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a b s t r a c t

Several large-scale field campaigns have been conducted over the last 20 years that require accurate mea-
surements of soil moisture conditions. These measurements are manually conducted using soil moisture
probes which require calibration. The calibration process involves the collection of hundreds of soil mois-
ture cores, which is extremely labor intensive. In 2012, a field campaign was conducted in southern
Manitoba in which 55 fields were sampled and calibration equations were derived for each field. The
Soil Moisture Active Passive Experiment 2016 (SMAPVEX16) was conducted in this same region, and
21 of the same fields were resampled. This study examines the temporal transferability of calibration
equations between these two field campaigns. It was found that the larger range in soil moisture over
which samples were collected in 2012 (average range 0.11–0.41 m3 m�3) generally resulted in lower
errors when used in 2016 (average range 0.24–0.44 m3 m�3) than the equations derived in 2016 when
used with data collected in 2012. Combining the data collected in 2012 and 2016 did not improve the
errors, overall. These results suggest that the transfer of calibration equations from one year to the next
is not recommended.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge of soil moisture variability, both spatially and tem-
porally, at different scales is important for the validation of appli-
cations such as land surface models and remote sensing products
(Crow et al., 2012; Famiglietti et al., 2008; Western et al., 2002).
Although gravimetric sampling provides the most accurate estima-
tion of soil moisture, it is labor intensive and time consuming. Elec-
tromagnetic sensors have been investigated extensively as an
alternative for measuring soil moisture. Numerous studies have
been conducted which investigate calibration strategies for soil
moisture sensors that relate the measured soil dielectric permittiv-
ity to soil water content through (e.g. Bogena et al., 2017; Ojo et al.,
2015; Rosenbaum et al., 2010; Rowlandson et al., 2013; Seyfried
et al., 2005). Studies have also examined the variability between
different commercially available soil moisture sensors. A study
by Walker et al. (2004) found that sensors requiring soil distur-
bance for installation presented the highest errors in soil moistures
retrieval despite calibration efforts. Cosh et al. (2016), using data
from a soil moisture sensor testbed, found that electromagnetic
sensors installed at a depth of 5 cm, when scaled to the field, had
similar root mean square errors, all of which were <0.04 m3 m�3.
More specifically, studies have noted that lower frequency sensors
exhibit sensitivity in the measurements of the soil dielectric per-
mittivity resulting from the soil electrical conductivity (Seyfried
et al., 2005; Seyfried and Murdock, 2004) and changes in soil tem-
perature (Merlin et al., 2007; Wraith and Or, 1999). Inter-sensor
variability is an issue that has been noted in several studies (e.g.
(Bogena et al., 2017; Cosh et al., 2016; Rosenbaum et al., 2010;
Seyfried and Murdock, 2004)); however, it has been noted that
sensor-specific calibrations, which prior deriving a relationship
between the soil water content and the soil dielectric permittivity,
measurements are first made in media of known dielectric permit-
tivity to determine inter-sensor variability (Rosenbaum et al.,
2010).

Large-scale field campaigns (�502 km2) have been held where
surface soil moisture measurements have been collected across a
defined domain in an effort to capture the intra and inter-field soil
moisture variability, particularly as it relates to remote sensing
applications. Some of these field campaigns include: the Southern
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Great Plains 1997 (SGP97) Hydrology Experiment (Mohanty et al.,
2002), the Soil Moisture Experiments (SMEX) in 2002 (Bindlish
et al., 2006), 2003 (Bosch et al., 2006; Cosh et al., 2005), 2004
(Bindlish et al., 2008), and 2005 (Cosh et al., 2005); National Air-
borne Field Experiment 2006 (NAFE’06, Australia) (Merlin et al.,
2008); Australian Airborne Cal/Val Experiments for SMOS (AACES)
(Peischl et al., 2012); Canadian Experiment for Soil Moisture in
2010 (CanEX-SM10) (Magagi et al., 2013), Soil Moisture Active Pas-
sive (SMAP) Validation Experiment in 2012 (SMAPVEX12)
(McNairn et al., 2015); and most recently, the SMAPVEX16 field
experiment, which was conducted in the same general region as
the SMAPVEX12 campaign.

In each of the aforementioned field campaigns, transects or
grids of soil moisture were manually sampled at varying spatial
scales. For each field campaign, large quantities of soil cores were
collected to derive calibration equations (Cosh et al. 2005;
Rowlandson et al. 2013). In SMAPVEX12 for example, over 700
cores were collected over the duration of the six week field cam-
paign (Rowlandson et al., 2013). These cores provide the volumet-
ric water content estimates upon which calibration equations are
developed for dielectric soil moisture probes. Efficiency and accu-
racy are critical, because the SMAP mission requirement is to esti-
mate surface soil moisture with an unbiased root mean square
error (RMSE) of 0.04 m3 m�3 relative to ground measurements
U.S.A

Canada

Fig. 1. Map of the SMAPVEX16 Manitoba study region. The fields that are light gray are fie
location of the study region in the insert.
(Chan et al., 2016). Dielectric probes are an efficient method for
estimating soil moisture in the field. However, careful calibration
of the ground sampled soil moisture is essential to ensure that
the error in ground sampling measurements is less than this
threshold.

The purpose of the large field campaigns described above is in
the estimation of large-scale soil moisture estimates for the pur-
pose of remote sensing calibration and validation. Therefore, the
basis of the design is to collect statistically accurate soil moisture
values for contributing land surfaces within the domain of the
study in question. Efficient sampling is a key factor in this type
of sampling, as time is of the essence in conducting the sampling
over large spatial scales. Many of these campaigns are held within
the same domain, separated by several years or months (e.g.
SMAPVEX12 and SMAPVEX16 in Manitoba, SMAPEx-1 through
SMAPEx-3 (Panciera et al., 2014), July 2010, December 2010,
September 2011, respectively in Australia’s Murrumbidgee catch-
ment). Understanding if it is possible for transferring calibration
equations over the same domain from one year to the next would
enable future experimental design to be improved.

This study evaluates the temporal transferability of calibration
equations, in an effort to minimize the labor intensity associated
with core collection during these types of large field campaigns
while retaining low calibration RMSEs. The manufacturer of the
lds that were sampled in both 2012 and 2016 (17 fields used in this study). Note the
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Hydra probe has indicated that the sensor should not require recal-
ibration due to a lack of temporal drift in sensor measurements
due to probe calculations being based on the ratio of the incident
and reflected signals (K. Bellingham, pers. communication). How-
ever, the transferability of the calibration equations needs to be
assessed; otherwise errors could be needlessly propagated. Also,
factors that could impact the temporal transferability of calibration
equations from year to year are investigated.

2. Materials and methods

The SMAPVEX-16 (Soil Moisture Active Passive Validation
Experiment 2016) field campaign was held southwest of Winnipeg,
MB, in the same general region as the SMAPVEX-12 (2012) pre-
launch field campaign (McNairn et al., 2015). This region is domi-
nated by annual row crops, including corn, soybeans, oats, wheat,
and canola. In total 50 fields were sampled for soil and vegetation
characteristics, of which 21 had previously been sampled in 2012
(Fig. 1). The field sizes within the SMAPVEX-16 domain included
in this study range from 55 ha to 88 ha. In 2016 the soil moisture
sampling transects were relocated in four of the 21 fields, and par-
ticle size analysis indicated that there was a significant difference
in the soil textures that were sampled suggesting that the sampled
regions were conducted over different portions of the field. For this
reason in the following analysis, these fields are removed from
consideration and the study is limited to 17 fields. Readers are
encouraged to refer to McNairn et al. (2015) and Rowlandson
et al. (2013) for a detailed description of the study area.

Unlike the six weeks of continuous measurements in 2012 (June
6-July 17), the SMAPVEX-16 field campaign was conducted during
two windows, the first from June 8–20 and the second, July 14–22.
In total, soil moisture was sampled on 13 days (7 in the first win-
dow and 6 in the second). On each sampling date, soil moisture
was collected along two transects, consisting of eight sampling
Fig. 2. RMSE values for 2012 and 2016 calibrations, the calibration equations derived in
derived in 2016 and applied to Hydra probe data collected in 2012 and the average RMSE
the sample size is the same for all scenarios with the exception of the combined equati
points per transect in each field (refer to Fig. 2, Rowlandson
et al., 2013). Each transect was 490 m long (8 points per transect,
each 70 m apart) positioned in the same direction as crop seeding.
The transects were located 100 m from the edges of the fields to
ensure that sampling did not occur in regions subjected to com-
paction from equipment.

Soil moisture was sampled at each point along the transects using
a Stevens Hydra probe (POGO) portable sensor (Stevens Water Mon-
itoring Systems, Inc. Portland, OR), herein referred to as Hydra probe,
a frequency domain reflectometry sensor operating at a 50MHz
frequency (Stevens Water Monitoring Systems, Inc., 2007). The
Hydra probemeasures the real and imaginary components of the soil
permittivity. A voltage is applied to the probe and the reflected volt-
ages are measured. The change in impedance between the emitted
signal and reflected signal is related to the dielectric permittivity
of the material in which the probe is embedded. The sensor provides
an estimate of the complex soil relative permittivity, integrated from
0 to 5.7 cm The real component of the soil permittivity can be related
to volumetric soil water content using an appropriate calibration
function (e.g. Topp et al., 1980; Seyfried et al., 2005; Rowlandson
et al., 2013). As mentioned previously, the measurements of the soil
dielectric permittivity can be sensitive to temperature (Merlin et al.,
2007; Wraith and Or, 1999) and soil electrical conductivity (Seyfried
et al., 2005; Seyfried and Murdock, 2004).

Two soil cores (average core volume was 85 cm3 in both 2012
and 2016) were collected on each of the sampling days for each
field. On each day a core was extracted at the first point of the tran-
sect and an additional core was sampled at one of the remaining 15
sampling locations, where the location of the core changed on each
sampling date, until cores had been collected across the entire
field. With each core sampled, three Hydra probe measurements
were taken around the core, within 10 cm of the core edge.

The cores were taken to a lab, weighed (Mt), dried at 105 �C for
24 h and re-weighed (Ms). The bulk density (qb) of each core was
2012 and applied to Hydra probe data collected in 2016, the calibration equations
from the 10,000 Monte Carlo simulations using data from 2012 and 2016. Note that
on, where the sample size is Nx2.
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determined from (1) (Vt is the total volume of the core) and the vol-
umetric water content (h) was calculated from the product of the hg
and qb (2). The field average qb was used in the calculation of the
volumetric water content to correspond with the methodology
used in 2012 (Rowlandson et al., 2013). The sampled cores were
the basis for the calibration of the Hydra probe measurements.

qb ¼ Ms=Vt ð1Þ

hcore ¼ ðMt �MsÞ=Ms � qb ð2Þ
For the 17 fields, the number of cores extracted ranged from 21

to 27 samples, which is nearly twice the number of cores collected
Table 1
Minimum (Min) and range of the core volumetric water content (VWC) for each field as m
bulk density (BD) for each field for 2012 and 2016, the average (Avg) and standard deviatio
texture (S = sand, Si = silt, L = loam, C = clay, HC = heavy clay).

Field
ID

Min Core VWC
2012 (m3 m�3)

Range VWC
2012 (m3

m�3)

Min Core VWC
2016 (m3 m�3)

Range VWC
2016 (m3

m�3)

BD
Avg
2012

14 0.08 0.09 0.07 0.33 1.26
31 0.16 0.33 0.28 0.24 0.97
32 0.05 0.48 0.29 0.2 1.04
43 0.15 0.36 0.24 0.23 0.87
55 0.17 0.29 0.33 0.21 0.84
62 0.03 0.25 0.11 0.19 1.20
65 0.12 0.29 0.25 0.23 1.10
71 0.02 0.16 0.15 0.16 1.32
72 0.02 0.33 0.09 0.18 1.29
91 0.03 0.29 0.11 0.16 1.14
101 0.14 0.27 0.27 0.16 0.90
102 0.14 0.56 0.34 0.15 0.94
103 0.18 0.46 0.30 0.20 0.91
104 0.16 0.38 0.35 0.17 0.86
105 0.16 0.24 0.32 0.21 0.82
112 0.20 0.32 0.32 0.21 1.00
113 0.12 0.45 0.24 0.16 0.97

Fig. 3. The percent change in RMSE as calculated by, for example, [RMSE 2012 – RMSE 20
RMSE 2016 Eq. with 2012 data is the calibration equations derived in 2012 and applied
per field in 2012. Volumetric water content of cores that were out-
side of two times the standard deviation of all cores were consid-
ered outliers and removed from the analysis, as recommended in
Rowlandson et al. (2013). Due to the disparity in sample sizes, a
Monte Carlo simulation was conducted which randomly selected
the same number of N samples from the 2016 dataset (10,000
times) as were available from the 2012 dataset for each field. This
random selection of 2016 measurements is used throughout the
analysis and is referred to as the 2016 dataset. Many studies have
published relationships between the square root of the Hydra
probe measured relative permittivity and soil volumetric water
content (e.g. Seyfried et al., 2005; Rowlandson et al., 2013; Burns
easured in 2012 and 2016, the average (Avg) and standard deviation (Std) of the soil
n (Std) core gravimetric water content (GMC) for each field in 2012 and 2016, and soil

BD
Std
2012

BD
Avg
2016

BD
Std
2016

GMC
Avg
2012

GMC
Std
2012

GMC
Avg
2016

GMC
Std
2016

Soil
Texture

0.09 1.21 0.13 0.09 0.07 0.15 0.06 S
0.11 0.87 0.09 0.38 0.09 0.45 0.08 SiCL
0.14 0.95 0.13 0.34 0.14 0.42 0.08 C
0.14 0.84 0.08 0.34 0.10 0.43 0.06 HC
0.11 0.92 0.1 0.36 0.11 0.49 0.07 HC
0.09 1.20 0.11 0.11 0.05 0.17 0.04 S
0.08 1.13 0.12 0.24 0.09 0.29 0.06 C
0.08 1.37 0.22 0.08 0.03 0.16 0.04 S
0.14 1.25 0.09 0.12 0.11 0.14 0.03 S
0.13 1.04 0.14 0.15 0.05 0.19 0.05 LS
0.12 0.79 0.07 0.29 0.11 0.44 0.06 HC
0.08 0.8 0.08 0.36 0.18 0.51 0.05 HC
0.10 0.83 0.1 0.39 0.14 0.47 0.07 HC
0.13 0.83 0.07 0.30 0.11 0.51 0.07 HC
0.08 0.89 0.11 0.35 0.09 0.49 0.07 HC
0.10 0.85 0.11 0.34 0.09 0.44 0.08 HC
0.11 0.84 0.12 0.31 0.14 0.47 0.07 HC

16 Eq. with 2012 data]/[(RMSE 2012 + RMSE 2016 Eq. with 2012 data)/2], where the
to the Hydra probe and core volumetric water content collected in 2012.
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et al., 2014; Ojo et al., 2015) and such relationships were used as
the basis for the Hydra probe calibrations for this study. Individual
calibration equations were developed for each agricultural field, as
per the Rowlandson et al. (2013) recommendations, based on Eq.
(3), where Ɛ0 is the Hydra probe measured relative permittivity
(or real component of the complex relative dielectric permittivity)
and m and b are the derived slope and intercept of the regression
equation with the core measured volumetric water content. For
the cores collected in both 2012 and 2016, a leave-one-out
approach was conducted to determine the robustness of the cali-
bration equations.

hprobe ¼ m
ffiffiffiffi
e0

p
þ b ð3Þ

To test the transferability of the soil calibration equations, the
field calibration equations (m and b, Eq. (4)) derived in 2012 for
17 of the same fields that were measured in 2016 were applied
to the Hydra probe Ɛ0 data collected in 2016. Similarly, the equa-
tions derived from cores and Ɛ0 values obtained in 2016 were
applied to the 2012 Ɛ0 data. Errors were assessed using RMSE (4)
and bias (5) and were calculated for each field.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðhcore � hprobeÞ2
n

s
ð4Þ
Bias ¼
Pn

i¼1ðhcore � hprobeÞ
n

ð5Þ

The core data collected in 2012 and 2016 were merged to create
a single dataset for the development of calibration equations. For
comparison, this combined dataset was also confined to the num-
bers of samples collected in 2012. A Monte Carlo simulation was
conducted to randomly select cores from data collected in both
2012 and 2016 that equaled the number of cores extracted in
2012. This random selection was repeated 10,000 times for each
field. With each random selection, for each field, the RMSE was cal-
culated with (4).
Fig. 4. Top: Bias associated with using the equations derived from the 2012 field campa
water content from 2016); bottom: the bias from using the equations derived in 2016 o
Finally, field variables that could influence the difference in cal-
ibration equations between 2012 and 2016 were examined. The
coefficient of variation (CV) (6) was calculated for the core mea-
sured bulk density and soil gravimetric water content, where rpb,-
hg is the standard deviation and lpb, hg is the mean for either the
bulk density (pb) or soil gravimetric soil moisture content (hg)
measured values.

CV ¼ rqb;hg

lqb;hg

ð6Þ
3. Results and discussion

3.1. Calibration comparison between 2012 and 2016

The calibration for 2016 (using the random selection of the
same N as 2012) indicated that all fields had a calibration mean
RMSE between the core measured volumetric water content (hv)
and the calibrated Hydra probe hv that was <0.04 m3 m�3 (Fig. 2).
In all cases, the linear regression relationship between the cali-
brated Hydra probe hv and the core hv were significant at the 99%
level (in 2012, the calibration equation for field 122 was not signif-
icant). For the majority of the fields sampled, the mean RMSE in
2016 was lower than those obtained in 2012 (15 out of 17 fields).

A leave-one-out approach was examined to test the robustness
of the calibration equations derived for both 2012 and 2016. The
leave-one-out approached indicated that the calibration equations
were robust for all fields both in 2012 and 2016. The leave-one-out
approach for 2012 indicated higher RMSE values for the calibra-
tions for all fields, likely due to the decrease in the number of sam-
ples used for the analysis. However, a Wilcoxon rank sum test
indicated that there was no significant difference between the cal-
culated volumetric water content from the Hydra probes using all
the samples or using the leave-one-out for any of the fields (p > .1).
For the 2016 data set, a random selection was conducted to match
the smaller sample size associated with the 2012 leave-one out
ign to the Hydra probe data collected in 2016 (and relative to the core volumetric
n the data collected in 2012.
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approach (2012 N-1 for each iteration). The resulting RMSE values
were very similar to the 2016 dataset, with differences in the mean
RMSE <0.002 for all fields. Similarly to the 2012 leave-one-out
results, there was no significant difference in the calculated volu-
metric water content from the Hydra probes.

Table 1, which provides a summary statistics for the sampled
fields, indicates the minimum soil moisture content measured
via the core samples for 2012 and 2016, showing that for the
majority of the fields, the minimum soil moisture was lower in
2012 than that observed in 2016. The maximum soil moisture con-
tent measured was similar between the two years. Fig. 2 (third bar
for each field), shows the use of the calibration equations derived
in 2012 on the data collected in 2016 resulted in degraded RMSEs
relative to the equations derived in 2016 for all fields with the
exception of Field 65, which experienced a small decrease in RMSE
when the 2012 equation was used with the Hydra probe data col-
lected in 2016. Overall, using the 2016 equations resulted in 12 of
2017 having RMSE >0.04 m3 m�3; two fields had RMSE >0.06 m3

m�3. When applying the equations developed in 2016 to the data
collected in 2012, even further degradation in RMSE was observed
(Fig. 2). The RMSE values utilizing the 2016 equations with 2012
data resulted in higher RMSEs for all fields relative to the 2012
equations, with the exception of Field 101. In this instance, 16 of
the 17 fields had RMSE values >0.04 m3 m�3 (8 of which had RMSE
>0.06 m3 m�3) and a degradation in the RMSE for all fields relative
to their field-specific 2012 calibration equation (Fig. 3). The bias
resulting from using calibration equations developed in the alter-
native year are presented in Fig. 4. The biases for using the 2012
equations with 2016 data, and vice versa, are similar in that the
majority of the fields experienced biases within ±0.04 m3 m�3.
Overall, 11 of the 17 fields using the 2012 equations on 2016 data
resulted in negative biases, where this was the case for 10 of the 17
fields using the 2016 equations on 2012 data, indicating that in
both years, the calculated volumetric water content using the cal-
ibration equations and Hydra probe data overestimated the volu-
metric water content relative to the sample cores.

A Monte Carlo simulation was conducted to determine if com-
bining data from both field campaigns could result in improved
calibration equation. In the simulation, a random selection of the
same number of cores from the 2016 dataset as collected in 2012
(to account for differences in the number of samples between
years) was repeated 10,000 times. The results from the combined
calibration equation indicated that the average RMSE from the
10,000 iterations showed an improvement over the 2016 calibra-
tion results for only 1 of the 17 fields (Fig. 2), Field 14 (the overall
percent change in the RMSE relative to 2012 and 2016 is shown in
Fig. 3). There was an improvement in the RMSE for 4 fields relative
to the 2012 calibration. The standard deviation of the calculated
RMSEs from the Monte Carlo was <0.004 m3 m�3 for all fields.
The resulting equations from the Monte Carlo simulation were
not significantly different from the equation derived by combining
all data from 2012 and 2016, not taking into consideration the dif-
ference in sample sizes.

3.2. Factors influencing calibrations

Changes in the soil electrical conductivity or temperature dur-
ing measurements between the two sampling years could also
have an impact on the derived calibration equations. (Seyfried
and Murdock, 2004) noted the sensitivity of the Hydra probe to soil
electrical conductivity particularly when values exceed 0.142 S
m�1. In both 2012 and 2016, the measured average soil electrical
conductivity did not exceed 0.10 S m�1. There was also no signifi-
cant difference between the soil electrical conductivity between
the two field campaigns (p = .153). It is anticipated, based on these
measurements, that the changes in the soil electrical conductivity
had a minimal impact on calibrations. Studies have also indicated
that there is an impact of temperature on the measurement of the
soil dielectric permittivity (e.g. Rosenbaum et al., 2011; Seyfried
and Murdock, 2004; Wraith and Or, 1999). The majority of the
measurements made in both 2012 and 2016 were obtained
between 15 and 25 �C. Based on the results of Wraith and Or
(1999), which indicate that there is a minimal change in the mea-
sured soil dielectric permittivity when measured between 15 and
25 �C across a range of soil moisture contents. Issues in the mea-
surement of soil dielectric permittivity become more apparent at
low (5 �C; Rosenbaum et al., 2011) higher temperatures (�40 �C;
Rosenbaum et al., 2011; Wraith and Or, 1999). Similar to the soil
electrical conductivity, it likely that differences in soil temperature
between the two campaigns is not a major source of error in the
calibrations.

Inter-sensor variability is a potential source of error in regards
to the temporal transferability of calibration equations.
Coopersmith et al. (2016) found that using a triple co-location
method, using data collected at 114 sites across the continental
United States, the inter-sensor variability for the Hydra probe
was approximately 0.01 m3 m�3. Seyfried et al. (2005), using etha-
nol as a proxy for a typical range in dielectric permittivity observed
in soil, found that the inter-sensor variability to be similar to that
of Coopersmith et al. (2016). This inter-sensor variability does not
account for the large difference in RMSE values derived with the
temporal transferability of calibration equations, particularly when
the 2016 equations are applied to the 2012 data. If inter-sensor
variability were a major source of error between the two field cam-
paigns, it is anticipated that the RMSE values would be similar
when the 2012 equations were applied to the 2016 data, relative
to the 2016 calibrations as they would be for the 2016 calibration
equations applied to the 2012 data. However, for 14 of the 17 fields
sampled, when based on the calibration equations derived in 2016
on the data collected in 2012, relative to using the calibration
equations derived in 2012, the difference in the RMSE values
exceeds the inter-sensor variability. This was not the case when
the 2012 equations were applied to the 2016 data, RMSE (and rel-
ative to the 2016 calibration equations). In this scenario, only 9 of
the 17 fields exhibited differences in RMSE values that were larger
than the inter-sensor variability. To eliminate variation in soil
properties between the two study years, only fields with the same
soil textural definition throughout the sample cores were used
(indicating minimal inter-field variability in soil texture) and
reducing the possibility sample location had an impact on the cal-
ibration equations. The CV in the bulk densities of the cores were
examined for both years. A Wilcoxon ranks sum test indicated that
there was no significant difference in the CV of the bulk densities
between 2012 and 2016. This minimizes the effect of inter-field
variability of soil properties. However, another possible difference
between the 2012 and 2016 calibrations is the inter-field variabil-
ity of soil moisture of the sample cores. Given that the field average
bulk density was used in both years for the calculation of the vol-
umetric water content (in an attempt to derive a field-scale cali-
bration equation), the gravimetric water content was examined.
It was found that there was a significant difference in the CV of
the sampled gravimetric water content between 2012 and 2016
(p < .001, 99% confidence interval – Wilcoxon Rank Sum test), with
much larger CV observed in 2012, as would be expected with a
decrease in mean (e.g. Famiglietti et al. 2008).
4. Conclusions

The SMAPVEX-16 field campaign was held in the same general
region as the SMAPVEX-12. There were 17 fields sampled in the
2012 campaign that were re-sampled in 2016, allowing an
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investigation into the temporal transferability of the calibration
equations developed in 2012 to the data collected in 2016, and vice
versa. The results indicated that the field RMSE values were lower
in 2016 relative to 2012, likely due to the decreased range in soil
moisture over which the calibration equations were developed
in 2016.

This study shows that the temporal transferability of soil cali-
bration equations results in increased error in the estimate of soil
moisture due changes in the temporal variability of soil moisture.
It was shown that the CV in the gravimetric water content signifi-
cantly differs between the two sampling years, indicating that the
variability in soil moisture is the main limitation on the transfer-
ability of equations. This is also evident in the errors associated
with the transferability of the calibration equations. Using the
equations developed in 2016 (over a smaller and wetter range of
soil moisture) on the data collected in 2012, the RMSE was >0.04
m3 m�3 for the majority of the fields (16 of 17 fields). However,
when the calibration equations derived in 2012 were applied to
the 2016 data, the instances where the RMSE values were >0.04
m3 m�3 was reduced to 12 of the 17 fields, suggesting that the
transferability is improved when a larger range of soil moisture
is incorporated into their development.

A lack of knowledge, a priori, on how the variability of soil mois-
ture has changed from one year to another may indicate that cali-
bration of surface soil moisture measurements should be
conducted each year, if the need to keep ground measurement
error below an RMSE threshold of 0.04 m3 m�3 is required. It has
been well documented that errors in soil moisture estimates using
probes can be reduced if a sensor-specific calibration equation is
utilized (Bogena et al., 2017; Rosenbaum et al., 2010; Seyfried
et al., 2005) and that soil-specific calibrations are an improvement
to factory-derived calibrations (Huang et al., 2004; Seyfried and
Murdock, 2004). In this study, given that the same sensor was used
Fig. A1. The core measured volumetric water content (x-axis) measured in both 2012 (sq
measured by the Hydra probes for each field. The regression lines are shown in red for 201
right corner of each panel.
in each field, a sensor- and soil-specific calibration was conducted.
It has been shown in this study that the there was no significant
difference in the soil electrical conductivity between the two sam-
pling years and values fell below values of concern for calibrations
of Hydra probes (Seyfried et al., 2005). The range in soil tempera-
ture, over which the experiments were conducted would indicate
a potential change in the measured e0 of <0.5. The estimated
inter-sensor variability of the Hydra probe is approximately 1%
volumetric soil moisture, does not account for the large RMSE dif-
ferences in RMSE observed particularly when applying the equa-
tions derived in 2016 to the data collected in 2012. However,
there was a significant difference in the range of soil moisture over
which the calibration equations were derived in 2012 and 2016.
This suggests that soil moisture calibration equations may not suc-
cessfully transfer spatially or temporally when the desire is to keep
the measurement error below 0.04 m3 m�3.
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