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Abstract  39 

With ignorance and potential surprise dominating decision making in water resources, a 40 

framework for dealing with such uncertainty is a critical need in hydrology. We operationalize 41 

the ‘potential surprise’ criterion proposed by Shackle, Vickers, and Katzner (SVK) to derive 42 

decision rules to manage water resources under uncertainty and ignorance. We apply this 43 

framework to managing water supply systems in Bangladesh that face severe, naturally occurring 44 

arsenic contamination. The uncertainty involved with arsenic in water supplies makes the 45 

application of conventional analysis of decision-making ineffective. Given the uncertainty and 46 

surprise involved in such cases, we find that optimal decisions tend to favor actions that avoid 47 

irreversible outcomes instead of conventional cost-effective actions. We observe that a 48 

diversification of the water supply system also emerges as a robust strategy to avert unintended 49 

outcomes of water contamination. Shallow wells had a slight higher optimal level (36%) 50 

compare to deep wells and surface treatment which had allocation levels of roughly 32% under 51 

each. The approach can be applied in a variety of other cases that involve decision making under 52 

uncertainty and surprise, a frequent situation in natural resources management. 53 

Keywords: water resource management; arsenic contamination; decision-making; uncertainty; 54 

Shackle, Vickers and Katzner (SVK) criterion; Bangladesh.  55 

56 
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1. Introduction 57 

Uncertainty is pervasive in water resources and addressing uncertainty and ignorance still 58 

demands a more pragmatic approach in decision making (Ganguly et al. 2015; Hollings, 1986; 59 

Kalman, 1983). Water resources management often deals an inherent uncertainty in hydrologic 60 

processes (Borgomeo et al. 2014), especially in information access, infrastructure, hydrologic 61 

modeling, and decision making under extreme events. Uncertainties in climate change impacts, 62 

water quantity (floods and droughts), water quality (emerging contaminants, eutrophication), and 63 

social processes (communication and response) dominate research and decision making in water 64 

resources. Knowledge of uncertainty is important for robust management of water resources in 65 

order to sustain societies (Tracy, 2008).  In decision making, risk (probabilities and outcomes are 66 

all known) and uncertainty (probabilities are unknown but outcomes are known) (Faber et al., 67 

1992) dominate in water resource management. In many decisions, neither probabilities nor 68 

outcomes are clearly known; thus, ignorance and surprise is often predominant in decision 69 

making. While earlier theoretical works have made substantial progress in utilizing the 70 

probability information and nature of preferences through approaches like the expected utility 71 

theory, the shortcomings of such frameworks are tucked in its assumptions or in the 72 

complacency of the large number theory. These models use assumptions on complete 73 

information about water resource risk and have the advantage of elegance and simplicity, but are 74 

less applicable to decision making under uncertainty and ignorance that is prevalent in water 75 

resources. Several distinguished economists (Hayek 1945; Hicks 1976; Shackle 1972; Vickers 76 

1985) have recognized this fact in analyzing uncertain choices and decisions. Metlay and 77 

Sarewitz (2012) identify that such decision strategies are complex, messy problems having: (i) a 78 

high degree of uncertainty linking options to outcomes; and (ii) substantial controversy over 79 

tradeoffs among values.  80 
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The quantification of probabilities of future outcomes in water resources is often 81 

constrained by the unavailability or lack of information, leading to outcomes with potential for 82 

surprises. Shackle (1969) identifies that instances of surprise arise from the possibility of 83 

unknown outcomes, the non-replicability of frequency based probabilistic outcomes, and 84 

insufficient knowledge of future outcomes. In many cases, the existing scientific knowledge 85 

cannot adequately explain the system dynamics to generate information for decisions with 86 

certainty. Uncertainty and surprise also exist with respect to the sustainable use and potential 87 

future benefits derived from water resource systems. Incorporating uncertainty into water 88 

resource decision-making models requires a clear specification of the nature and sources of 89 

uncertainty. Given that a probability-based framework has limited application in such situations 90 

involving uncertainty, there is a need for alternative approaches and theories that will guide 91 

water resource decision making under uncertainty (Baudry 2018; Starmer 2000). Following the 92 

work of Shackle (1969), Vickers (1987), and Katzner (1998), we propose an alternative 93 

framework for decision making under uncertainty and ignorance, and apply it to a pragmatic case 94 

of managing water supply systems under uncertainty in Bangladesh. We incorporate non-95 

probabilistic uncertainty and surprise in decision-making to deal with the exogenous uncertainty 96 

in water supplies. Our general objective is to derive and apply a framework that can guide 97 

prudent decision making in such cases. Bangladesh, like many other developing nations, faces an 98 

exceptionally high level of arsenic contamination in its groundwater which is leading to serious 99 

public health hazards (Smith et al. 2000). The existing scientific knowledge is limited on 100 

managing arsenic contamination (Yunus et al. 2016; Tsur and Zemel 1995; Tsur and Zemel 101 

2004) and this study fills this gap by developing a unique operational approach to deal with 102 

water resource uncertainty. Another unique contribution is that very few studies (e.g. Horan et al. 103 

2002) mention the SVK framework as a possible option to model uncertainty and surprise, but do 104 
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not provide an operational framework. Our study is thus unique in developing an operational 105 

framework to apply the SVK approach and apply it to a water resource management problem.  106 

Specific objectives of this study are: (i) to review current and develop an uncertainty 107 

framework for applications in water resource decisions; (ii) to optimize decisions on water 108 

supplies under uncertain contamination processes; (iii) to identify strategies to apply uncertainty 109 

into decision models in hydrology and water resource management. We hypothesize that: (i) the 110 

SVK uncertainty framework is suited under conditions of ignorance and potential surprise; (ii) 111 

diversified allocation is optimal for reducing uncertainty in water supply decisions; and (iii) there 112 

is potential to improve decisions involving uncertainty in water resource management.  113 

 114 

2. Towards an operational Framework  115 

Hydrology has recognized the importance of nonstationarity in planning and decision 116 

making (Milly et al. 2008; Borgomeo et al. 2014). Many policy decisions are also required to 117 

recognize the competing uses of water resources. Decisions often aim at avoiding risk and are 118 

made under a high degree of uncertainty (Arrow 2004). The commonly used expected utility 119 

(EU) approach assigns a numerical payoff value and a probability of state-contingent outcomes 120 

of decisions. However, in practice, decision makers are unwilling to apply expected utility 121 

methods to important decision problems (Moskowitz 1990, Moskowitz et al. 1993). Several 122 

alternative theoretical frameworks are proposed, that include reliability theory (Heiner 1983, 123 

Milon and Bogess 1988), Bayesian optimization (Zhang et al 2017), robust interactive decision 124 

analysis (Chu et al. 1989, Moskowitz et al. 1990), potential surprise framework (Shackle 1969; 125 

Shackle 1972; Katzner 1998), multi-valued mapping (Dempster 1967), weight of evidence 126 

measures (Good 1985), prospect theory (Kahneman and Tversky 1979, 2013; Machina 1982; 127 

Quiggan 1982), regret theory (Savage 1951; Chisholm 1988; Palmini 1999), safe minimum 128 
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standard (Ciriacy-Wantrup 1968), multiattribute utility theory (White et al. 1984; Fishburn et al. 129 

1968), robust interaction decision (Moskowitz et al. 1990), robust control framework (Roseta-130 

Palma and Xepapadeas 2004), Genetic Optimization (Tanyimboh and Czajkowska 2017; Al-131 

Jawad and Tanyimboh 2017) and intuitive probability approach (Koopman 1940). 132 

  The EU approach is inconsistent with predictions made about people’s behavior 133 

(Starmer 2000; ), inefficient in modeling under low catastrophic risk (Chichilnisky 1998),  and is 134 

weak in applicability to natural resource management (Chisholm 1988; Woodward and Shaw 135 

2006; Peterson et al. 2003)). Brock and Xapapadeus (2003) suggested incorporating Knightian 136 

uncertainty (Knight 1921) to regulate natural systems with non-linear dynamics. Decision-137 

making under uncertainty facing irreversible changes also use concepts of option value 138 

(Weisbrod 1951; Chisholm 1988; Cicchetti and Freeman 1971), quasi option value (Arrow and 139 

Fisher 1974), and existence value.  140 

The Shackle’s model of decision making under non-probabilistic uncertainty and surprise 141 

(Shackle 1969) has not been adequately extended for use in practice of decision making. Vickers 142 

(1994) and Katzner (1998) have made considerable effort to extend Shackle’s basic approach to 143 

theorize decisions under uncertain environments.  144 

3. Methodology 145 

SVK Uncertainty Framework: Consider a situation where a decision maker is ignorant in 146 

developing a full assessment of probabilities. This difficulty often results from poor information, 147 

an imperfect perception of past and present, and unknown future. This is a scenario with a lack 148 

of knowledge of occurrence, outcome, or the basis for probabilities (epistemic nature). Hence, a 149 

probability p(E) of the subset of states E is difficult to assert. The lack of reliable estimates of 150 

p(E) makes the decision-making more difficult under uncertainty, compared to that of decisions 151 
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under risk (in the classic Knightian sense). Following Shackle (1969), Vickers (1994) and 152 

Katzner (1998), (SVK), we assume that the decision maker imagines an incomplete collection of 153 

states of the world, say , and forms a non-probabilistic judgment of belief of the occurrence of 154 

various states. The states of E are subsets of  , with unknown states represented by the empty 155 

set . In general, consider only the σ-field over  that contains all subsets of  (Katzner 1998) 156 

and represent it as ε.  In contrast to the states of E in the Kolmogorov formulation (Tikhomirov 157 

1993) of probability analysis, the Cox formulation (Cox 1961) of probability defines E as 158 

representing hypotheses, propositions or a set of answers to questions. The residual hypothesis is 159 

a collection of unknowns represented by the null set  (Katzner 1998). 160 

According to SVK, the potential surprise of E in ε is the surprise the decision maker 161 

imagines now about the future occurrence of an element in E. This can also be interpreted as the 162 

degree of disbelief when contemplating the possible occurrence of E (Katzner 1998). With this 163 

definition of surprise, we can define a potential surprise function of E as S: E  [0, 1], a 164 

mapping of ε into a closed interval. When S(E)=0 for some E in ε, this indicates “perfect 165 

possibility” i.e., the decision maker is unable to identify any obstacle to the occurrence of an 166 

element in E.  On the contrary, when S(E)=1, the decision maker believes in “perfect 167 

impossibility” in the sense that it is not possible to conceive of an element of E occurring. At S(168 

)=0, the decision maker expresses a “perfect possibility” of occurrence of something not 169 

imagined a priori.   170 

Following the SVK approach, the S(E) is defined to satisfy three axioms: Firstly, the 171 

range of S(E) is represented by axiom (1). 172 

For all E in ε,  0 ( ) 1S E       (1) 173 

which is a standard condition similar to the property of a probability function. This 174 

indicates that the surprise function is nonnegative and bounded above by unity, equivalent to 175 



 




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perfect impossibility. Secondly, axiom in (2) represents that the surprise of the union of all sets is 176 

equal to the least of all surprise functions.  177 

For any{ } { }i iE E   , ( ) inf ( )i
i

i

S E S E     (2) 178 

This axiom is a counterpart of the additivity and mutual disjointness of Ei in probability 179 

axioms, replaced by “inf” and nonempty Ei. This is an important distinction from probability 180 

theory, where the surprise function does not follow traditionally defined distribution and density 181 

functions associated with probability theory (Katzner 1998).  182 

The third axiom is that if { }iE  is an exhaustive set of rival hypotheses, then ( ) 0iS E  , for 183 

at least one i. This signifies that there is always some hypothesis that carries zero potential 184 

surprise. In using the Shacklean concepts for decision-making, the two components (complete 185 

collection of states and probability function) are replaced by incomplete collection   and the 186 

surprise function S(E). For decision x X , define a utility function u(x, ω) that is defined by187 

X   that depends on decision choices and the state   of the world. To reduce preference 188 

ordering of u(x, ω) to a single function of x for decision making, Shackle (1969) introduced an 189 

ascendancy function which was replaced by attractiveness function by Vickers (1987).  190 

To derive the attractiveness function, a subset of   is defined as
s
xN  that consists of 191 

perfectly possible outcomes as }0)(:{   s
x

s
x fN . This set represents a situation where the 192 

decision maker is unable to perceive a hindrance to its occurrence. Then identify some elements 193 

of
s
xN , say

s
x , to distinguish potential gain spaces and loss spaces. Potential gain spaces are 194 

defined as (3) and the potential loss spaces are defined as (4). 195 

}:{ s
xx  

     (3) 196 

}:{ s
xx  

     (4) 197 
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 Such that 
s
xxx    . We use ξ to denote potential surprise values over a range E, such 198 

that ξ = )(s

xf , where ξ = [0, 1].  199 

Given this framework, each pair of (ψ, ξ) has an attractiveness to the decision-maker 200 

associated with decision, x.  The decision maker’s objective is to select x X on pairs of (ψ, ξ) 201 

in x E    and x E    that have maximum attractiveness, subject to the potential surprise density 202 

function (Figure 1). If attractiveness is measured in ordinal terms as real numbers, then denote it 203 

as 
s

xg that map  and x E    into a real line. The optimal solutions are where iso-204 

attractiveness contours are tangential to the potential density curve. The optimization problem is 205 

to  ( , )s

xMax g   , subject to ξ= . Substituting the constraint into the objective function, 206 

one can derive ( )H   to rewrite the problem as (5). 207 

( ) ( , ( ))s s

x xMax H g f


         (5) 208 

 The first order conditions for optima can be derived as (6). 209 

s s s

x x x

s

x

g g fdH

d f  

  
 
  

      (6) 210 

and solving for , one could obtain (7) 211 

0
s s s

x x x

s

x

dg g f

d f 

 
 
 

     (7) 212 

Rearranging, and evaluating at the maximizing pairs of ( ,x x  
) or ( ,x x  

), one can obtain the 213 

first-order condition for optimality as (8). 214 

     (8) 215 

x E  

)(s

xf

0
dH

d


s s s

x x x

s

x

g g f

f 

  
 

 
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 In translating this to decision making, the possible range of utility outcomes are considered by a 216 

typical decision maker to account for the values in the focus gain and focus loss spaces. That is, 217 

for x X , a decision maker looks at specific values in focus gain (R(x) and r(x)) and focus loss 218 

(L(x) and l(x)) spaces. The x with higher R(x) value is of higher utility in the focus gain space and 219 

is preferred, while a higher r(x) is more uncertain and is thus less desirable in this space. An x 220 

with higher L(x) value is less negative and is desirable, while that with higher l(x) makes the 221 

lowest utility value more surprising and thus less desirable.  Thus, there are tradeoffs between 222 

each of the pairs of these four functions. These tradeoffs are addressed by a general function 223 

( )sQ x , that has four arguments: (1) the highest potential return in the gain space, (2) the highest 224 

potential return in the loss space, (3) the lowest potential surprise in the gain space, and (4) the 225 

lowest potential surprise in the loss space. The decision maker combines these in a function 226 

defined for all values of ( , , , )x x x x      
arising from a constrained maximization of the 227 

attractiveness function, and is represented as [ , , , ]s

x x x xQ       
. 228 

From the constrained optimization problem, it is expected that 
( ) ( )

0, 0,
s s

x x

Q x Q x

  

 
 

 
 229 

( )
0,

s

x

Q x

 





and 

( )
0.

s

x

Q x

 





 This result is because the potential return in loss space comes with 230 

a negative sign, and attractiveness increases when 
x  increases (less negative). In general, 231 

attractiveness also increases when the potential return, 
x  increases. However, greater potential 232 

surprise in the gain space is less attractive, but it is more attractive in the loss space because it is 233 

less likely to occur. 234 

For an unconditional uncertainty averse decision maker, 0
)(

,0
)(












x

s

x

s xQxQ


, 235 
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as the unconditional uncertainty averse decision maker wants to reduce potential surprise in both 236 

gain and loss pace. However, for an unconditional uncertainty neutral decision maker, 237 

0
)(

,0
)(












x

s

x

s xQxQ


. The signs of these derivatives by themselves may not be sufficient to 238 

rank alternatives.   239 

The decision maker then forms a decision index or decision function that is defined on X by 240 

replacing the functional value arguments of ( )sQ x with their associated functions and 241 

represented as in (9) (Katzner 1998). 242 

( ) ( ( ), ( ), ( ), ( ))s sD x Q L x l x R x r x      (9) 243 

The decision index is distinct from the attractiveness function because it is derived from different 244 

cognitive process, while attractiveness function emerges from identification of what is positive 245 

or alarming about various objectives of choice (Katzner 1998). This formulation is similar to that 246 

of a multi-attribute utility function (Keeney and Raiffa 1976, Randhir and Shriver 2009) with 247 

attributes representing attractiveness and surprise levels in focus-gain and focus-loss spaces. The 248 

decision maker can maximize ( )sD x  over a subset of X, with budgetary restrictions for deriving 249 

an unique optima. 250 

Study Area:  An exceptionally high level of arsenic is found in groundwater in Bangladesh. 251 

Prior to the 1970s, the people in Bangladesh mostly relied on surface water, which has become 252 

increasingly polluted. Pollution from poor sewage systems and chemical waste dumping has led 253 

to cholera, diarrhea and other water-borne diseases. The mortality rates from such water borne 254 

diseases were alarming. The government and donor agencies suggested the cost-effective 255 

solution of digging shallow tube-wells to provide access to safe water (Patel 2001). Millions of 256 

dollars were spent on digging shallow tube-wells, and massive pumping of groundwater took 257 

place to meet household and agricultural demand. By 2000, almost 97% of the populations in 258 
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rural Bangladesh were drinking water from shallow-tube wells and 2.5 to 3 million wells existed 259 

in Bangladesh (Patel 2001). Initially, no one was warned to test for arsenic. In the early 1990s, it 260 

was found that most of the well water contained arsenic.  261 

The current method of extracting water cannot be continued as arsenic is causing serious 262 

health hazards and leading to the largest mass poisoning in history (Smith et al. 2000). More than 263 

29 million people are affected by arsenic contamination, and 35-77 million are at risk of 264 

exposure in Bangladesh (Rahman 2002). Due to arsenic related cancers (in liver, bladder, and 265 

lung), Chen and Ahsan (2004) estimate a more than doubling of lifetime mortality risk (229.6 266 

versus 103.5 per 100 000 population) in Bangladesh. The evidence of fetal loss and infant death 267 

due to arsenic exposure during pregnancy has been documented by Rahman et al. (2007). 268 

Maddison et al. (2005) have estimated that the aggregate willingness to pay (WTP) to avoid the 269 

health impacts of arsenic in Bangladesh is $2.7 billion/year. Given the uncertainty involved in 270 

this specific water resource management case, the application of conventional cost-benefit 271 

analysis would be inadequate. In this paper, we attempt to design an analytical framework for 272 

future decision-making and mitigation measures for similar situations of uncertainty.  273 

Most of the large arsenic contamination worldwide involves groundwater contamination 274 

as a natural outcome of hydro-geological process (see Table I for details on worldwide 275 

occurrences of arsenic contamination in water). There is an intense debate regarding the causes 276 

of arsenic contamination in Bangladesh, a country abundant in both surface and ground water 277 

(see Science 22 November 2002 and Science 25 April 2003 for a debate regarding the causes of 278 

arsenic contamination in Bangladesh). A variety of factors such as geology, hydrology and the 279 

structure of aquifers can be attributed to the causes of contamination. Arsenic is naturally 280 

transported in the river systems in Bangladesh and adsorbed into fine-grained iron or manganese 281 

oxyhydroxides. These ores were deposited in floodplains and buried in the sedimentary column 282 
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which later released arsenic into groundwater in certain parts of Bangladesh (see Rahman 2002). 283 

Most of the highly arsenic-contaminated wells are in shallow aquifers that are 50 to 150 feet 284 

below the surface, whereas deep aquifers are nearly arsenic-free (Yu et al. 2003). However, it 285 

uncertain whether deep aquifers will remain arsenic-free over time. An alternative view is that 286 

distribution of arsenic is related to geology rather than depth since arsenic is in aquifers with 287 

newer sediments.  288 

The complexity in sediment dynamics and a dearth of sediment analyses make it difficult 289 

to predict whether the high arsenic zone is hydrologically separate from deep aquifers. A study 290 

on natural arsenic distribution in Socorro, New Mexico (Brandvold and Frisch 2002) shows that 291 

the relationship between rock type and arsenic concentration in water is not well defined in this 292 

study area. In West Bengal (India), Mukherjee (2005) finds no significant relationship between 293 

depth and arsenic concentration in the sedimentary sequences to apply conventional groundwater 294 

modeling to locate arsenic free sites. While answers to the questions regarding the causes of 295 

arsenic contamination in Bangladesh are yet to be known with certainty, it is important to 296 

acknowledge the uncertainty and surprise potential involved in policy and decision making 297 

regarding ground water extraction.  298 

We apply the SVK framework in decision making under environmental uncertainty 299 

associated with management of water resources. The uncertainty and surprise are related to the 300 

surprise associated with the quality of various sources of water. Our focus is on arsenic 301 

contamination of drinking water in Bangladesh. To be justified for analysis based on a non-302 

expected utility framework, Woodward and Shaw (2006) portray ‘arsenic in drinking water’ as a 303 

situation where relevant probabilities are very small and the ambiguity related to outcomes due 304 

to lack of information have important health implications including mortality and morbidity. 305 

Thus, the behavioral anomalies that people place more weight on low probability events in gain 306 
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space and less weight on low probability events in loss space and also show preference towards 307 

ambiguity aversion (Camerer et al. 2004) will have significant consequences in decision making 308 

in case of arsenic contamination.  309 

Optimization Model: To apply the SVK framework to this decision problem, we consider a 310 

decision maker (water manager) who is facing uncertainty in arsenic contamination of new water 311 

sources that are being developed. The water manager is considering three alternatives in his 312 

choice set, that include shallow wells (sw), deep wells (dw), and surface water treatment (swt). 313 

Let i I  denote each of these sources, where { , , }I sw dw swt . The uncertainty involved in all 314 

these options is associated with water contamination exceeding a safety threshold long after the 315 

water supply has been developed. Figure 2 shows these three options for water collection with 316 

corresponding potential outcomes. 317 

Let B be a non-empty subset of the real line { : (0,1]}i iB b , such that there is a 1-1 318 

correspondence,
i , between the decision set  iX  and the real line iB . This can be expressed as319 

( )i i ib x , for all i ix X and i ib B . Let a decision-maker (water manager) hold a belief as the 320 

potential surprise density function ( , )if b  of a particular source i  as (10). 321 

 

 

2

2

                      1

          1

( , ) 0                   1

1        1

                     1 1

i i i

i i i i i

g

i i i i i i

i i i i i i i

l

i i

if b

k b if b b

f b if b b

k b if b b

if b

 

  

 

  

 

  

    


   


   


  

     (10) 322 

Here, [0,1]i   represents a scaling factor to model the reduction in surprise resulting 323 

from treatment technologies. The constants 
i

gk and 
i

lk  (g stands for the gain space and l for the 324 

loss space) are marginal scaling coefficients representing increased or decreased surprise 325 
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potential at the margin for each outcome of a decision in the gain space, x

  and loss space, x

 , 326 

respectively. The lower bound, say 0

ib , of iB  represents the boundary between more favorable 327 

{ : ( , ) 0}i i if b    and less favorable outcomes{ : ( , ) 1}i i if b   . This formulation also 328 

defines various endpoints of intervals through which 
i vary. 329 

Let ( , )i i ig    be the attractiveness function of the decision maker to a particular source 330 

for water augmentation, represented as (11).    331 

-

x

,        if 
( , )

,      if 

i i i i

g g xi i i

i i i i

l l

g
   

 
  

  
 

  

     (11) 332 

Here, 
i

g and 
i

l are marginal attractiveness for the outcomes resulting from a decision in 333 

gain space and loss space, respectively. Similarly, 
i

g and 
i

l are marginal attractiveness 334 

(repulsion) for increases in surprise levels in the gain space and loss space, respectively.  335 

To identify optimal conditions in the gain spaces and loss spaces for each i, a constrained 336 

maximization of ( , )i i ig   subject to ( , )i i if b can be specified. Using the Lagrangean theorem 337 

at interior points of focus loss and focus gain spaces, it is easier to identify attractiveness 338 

maximizing pairs in focus gain and focus loss for i ib B . The optimal tangency points are 339 

identified using 
( , )

0
( , )

i i i

i i i

dg

df b

 


  in focus gain and focus loss spaces for each i I . Thus

i

g ,
i

l , 340 

i

g , and 
i

l are coordinates of the tangency between the iso-attractiveness function ( , )i i ig    and 341 

the potential surprise density function ( , )i i if b . Figure 3 shows these tangency points for three 342 

different options (sw, dw, swt) to develop water supply systems. 343 

These coordinates are functions of ib  that can be used in the development of a decision 344 

index ( )iD b  defined as: 345 
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( ) ( , , , | )i i i i i

g l g lD b Q i I           (12) 346 

This decision index ( ( )iD b ) is a function of ib obtained by substituting constrained 347 

maximization solution values, in focus loss and focus gain spaces, into ( , , , )i i i i

g l g lQ    , a 348 

continuously differential function (Katzner 1998). This index could be optimized to identify 349 

optimal ib  that maximizes the combined attractiveness in the focus gain and focus loss spaces of 350 

all choice alternatives. The parameters applied in our analysis are listed in Table II. These 351 

parameters are based on insights from published information on water resources in the 352 

Bangladesh region, our experience in water management in the region and the nature of 353 

hydrologic processes in relation to water supplies (Maddison et al. 2005, Mukherjee, 2005, Khan 354 

and Haque 2010, Khan et al. 2014). The values of each parameter are discussed in detail in the 355 

following discussion.  356 

The 0

ib value is the lower bound of iB  that represents the boundary between more 357 

favorable and less favorable outcomes. This boundary determines the threshold interval where 358 

the potential surprise increases. The potential surprise for deep wells (dw) could be set at earlier 359 

levels of dwb  as compared to sw and swt. This threshold is set at 0

dwb =0.15. A higher threshold in 360 

sw is set at 0

swb =0.3, representing a delay before one could start observing surprises. This 361 

observation is consistent with the history of contamination of shallow wells observed in 362 

Bangladesh. The surprise associated with surface water treatment (swt) is much later than the 363 

other choice categories and is set at 0

swtb =0.4, representing potential surprises that occur with 364 

larger allocations resulting from plant malfunctions, unknown health effects, capacity 365 

obsoleteness, and spikes in contamination during extreme flood events which are common in 366 

Bangladesh. The 
i parameter scales the potential surprise function. For sw and dw, this is set at 367 
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unity indicating surprises reaching the maximum possible levels, derived from the belief that 368 

these two options are driven by hydrologic process that are difficult to predict ex ante to a 369 

decision. The 
i  value for swt is relatively lower (20 %) compared to sw and dw in the belief that 370 

a treatment process is controllable and within the management ability before substantial changes 371 

in concentrations are seen.  The 
g

ik parameter is the coefficient that increases the marginal change 372 

in the surprise in the quadratic form as (11). 373 

 
( , )

2 ( )
i i i

i i i

g g

df b
k k b

dx


    with 1ib b       (13) 374 

The values for each i are based on the increase in surprise potential for increased levels of 375 

the activity. 376 

The parameter values use relative levels in the belief that a marginal increase in surprise 377 

potential in dw is 81 % of that of the marginal increase in sw. This value is based on the 378 

relatively higher uncertainty and expected surprise in installing deep well compared to that of 379 

shallow well.  The 
g

swtk value is higher indicating a higher increase in marginal surprises involved 380 

in treatment malfunction. The 
l

ik  value reflects the marginal decrease in surprise potential in the 381 

loss spaces and can be interpreted similarly to that of 
g

ik in the gain spaces. The attractiveness 382 

function ( , )i i ig   is specified as a linear function with marginal coefficients (
i

g , 
i

l , 
i

g , 
i

l ) 383 

representing incremental attractiveness for each marginal change in the focus gain and focus loss 384 

spaces. The coefficient 
i

g  represents the marginal increase in attractiveness in a higher 385 

outcome, while 
i

g is the marginal increase from reduction in surprise potential in the focus gain 386 

space. Similarly, 
i

l  and 
i

l  are marginal changes in attractiveness from a reduction in loss of 387 

outcome and reduction of surprise in the focus loss space. We assume that the water manager is 388 
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indifferent to different sources of water with regard to tastes and some other likely attributes that 389 

do not impose any significant treatment cost.  390 

The functions in the focus loss and focus gain spaces were simulated in MATHCAD 391 

software (Mathsoft, 2006) using the parameter set described above and presented in Figure 4.  392 

The optimal conditions of the constrained maximization related to the parameter set are listed in 393 

Table III. These optimal conditions are used additively in building the decision function ( )iD b of 394 

the decision maker. A second optimization was conducted to maximize  ( )iD b  subject to 395 

additional restrictions on the boundaries of ib and a budgetary condition of the decision problem. 396 

This can be represented as  397 

 ( )
i

i

b
Max D b  S.T. 

i i

i

c b B  and  0 1i ib b       (14) 398 

where, ic is the relative cost of developing the water source and B is the total budget 399 

constraint. The estimates for ic are based on Ahmed (2005), and were normalized for relative 400 

costs using sw as a numeraire for optimization. This decision problem was specified and solved 401 

using the GAMS optimization software (Brooke et al. 1998) to identify optimal allocation of the 402 

water supply by the water manager. 403 

4. Results and Discussion 404 

Since typical cost-benefit analysis precludes addressing these types of situations, we 405 

apply the ‘potential surprise’ criterion to develop decision rules to manage natural resources 406 

under uncertainty. In our analysis, we assign a realistic pay-off structure with intuitive beliefs 407 

regarding various uncertain events. The prime focus is to operationalize the concept of ‘potential 408 

surprise’ criterion by applying it to a practical problem that water utilities face to maintain robust 409 

supply of water. Based on the parameters used, the optimal choice for the water manager is to 410 

build the capacity to collect 36.2 % of total water allocation from sw (shallow well), 32.6 % from 411 
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dw (deep well) and 31.2 % from swt (surface water treatment). Our findings imply that a 412 

diversified allocation strategy which is often effective under risky situations may also be 413 

applicable to situations under uncertainty and surprise. Thus, using the SVK approach in an 414 

operational framework in the context of arsenic contamination in Bangladesh, we show that a 415 

diversified approach to developing water supply systems is the optimal choice under uncertainty 416 

and surprise. This is consistent with risk and uncertainty literature in identifying the role of 417 

diversity in allocation to minimize overall risk in decisions. 418 

There is excellent potential for using multiobjective optimization using genetic 419 

algorithms in water resource studies. Tanyimboh and Czajkowska (2017) used penalty-free 420 

genetic algorithms to model water distribution networks. Al-Jawad and Tanyimboh (2017) used 421 

an evolutionary algorithm to model reservoir operations. Rathnayake and Tanyimboh (2015) use 422 

evolutionary algorithms in control of combined sewer overflows. The focus on SVK 423 

operationalize uncertainty framework and could be used in characterizing uncertain outcomes in 424 

optimization studies.    425 

Decision making under uncertainty and surprise is an issue of critical concern in water 426 

resource management. However, a very limited number of studies attempt to model uncertainty 427 

and surprise explicitly in the core decision making process. More specifically, in case of water 428 

management, system managers often face uncertainty in maintaining both the desired quantity 429 

and quality of water supplies. Planners and system managers often struggle with the complexity 430 

of the system dynamics which provide water for daily use. The complexity of system dynamics 431 

is much more prominent in underground sources of water compared to surface sources.  432 

Thus, uncertainty and elements of potential surprise in decision-making are important for water 433 

resource management. In recent years, arsenic contamination has become one of the high-priority 434 

environmental issues due to public health concerns. Management of contaminated water 435 
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resources is also a challenge to developed countries such as in the U.S. because of prohibitive 436 

remediation costs (NRC 1994). Budget constraints are much more severe in developing countries 437 

and often depend on the flow of foreign aid for such projects. The framework, we develop is 438 

crucial to make decisions regarding water supplies under environmental uncertainty and surprise 439 

related to arsenic contamination.  440 

 441 

 442 

5. Conclusion 443 

The framework we propose can be a very useful tool for utility managers who can 444 

incorporate subjective beliefs and expert opinions into the decision-making process to develop a 445 

robust water supply system. Under potential surprise criterion, the decision rule favors decisions 446 

involving low surprise and high net potential gain under unconditional uncertainty aversion. 447 

Thus, a water manager can identify optimal allocation among water supply alternatives by 448 

considering values of surprise density and the attractiveness of each alternative. In applying this 449 

framework in the Bangladesh context, we observe that a diversified allocation with shallow 450 

wells, deep wells, and surface water treatment can be the attractive policy choice in the face of 451 

uncertainty and surprise. Shallow wells had a slight higher optimal level (36%) compare to deep 452 

wells and surface treatment which had levels of roughly 32% each. The implication of the results 453 

for future policy design is that given the uncertainties and surprise involved in such cases, the 454 

decisions should favor actions that minimize surprise instead of conventional cost effectiveness. 455 

The diversification of the water supply system that emerges as a robust strategy to avert 456 

unintended outcomes is also along the line of evolutionary view of decision-making under 457 

uncertainty which suggests actions leading to increasing diversity and adaptive flexibility 458 

(Rammel and van der Bergh 2003).  459 
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The potential surprise criterion can be extended to other applications by using relevant 460 

beliefs regarding surprise densities and attractiveness contours. Uncertainty and surprise is 461 

pervasive in natural resources management (Woodward and Shaw 2006) and the potential 462 

surprise criterion can be extensively utilized in decision making in this area. This approach is 463 

based on subjective beliefs and needs informed judgment and understanding of the resource 464 

system. Since the proposed framework is flexible to incorporate a wide range of uncertain beliefs 465 

deliberative expert elicitation of beliefs (Howarth and Wilson 2006) can be used in collective 466 

decision making.  467 

There is immense potential to extend this study to other contaminants, especially 468 

nonpoint source pollution that is uncertain over geographic space and time. There is a need for 469 

further research into elucidation of surprise potential and attractiveness functions. Further 470 

research could also focus on developing methods to evaluate tradeoffs and applicability of SVK 471 

framework in decision making at multiple scales (Randhir, 2016). Applicability of this 472 

framework to uncertainty like decisions involving climate change strategies, and policies related 473 

to disasters like hurricanes, tsunamis, and earthquakes.  474 

475 
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Table I. Worldwide Occurrences of Arsenic Contamination in Water 747 
 748 

Location  No. of 

Potentially 

exposed 

population 

Concentration 

(g/L) 

Environmental 

conditions 

Source 

Argentina 2,000,000 1-2,900 Natural; volcanic rocks and 

thermal springs 

Groundwater 

Bangladesh >29,000,000  1-4,730 Natural; alluvial sediments Groundwater 

Bolivia 50,000 N/A Natural and anthropogenic Surface water and 

groundwater 

Chile 500,000  100-1,000 Natural and anthropogenic Surface water basin lakes, 

thermal springs, mining 

China 500 40-750 Natural; alluvial sediments Groundwater 

Greece 150,000 N/A Natural and anthropogenic  Surface water, thermal 

springs and mining  

Hungary, 

Rumania 

400,000 2-176 Natural; alluvial sediments; 

organics 

Surface water 

Inner 

Mongolia 

>400,000  1-2,400 Natural; alluvial and lake 

sediments; high alkalinity 

Groundwater 

Mexico 400,000 8-620 Natural and anthropogenic; 

volcanic sediments, mining 

Surface water and 

groundwater 

Nepal N/A N/A Natural, alluvial sediments Groundwater 

Spain >50,000  1-100 Natural; alluvial sediments Surface water 

Taiwan >100,000  1-1,820 Natural  Groundwater 

Thailand 15,000  1-5,000 Anthropogenic, mining Surface water 

Vietnam >1,000,000  1-3,050 Natural; alluvial sediments Groundwater 

West Bengal, 

India 

>1,000,000  10-3,880 Natural; alluvial sediments Groundwater 

 749 

Note: 1 g (microgram) = 1/1000 (milligram); source: Rahman (2002) 750 

 751 
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Table II. Parameter values used in the analysis of decision-making under uncertainty 753 

i 
0

ib  i  
g

ik  
l

ik  i

G  i

L  
i

G  i

L  

sw 0.3 1 0.8 1 0.4 0.2 0.6 0.8 

dw 0.15 1 0.65 1.09 0.4 0.2 0.6 0.8 

swt 0.4 0.2 1.5 1.25 0.4 0.2 0.6 0.8 

 754 

 755 

756 
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Table III. Optimal tangency conditions under the constrained maximization 757 
 758 

Options Potential surprise density in the gain (g) and loss (l) space 
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 Figure 1. Constrained maximization of the attractiveness function in the potential surprise 768 

model 769 
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Note: Attractiveness is maximized at the tangency point between potential surprise density and 
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Figure 2. Options for water collection with corresponding potential outcomes 800 
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803 

804 

 805 
Figure 3. Potential surprise and attractiveness functions under three different options of 806 

shallow well (sw), deep well (dw), surface water treatment (swt).  807 
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Figure 4. Simulated potential surprise and attractiveness functions under three different 

options of shallow well (sw), deep well (dw), surface water treatment (swt).  
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Highlights 

 

- There is a need for new approaches to uncertainty in water resources decisions 

- New method to incorporate surprise potential and uncertainty into decision making  

- Arsenic contamination is modeled in a nonlinear optimization framework 

- Optimal investments need complex hydrologic and economic information 

 

 

 


