows lower r values than simulations with the other 

precipitation datasets. Overall, Noah3.3 shows higher correlation values in Q and lower 

correlation values in TWS than CLSMF2.5.  

 

Simulations forced with CH, TM or TR precipitation datasets outperform those with 

either the ML or M2 precipitation fields, as shown in the average evaluation indices of 

these water budget variables. For r, CH has the highest correlation values in both LSMs, 

whereas TM performs well with Noah3.3. For the evaluation of RE or RSD, CH has 

lower errors in both LSMs’ set of experiments. For the evaluation of NS, TM is the best 

with both LSMs, whereas CH performs well with CLSMF2.5. 

 

 

5. Conclusions 

This study focuses on the evaluation of the water budget over the upper Blue Nile basin 

from a modeling perspective. We generated 16 different model experiments including 

two LSMs (Noah3.3 and CLSMF2.5), two reanalysis forcing datasets (MERRA-Land 

and MERRA2), and three additional observation-based precipitation datasets (CHIRPS, 

TMPA3B42, and TMPA3B42RT). The HyMAP model was used to route surface runoff 

and baseflow in the river network to generate streamflow. These particular models and 

forcing datasets were chosen in the existing framework of NASA’s LIS software. The 

spatial and temporal distributions of precipitation (P) fields were investigated. Three 

water budget variables (i.e. evapotranspiration (ET), streamflow (Q), and terrestrial water 
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storage (TWS) anomaly) were compared and evaluated using in-situ and satellite 

observations. The intercomparision and evaluation of these models and datasets offered 

improved understanding and modeling of basin scale water budget variables in the upper 

Blue Nile basin.  

 

Among the five different precipitation datasets, the gauge-adjusted products such as 

MERRA-2, CHIRPS, and TMPA3B42 were expected to provide better spatial and 

temporal distributions of precipitation over the basin. While precipitation from MERRA-

2 showed improved precipitation relative to precipitation from MERRA-Land, little 

improvement in the other meteorological variables was seen in the evaluation of modeled 

ET, Q, and TWS anomaly estimates. The spatial distribution of precipitation from 

MERRA-2 appears to include a local bias and needs to be modified. In the upper Blue 

Nile basin, a real-time version of TMPA3B42 (i.e. TMPA3B42RT) outperformed 

MERRA2 and MERRA-Land with the evaluation of NS and RE. 

 

Significant uncertainty in evapotranspiration analyses has been a known issue in the 

region (Yilmaz et al., 2014). In this study, we evaluated the 16 modeled ET estimates 

against ALEXI data, which have also been used to validate actual ET estimates in this 

region (Allam et al., 2016). The results showed that Noah3.3 produces lower ET and 

higher total runoff (or streamflow) than CLSMF2.5 when using the same precipitation 

data. This is likely caused by low baseflow produced by CLSMF2.5. The evaluation of Q 

was performed against in-situ observations at the Ethiopia-Sudan border. All experiments 

forced with the CH, TM and TR observation-based precipitation datasets showed high 
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model streamflow performances. In further studies, more streamflow gauge stations along 

the upstream tributaries can be analyzed to explore smaller scale hydrological and 

hydraulic processes related to forcing error, limited representation of physical processes, 

and inaccurate parameterization of the routing scheme. Simulated TWS anomalies were 

compared against the mean of three GRACE spherical harmonic products. All 

experiments, except for Noah3.3-ML-TR, provide TWS errors that are less than the 

published leakage error for this region (Swenson and Wahr, 2002).  

 

The comparative analysis shows that CLSMF2.5 provided better representation of the 

water budget variables in terms of Nash-Sutcliffe coefficient, though CLSMF2.5 

produces little baseflow in the runoff generation process. In the upper Blue Nile basin, 

simulations forced with CHIRPS or TMPA3B42 precipitation data show better modeled 

ET, Q, and TWS anomaly estimates than the other precipitation datasets. Currently, 

FLDAS operationally runs Noah3.3 forced with MERRA2 and CHIRPS and provides 

these model outputs to a public archive server. However, FLDAS does not currently 

include CLSMF2.5 and HyMAP routing scheme outputs in its routine production. In 

regards to this, the results from this study could  suggest that  by including CLSM and 

HyMAP in the FLDAS production suite in the future, additional information would be 

provided for enhancing the drought monitoring for FEWS NET applications.  

 

The evaluation can be sensitive to different temporal and spatial model resolutions. In 

this study, monthly modeled ET, Q, TWS estimates at 0.1° grid scale are evaluated. The 

temporal resolution is constrained by the availability of GRACE products. The spatial 
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resolution is matched with the FLDAS outputs. Further studies are needed to carry out 

the evaluation at different resolutions and reveal the impact of the scales onto the 

comparative analysis of water budget variables in this region.  

 

In this study, we didn’t attempt to evaluate different precipitation datasets as compared to 

the other three water budget variables. Previous studies (Funk et al., 2014, Huffman et al., 

2007, Reichle et al., 2017) have already demonstrated that by incorporating in situ 

observation, precipitation datasets CHIRPS, MERRA-2, TMPA3B42 are better than 

CHIRP, MERRA-Land, TMPA3B42RT, respectively. Besides, ground observations are 

generally point data whereas these satellite- and/or model-based precipitation datasets 

represents averages in large scale. Therefore, we focus on the evaluating the impact of 

precipitation datasets on modeled ET, Q and TWS estimates rather than directly 

evaluating each of the five different precipitation datasets.   

 

These results are essential to continue to make potential improvements in the 

parametrizations, physics, calibration of the LSMs being used. Also, these analyses are 

useful for future applications such as seasonal forecast modeling, agricultural production 

estimates, water resource management, and model algorithm development (e.g. data 

assimilation, irrigation, etc.) within the NASA LIS framework.  
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Figure Captions 

Fig. 1. Study area of the upper Blue Nile river basin with river networks, country borders, 

and location of the streamflow station at the El Diem site.  

 

Fig. 2. (a) Annual and (b) mean monthly precipitation rates from MERRA-Land (ML), 

MERRA-2 (M2), CHIRPS (CH), TMPA3B42 (TM), and TMPA3B42RT (TR) datasets in 

the upper Blue Nile basin for 2006-2010.    

 

Fig. 3. Spatial distribution of mean daily precipitation rates (mm/day) in the upper Blue 

Nile basin for 2006-2010. Gray lines represent the mainstem and tributaries.   

 

Fig. 4. Monthly evapotranspiration (ET) rates from Noah3.3-MERRA2 (a, b, c) and 

CLSMF2.5-MERRA2 (d, e, f) simulations for years, 2006-2010. The seasonality (b, e) 

and scatterplot (c, f) of the model monthly ET rates were evaluated against ALEXI ET 

rates from January 2007 to December 2010.   

 

Fig. 5.  Monthly streamflow rates (Q) at the EL Diem site from Noah3.3-MERRA2 (a, b, 

c) and CLSMF2.5-MERRA2 (d, e, f) simulations for years, 2006-2010. The seasonality 

(b, e) and scatterplot (c, f) of the model monthly streamflow rates were evaluated against 

gauge observations at the El Diem site from January 2006 to September 2009.  

 

Fig. 6. Monthly terrestrial water storage (TWS) anomalies of the upper Blue Nile River 

Basin from Noah3.3-MERRA2 (a, b, c) and CLSMF2.5-MERRA2 (d, e, f) simulations 
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for  2006-2010. The seasonality (b, e) and scatterplot (c, f) of the model monthly TWS 

anomalies were evaluated against the average of three GRACE spherical harmonic 

products from CSR, JPL, and GFZ.  

 

Fig. 7. A comparative analysis of three water budget variables (i.e. ET, Q, and TWS) 

from the 16 LSM simulations and the HyMAP river routing scheme (▼  These Noah3.3-

M2-CH model output fields are operationally generated by FLDAS).  
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TABLES 

Table 1. List of land surface models (LSMs), reanalysis-based meteorological forcing, 

and satellite-based precipitation data sets.  

Simulation 

(No.) 
LSM 

Base meteorological 

forcing data 
Precipitation source 

1 

Noah3.3  

(Chen et al., 

1996; Ek et al., 

2003) 

MERRA-Land 

(ML;  Reichle et al., 

2011) 

MERRA-Land (ML) 

2 CHIRPS (CH; Funk et al., 2014) 

3 
TMPA3B42 (TM; Huffman et 

al., 2007) 

4 
TMPA3B42RT (TR; Huffman et 

al., 2007) 

5 

MERRA2 

(M2;  Reichle et al., 

2017) 

MERRA2 (M2) 

▼6 CHIRPS (CH)  

7 TMPA3B42 (TM) 

8 TMPA3B42RT (TR) 

9 

CLSMF2.5 

(Koster et al., 

2000; Reichle 

et al., 2011) 

MERRA-Land 

(ML) 

MERRA-Land (ML) 

10 CHIRPS (CH) 

11 TMPA3B42 (TM) 

12 TMPA3B42RT (TR) 

13 

MERRA2 

(M2) 

MERRA2 (M2) 

14 CHIRPS (CH) 

15 TMPA3B42 (TM) 

16 TMPA3B42RT (TR) 

▼FLDAS operationally runs and provides model outputs from Noah3.3-MERRA2-

CHIRPS.  
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Table 2. Summary of evaluation indices for monthly evapotranspiration (ET), streamflow 

(Q), and total water storage (TWS) anomaly from the 16 LSM simulations. The best 

statistical results in each column are in boldface. 

LSM 
Met

. 

Precip

. 

ET Q TWS 

NS RE r NS RE r NS 
RS

D 
r 

RMS
E 

(mm) 

Noah3.3 

ML 

ML 

-

0.1
8 

-

0.1
6 

0.9

0 

0.5

3 

-

0.4
6 

0.8

4 

0.7

8 
0.80 0.89 54 

CH 

-

0.1

5 

-

0.0

8 

0.9

0 

0.6

4 

0.2

0 
0.9

8 

0.7

3 
0.89 0.86 60 

TM 
0.1
8 

-

0.1

1 

0.9
1 

0.6
3 

0.3
0 

0.9

8 

0.7
3 

0.83 0.86 60 

TR 
0.1

3 

-
0.1

2 

0.9

0 

0.6

9 

0.1

8 

0.9

5 

0.7

1 
0.84 0.85 62 

M2 

M2 
0.1

6 

-

0.0

1 

0.9

3 

0.3

7 

0.2

6 

0.9

7 

0.7

5 
0.91 0.87 57 

CH 

-

0.0
4 

-

0.0
7 

0.9

3 

0.6

4 

0.1

6 
0.9

8 

0.7

4 
0.93 0.86 59 

TM 
0.2

7 

-

0.0

9 

0.9

4 

0.6

4 

0.2

6 
0.9

8 

0.7

4 
0.87 0.86 59 

TR 
0.2
3 

-

0.1

1 

0.9
4 

0.7
2 

0.1
3 

0.9
6 

0.7
2 

0.89 0.85 61 

CLSMF2.
5 

ML 

ML 
0.4

1 

-

0.1

4 

0.8

9 

0.3

8 

-

0.5

5 

0.9

0 

0.8

2 
0.95 0.91 49 

CH 
0.7

4 

0.0

5 

0.9

2 
0.7

9 

-
0.2

2 

0.9

3 

0.9

1 
1.16 0.97 35 

TM 
0.7

8 

-

0.0
5 

0.9

2 

0.7

7 

0.0

4 

0.8

8 
0.9

5 
0.96 0.97 27 

TR 
0.7

6 

-

0.0
7 

0.9

3 

0.6

7 

-

0.0
4 

0.8

2 

0.9

1 
0.95 0.96 35 

M2 
M2 

0.2
8 

0.1
7 

0.9
2 

0.7
4 

-

0.3

5 

0.9
4 

0.7
8 

1.35 0.96 54 

CH 0.6 0.0 0.9 0.7 - 0.9 0.9 1.17 0.98 35 



  

54 
 

7 6 5 6 0.2

6 

2 1 

TM 
0.7

9 

-
0.0

4 

0.9

4 

0.7

7 
0.0

1 

0.8

8 
0.9

5 
0.96 0.98 26 

TR 
0.7

9 

-
0.0

6 

0.9

5 

0.6

7 

-
0.0

6 

0.8

2 

0.9

2 
0.95 0.96 33 
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Highlights: 

(1) To compare model outputs (i.e., evapotranspiration, streamflow, total water storage 

anomaly) from different combinations of land surface models, meteorological forcing 

datasets, and observation-based precipitation data in the upper Blue Nile basin 

(2) To evaluate monthly time series of model water budget variables using in situ 

measurement and satellite-based products 

(3) To identify the most suitable combination of LSMs and meteorological datasets for a 

water balance study  

(4) To suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data 

Assimilation System (FLDAS) incorporate CLSMF2.5 and HyMAP routing scheme to 

better represent the water balance in this region 

 

 


